University of Colorado
 Department of Mathematics

Problem of the Month

February 2015

Let a_{n} be a sequence of numbers defined by

$$
a_{n+3}=\frac{\left(n^{2}+n+1\right)(n+1)}{n} a_{n+2}+\left(n^{2}+n+1\right) a_{n+1}-\frac{n+1}{n} a_{n},
$$

$a_{1}=1, a_{2}=0, a_{3}=1$. Show that for every $n \geq 1 a_{n}$ is an integer and, moreover, a complete square.

