1. Suppose that F is an algebraic plane curve and $P \in F$. Show that:

$$
\mu_{P}(F, x-x(P))=\mu_{P}\left(F, \frac{\partial F}{\partial y}\right)+1
$$

2. What is the correct form of Bézout's theorem for curves in $\mathbf{P}^{1} \times \mathbf{P}^{1}$?
3. Prove this generalization of the structure theorem for artinian rings:

Theorem 1. If A is a commutative ring in which all primes are maximal and there are only finitely many of them, $A \simeq \prod_{P} A_{P}$. (The product is taken over all prime ideals of A and A_{P} is the localization of A at P.)
4. Suppose K is a field. Prove that every automorphism of $K(t)$ is a Möbius transformation: $f(t)=\frac{a t+b}{c t+d}$ with $a, b, c, d \in K$ and $a d-b c \neq 0$.
5. Determine all valuations of $K(t)$ when K is a field.
6. If $f: K(t) \rightarrow K(t)$ is a Möbius transformation, it permutes the valuations of $K(t)$. How many valuations can be fixed by f ?

