University of Colorado **Department of Mathematics** Problem of the Month December 2009-January 2010

Call a series $\sum_{n=1}^{\infty} a_n$ of positive real numbers a *descending series* if

 $a_1 > a_2 > a_3 > \dots > 0.$

Say that one descending series, $\sum_{n=1}^{\infty} a_n$, dominates another descending series, $\sum_{n=1}^{\infty} b_n$, if $a_n \ge b_n$ for all n. Say that a descending series, $\sum_{n=1}^{\infty} a_n$, weakly dominates a descending series, $\sum_{n=1}^{\infty} b_n$, if $a_n \ge b_n$ for infinitely many n.

Let $\sum_{n=1}^{\infty} a_n$ be a descending series. Show that the following are equivalent:

- (1) Every descending series that weakly dominates $\sum_{n=1}^{\infty} a_n$ is divergent. (2) Some multiple $c(\sum_{n=1}^{\infty} a_n) = \sum_{n=1}^{\infty} ca_n$ dominates the series $\sum_{n=1}^{\infty} \frac{1}{n}$.