1. Find a version of Bézout's theorem in $\mathbf{P}^{1} \times \mathbf{P}^{1}$. (Hint: to predict the formula, convince yourself first that any curve can be deformed into a union of vertical and horizontal lines, in analogy to the way we predicted Bézout's theorem in \mathbf{P}^{2}.) Once you have a conjecture, can you prove it?
2. (a) You can find a line through any two points. How many points can you interpolate with a conic?
(b) Is the conic unique? What happens to the conic if 3 points lie on a line? What if 4 points lie on a line?
(c) Suppose that F is a regular projective quartic curve. Show that $F^{3} \rightarrow \operatorname{Pic}^{3}(F)$ is surjective. (Hints: Show that, for all $R \in F$, if $D=P_{1}+P_{2}+P_{3}+P_{4}$ is an effective divisor of degree 4 then $D \equiv E+R$ for some effective divisor of degree 3 . Start by considering a conic through D. How many other points of F will it meet?)
(d) Is the conic in the last part always unique? What does this tell you about the injectivity of $\mathrm{Eff}^{3}(F) \rightarrow \operatorname{Pic}^{3}(F)$.
(e) Deduce that, if we fix a basepoint P_{0} of F, every divisor in $\operatorname{Pic}^{0}(F)$ can be represented (not necessarily uniquely) as $D-3 P_{0}$ where D is an effective divisor of degree 3. Devise a procedure to compute $\left(D-3 P_{0}\right)+\left(E-3 P_{0}\right)$ when D and E are effective divisors of degree 3 on F.
3. Suppose that F is a regular algebraic plane curve. Show that every valuation of $K(F)$ is μ_{P} for some point P.
4. One approach to showing that elliptic curves can't be parameterized algebraically:
(a) Note that if F is an elliptic curve and $\mathcal{O}_{F, p} \simeq K[t]_{(t)}$ then $K(F) \simeq$ $K(t)$.
(b) Show that every automorphism of $K(t)$ is a Möbius transformation.
(c) Show that a Möbius transformation fixes at most 2 valuations of $K(t)$.
(d) Show that, for F in Weierstraßform $y^{2} z=x^{3}+a x z^{2}+b z^{3}$, the map $(x, y) \mapsto(x,-y)$ fixes 4 points of F.
5. Another approach to showing that elliptic curves can't be parameterized:
(a) Show that $\operatorname{Pic}(F)$ can be computed from $K(F)$ (without knowledge of F). (Hint: points are the same as valuations.)
(b) Conclude that the fields of rational functions on curves with distinct Picard groups cannot be isomorphic.
6. And another (over C): use Riemann-Hurwitz to show that there is not even a non-constant map from a projective genus 0 curve to a genus 1 curve. (Can you extend this to show that there is not any homomorphism
of K-algebras from $K(F)$ to $K(t)$ when F is a plane curve of genus 1?) (These arguments acutally work over other fields as well, once we know how to prove Riemann-Hurwitz over them.)
