1. Exercise 1.8 from Gathmann's notes.
2. Exercise 1.16 from Gathmann's notes.
3. Prove the fundamental theorem of algebra (every polynomial of degree $\geq 1$ with complex coefficients has at least one complex solution) from the fact that we discussed in class:

Theorem 1. If $f$ is a meromorphic function on $\mathbf{C}$ and $\gamma$ is a loop in $\mathbf{C}$ not passing through any of the zeroes or poles of $f$ then

$$
\begin{array}{r}
(\text { winding } \# \text { of } f \circ \gamma \text { around } 0)=\#(\text { zeroes of } f \text { enclosed by } \gamma) \\
\\
-\#(\text { poles of } f \text { enclosed by } \gamma) .
\end{array}
$$

4. If $R$ is a UFD and $f \in R[x]$ then $\operatorname{cont}(f)$ is defined to be the greatest common divisor of the coefficients of $f$. In class we proved Gauß's lemma on content:

Theorem 2. If $\operatorname{cont}(f)=\operatorname{cont}(g)=1$ then $\operatorname{cont}(f g)=1$.
Prove these corollaries:
Theorem 3. Let $K$ be the field of quotients of $R$. Suppose $f, g \in R[x]$ and $\operatorname{cont}(f)=1$ and $f \mid g$ in $K[x]$. Then $f \mid g$ in $R[x]$.

Theorem 4. If $R$ is a UFD then $R[x]$ is a UFD.

