Suppose I is a category. A *cospan* from $i \in I$ to $j \in I$ is a diagram $i \leftarrow k \rightarrow j$. The cospans from i to j form a category, in which a morphism is a commutative diagram:

A diagram I is called *cosifted* if, for all i and j in I, the category of cospans from i to j is connected.

- 1. Prove that, if I is cosifted and $\{X_i\}_{i \in I}$ and $\{Y_i\}_{i \in I}$ are diagrams of sets then $\underline{\lim}(X_i \times Y_i) \to \underline{\lim}(X_i) \times \underline{\lim}(Y_i)$ is a bijection.
- 2. Give an example of a noncosifted colimit and finite product that do not commute.
- 3. Let \mathscr{A} be an abelian category and let $\mathbf{K}(\mathscr{A})$ be the category of chain complexes valued in \mathscr{A} . Show that for each $X_{\bullet} \in \mathbf{K}(\mathscr{A})$, the category of quasi-isomorphisms $X'_{\bullet} \to X_{\bullet}$ is cosifted.
- 4. Conclude that $\mathscr{D}(\mathscr{A})$ satisfies AB1 (it has a zero object, has finite products and coproducts, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: $X \amalg Y \to X \times Y$ is an isomorphism for all X and Y) and that $\operatorname{Ch}(\mathscr{A}) \to \mathscr{D}(\mathscr{A})$ is additive.
- 5. Suppose that $\operatorname{Ch}(\mathscr{A}) \to \mathscr{C}$ is a functor that takes quasi-isomorphisms to isomorphisms. Show that if $f, g : X \to Y$ are chain homotopic maps in $\operatorname{Ch}(\mathscr{A})$ then their images in \mathscr{C} are the same.