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1 Bézout’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Intersection theory or derived algebraic geometry . . . . . . . . . . . . 16
1.4 Some more enumerative questions . . . . . . . . . . . . . . . . . . . . 16

2 A dictionary between algebra and geometry . . . . . . . . . . . . . . . . . . . 16
2.1 Points and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Algebraic subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Morphisms of algebraic subsets . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Abstract algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Tangent vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Introduction to schemes 23
3 The prime spectrum and the Zariski topology . . . . . . . . . . . . . . . . . . 23

[MO, §I.1, pp. 1–4], [Vak14, §§3.2–3.5, 3.7], [Mum99, §II.1], [AM69, Chapter 1,
Exercises 15–28], [Har77, pp. 69–70]

3.1 The Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
[Vak14, §§2.1–2.4, 2.7 (pp. 69–83)], [Har77, §II.1 (pp. 60–65)]

4.1 Why sheaves? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The definitions of presheaves and sheaves . . . . . . . . . . . . . . . . 29
4.3 Examples of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Morphisms of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



2 CONTENTS

4.5 Sheaves are like sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Sheaves on a basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

[Vak14, §2.7]
5 Ringed spaces and schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

[Vak14, §§3.2, 3.4, 3.5, 4.1, 4.3], [Mum99, §II.1], [Har77, pp. 69–74]
5.1 Quasicoherent sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Chain homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 First properties of schemes 39
6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

[Vak14, §§4.4]
6.1 Open subschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Affine space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Gluing two affine schemes . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Gluing more than two affine schemes . . . . . . . . . . . . . . . . . . . 40
6.5 Projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 The Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Absolute properties of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 41
[Vak14, §§3.3, 3.6], [Har77, §II.3]

7.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Quasicompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Quasiseparatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Nilpotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6 Noetherian and locally noetherian schemes . . . . . . . . . . . . . . . 44
7.7 Generic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.8 Specialization and generization . . . . . . . . . . . . . . . . . . . . . . 45
7.9 Constructible sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Faithfully flat descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
[MO, §I.5], [Har77, §II.5]

8.1 Modules and diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Quasicoherent sheaves on affine schemes . . . . . . . . . . . . . . . . . 48
8.4 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.5 Faithfully flat descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.6 Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.7 Applications to quasicoherent sheaves . . . . . . . . . . . . . . . . . . 60

4 The category of schemes 63
9 Relating sheaves on different spaces . . . . . . . . . . . . . . . . . . . . . . . . 63

[Vak14, §§2.3, 2.6]
9.1 Pushforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Sheaf of sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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0 Before the beginning

0.1 Recommended background

Reading 0.1. [AM69, Chapters 1–3, 7], [Vak14, Sections 1.1–1.4]

Familiarity with commutative algebra at the level of [AM69, Chapters 1–3, 7], as well
as basic point set topology, are essential. While category theory is not strictly necessary,
some familiarity is strongly recommended, at the level of [Vak14, Sections 1.1–1.3]. At a
minimum, you should be comfortable with universal properties. I will try to recall basic
facts about limits and colimits as we need them, but if you haven’t already encountered
limits and colimits, you may want to study [Vak14, Section 1.4] too.

Another reference for category theory is [Gro66]. This is a thorough, but relatively brief
survey of the key concepts used in algebraic geometry, including the existence of sufficiently
many injectives in Grothendieck abelian categories, and the theory of representable functors.

Acquaintance with differential geometry or complex analysis (especially Riemann sur-
faces) may be helpful, but is not essential.

0.2 References and how to use these notes

Each section of these notes is meant to correspond to one lecture, but these notes are not
meant to be a complete reference for the course. Their main purpose is to help me organize
the topics we will cover and to summarize what I want to say in lecture. You will need to
consult other sources. In most cases, I have given a list of other references at the beginning
of each section and in the table of contents.

Sometimes the references will cover more material than we do in lecture. It’s always a
good idea to look at this other material, but you may encounter some concepts we haven’t
defined in class. As a rule of thumb, you can skip parts of the reading that aren’t mentioned
in these notes.

I will draw a lot of the course material from Vakil’s Foundations of Algebraic Geometry
[Vak14]. This book is excellent, and if we had more time I might have attempted to follow
it linearly. As it is, we are going to jump around quite a lot, which is why I am using these
notes to try to keep things organized.

In many places, the presentation in the notes won’t be quite the same as the presentation
in Vakil’s book. One of the major differences is that I am going to spend more time on
the functor of points. I’m going to trust you to keep the different approaches straight, but
please let me know if things get muddled.

You might want to consult some other texts in case you find their presentation more
compelling. Here are some suggestions:

(i) Hartshorne’s Algebraic Geometry [Har77] is the classic reference. It is a bit terse, and
a majority of the content is in the exercises.

(ii) Mumford’s Red Book of Varieties and Schemes [Mum99] is a very good place to look
for intuition. It is less complete than other references.

(iii) Mumford has also written two textbooks [Mum76] and [MO], the latter of which was
typeset and updated by Oda. The second volume is close to the spirit of this course,
and may be the best auxiliary reference.
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(iv) The Stacks Project [Sta15] is a definitive reference for an increasingly complete list of
topics in algebraic geometry. Completeness and generality are often prioritized over
readability, so the Stacks Project works well as a reference for specific results but less
well as a textbook.

0.3 Goals for this course

The main goal for this course is to give you, the student, enough background to read a
paper or advanced text in algebraic geometry, or to follow an algebraic geometry seminar.
Secondarily, I hope to introduce you to enough algebraic geometry to participate in a summer
research project, if you are interested.

The course is structured around a few theorems that I hope will provide motivation for
the subject, which may otherwise be kind of technical.

0.4 Exercises and grading

You need to do exercises to learn algebraic geometry. You need to do a whole lot of exercises,
many more than I could possibly grade.

0.5 Acknowledgements

Thanks to all of the students who discovered and corrected errors in this text. Specific
acknowledgements appear with each correction. Thanks also to Shawn Burkett for fixing a
frustrating error in my LATEXcode.



Chapter 1

Introduction to algebraic
geometry

1 Bézout’s theorem

q:bezout Question 1.1. How many points do two algebraic plane curves have in common?

The answer to this question is Bézout’s theorem. We will discuss several formulations of
this theorem and a sketch of the proof. Our first goal in the course will be to make these
statements, and the proof outlined below, precise.

By an (affine) algebraic plane curve, we will mean the set of solutions to a polynomial
f(x, y) in two variables. We can assume the coefficients of f are real numbers and that we
are looking for solutions in R2, although in a moment we will want to look for solutions in
C2 (and at that point we might as well allow coefficients in C as well).

The first example of an algebraic plane curve is a line. A line is given by a polynomial
ax+by+c where a and b are not both zero. In other words a line is given by a polynomial f
of degree 1. (Degree of a polynomial in x and y is measured by giving both x and y degree
1.)

Exercise 1.2. Show that any line can be parameterized algebraically as (ξ(t), η(t)).

Exercise 1.3. More generally, suppose that A is a commutative ring containing elements a, b, and c such
that a and b generate A as an ideal. For any A-algebra B, let X(B) be the set of pairs (x, y) ∈ B2 such
that ax+ by + c = 0. Prove that there are polynomials ξ, η ∈ A[t] such (x, y) ∈ X(B) if and only if there is
a t ∈ B such that (x, y) = (ξ(t), η(t)).

Solution. Consider the following sequence:

0→ B

(
−b
a

)
−−−−→ B2 ( a b )−−−−→ B → 0

We argue it is exact.
The map B2 → B is surjective since there are x and y in A (hence in B) such that ax + by = 1. The

kernel certainly contains things of the form (−bt, at). If (u, v) is in the kernel then au + bv = 0. Choose x
and y such that ax+ by = 1. Then

u = axu+ byu = −bxv + byu = −b(xv − yu)

v = axv + byv = axv − ayu = a(xv − yu)

which implies that (u, v) has the form (−bt, at) where t = xv − yu. Finally if (−bt, at) = (0, 0) then
(ax+ by)t = 0 so that t = 0. Therefore the sequence is exact.

13
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Now pick (x0, y0) ∈ A2 such that ax0 + by0 = −c, which is possible since a and b generate A as an ideal.
Then take ξ(t) = x0 − bt and η(t) = y0 + at.

If f and g define plane curves C and D, then C ∩D is the set of points (x, y) such that
f(x, y) = g(x, y) = 0.

We can try some examples. If C and D are both lines then C ∩D almost always consists
of exactly one point. If the lines are parallel then we get usually get no solutions, but if the
lines are the same, we get infinitely many solutions.

If degC = 1 and degD = d then parameterize C by (x(t), y(t)). The intersection points
correspond to the values of t such that g(x(t), y(t)) = 0. This is a degree d polynomial in t,
so we expect d solutions—at least if we look in C.

However, we don’t always get d solutions, even when d = 2:

(i) Suppose g(x, y) = x2 + y2 − 1 and y(t) = 1 and x(t) = t. Then g(x(t), y(t)) = t2 has
just one solution (in any field).

(ii) Suppose g(x, y) = xy and x(t) = t and y(t) = 0. Then there are infinitely many
solutions (any value of t).

(iii) Suppose that g(x, y) = xy − 1 and x(t) = t and y(t) = 1. Then g(x(t), y(t)) = 1 there
are no solutions at all.

What is going on geometrically? In the first case, we have a tangency. But suppose we
move the line a little. Take x(t) = t and y(t) = s. For different values of s we get different
lines, and as long as s is near to but not equal to 1, we get two points of intersection. Thus
we expect that most curves C and D (whatever that means), won’t have a tangency, and
this phenomenon won’t occur.

In the second example, the line is a component of the curve D and we get infinitely
many intersections. Again, we can try moving the line. If we try something like x(t) = t
and y(t) = s(t + 1) then for s 6= 0 but near 0, we have two intersection points. Once
again, we will be able to say that most curves C and D, don’t share a component, so this
phenomenon also does not usually occur. (Technically, this example is a special case of the
previous one: It is a tangency of infinite order.)

In the last example, there is only one point of intersection when we expect two. Geo-
metrically, we can see that C is parallel to an asymptote of D. If we deform C a little, say
by taking x(t) = t and y(t) = 1 + st then as long as s is close but not equal to zero we get
two solutions. As s → 0, one of the solutions escapes to infinity. Once again, we can say
that most lines intersect D in two points.

In view of these observations, we exclude pairs of curves C and D that are tangent, share
components, or share asymptotes in Question 1.1.

More subtly, we have seen that making small changes to our curves C and D does not
change the number of points of intersection between them, as long as the small changes do
not introduce tangencies, common components, or common asymptotes. That is, if Ct and
Dt are one-parameter families of curves such that for no value of t do Ct and Dt have a
tangency, common component, or common asymptote, then |Ct ∩Dt| is constant.

The final ingredient in a proof of Bézout’s theorem will be to observe that for any
curves C and D (satisfying our assumptions) there is a 1-parameter family Ct and Dt (also
satisfying our assumptions for each value of t) with C0 = C and D0 = D such that C1

consists of degC lines and D1 consists of degD1 lines.
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We can compute very easily that |C1 ∩ D1| = deg(C) deg(D). Putting all of these
observations together, we have

|C ∩D| = |C1 ∩D1| = deg(C) deg(D).

This proves Bézout’s theorem:

Theorem 1.4 (Bézout’s theorem in the affine plane). For most algebraic plane curves C
and D we have |C ∩D| = deg(C) deg(D).

‘Most curves’ may be interpreted to include curves that are not tangent, do not have
parallel asymptotes, and do not have any components in common.

1.1 Projective space
sec:first-projective-space

If you have encountered Bézout’s theorem before, you have probably seen a more precise
version. The first way we can improve the statement is to consider the asymptotes more
carefully.

Consider g(x, y) = xy− 1 and f(x, y) = y− 1. Then C has degree 1 and D has degree 2,
so we expect their intersection to consist of two points. When we replaced C with a nearby
curve Cs, this was indeed the case, but as s → 0, one of those intersection points escaped
to infinity and was replaced by a common asymptote. The asymptote really wants to be an
intersection point!

If we count asymptotes as intersection points, maybe we can get a better version of
Bézout’s theorem. Unfortunately, this isn’t quite right: Consider g(x, y) = xy − 1 and
f(x, y) = y. This time there are no intersection points at all, but moving C slightly we see
that two intersection points are escaping to the same asymptote. In fact, this means that
C and D are tangent at infinity.

We can get a better sense of what is going on with a change of coordinates. Let x1 = x−1

and y1 = y/x. Note that these coordinates don’t make sense near x = 0, but they do make
sense when x is very large. The asymptotic intersection occurs at (x1, y1) = (1, 0).

In these coordinates, the equation for D is y1/x
2
1 − 1 = 0 or, rearranging, y1 = x2

1. The
equation for C is y1/x1 = 0, or just y1 = 0 by rearranging. These two curves are indeed
tangent.

Secretly, we are working in local coordinates on the projective plane. By definition, the
projective plane CP2 consists of all 1-dimensional subspaces in the 3-dimensional complex
vector space C3. For each point (x, y) of C2 we have a line in C3 spanned by the vector
(x, y, 1). Thus C2 is contained in CP2, but CP2 is bigger. If we let (x, y) approach infinity
in C2, the corresponding point of CP2 approaches a legitimate limit. (In other words, CP2

is compact.)

Theorem 1.5 (Bézout’s theorem in the projective plane). For most projective algebraic
plane curves C and D, the intersection C ∩D consists of deg(C) deg(D) points.

‘Most curves’ may be interpreted to include curves that share no components and no
tangencies.

1.2 Multiplicities

The statement of Bézout’s theorem can be improved even more. We’ve noticed that tangen-
cies correspond to collisions of pairs intersection points. Higher order tangencies correspond
to higher order collisions:
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Exercise 1.6. Let C be defined by y − x3 = 0 and let D be defined by y = 0. Show that
the intersection C ∩ D is a single point, but that if D is deformed to a nearby line, there
are 3 points of intersection.

We can see the tangency algebraically. If we intersect y− x3 = 0 with x = 0, we get the
equations x = y = 0. This reflects the fact that these two curves intersect transversally. On
the other hand, intersecting with y = 0 gives x3 = y = 0. This is a different equation that
has the same solutions in C as x = y = 0. However, it has different solutions in some rings
that are not fields. This precisely reflects the fact that one line is tangent (to second order)
and the other is not.

In the theory of schemes, not all points are treated equally. The equation y = x3 = 0
defines a fatter point than does y = x = 0.

Exercise 1.7. (i) Show that y = x = 0 and y = x3 = 0 have the same set of solutions in
any field.

(ii) Find a commutative ring A such that y = x = 0 and y = x3 = 0 have different solution
sets in A.

Theorem 1.8 (Bézout’s theorem with multiplicities). For most projective algebraic plane
curves C and D, the intersection C ∩ D consists of deg(C) deg(D) points when counted
with multiplicity.

‘Most curves’ may be interpreted to include curves that share no components.

1.3 Intersection theory or derived algebraic geometry

The key in all of this discussion has been to consider moving our curves slightly. Intersection
theory and derived algebraic geometry build this into the definition of intersection, yielding
a very clean statement:

Theorem 1.9 (Bézout’s theorem in intersection theory). All projective algebraic plane
curves C and D intersect in deg(C) deg(D) points, provided the intersection is interpreted
via intersection theory.

1.4 Some more enumerative questions

Question 1.10. If L1, . . . , L4 are four lines in C3 how many lines L meet all four of them?

Question 1.11. If X is a surface in C3 defined by a cubic polynomial, how many lines lie
on X?

2 A dictionary between algebra and geometry

In this section, we are going to investigate how geometric concepts are manifested alge-
braically and vice versa.
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2.1 Points and functions

The most basic algebraic object we have at our disposal is an element of the ring C[x1, . . . , xn].
We regard these as functions from Cn to C.

The most basic geometric concept is that of a point. If ξ ∈ Cn is a point then we obtain
a homomorphism

evξ : C[x1, . . . , xn]→ C

evξ(f) = f(ξ).

Exercise 2.1 (Easy). Verify that this actually is a homomorphism and that it is surjective.

Since evξ is surjective and its target is a field, its kernel is a maximal ideal, mξ. Hilbert’s
Nullstellensatz says that these are the only maximal ideals of C[x1, . . . , xn]:

thm:first-nullstellensatz Theorem 2.2 (Corollary to Hilbert’s Nullstellensatz). Every maximal ideal of C[x1, . . . , xn]
is of the form (x1 − ξ1, . . . , xn − ξn) for some ξ = (ξ1, . . . , ξn) ∈ Cn.

2.2 Algebraic subsets

def:alg-subset Definition 2.3. If J ⊂ C[x1, . . . , xn] is a set of polynomials then V (J) is the set of all
ξ ∈ Cn such that f(ξ) = 0 for all f ∈ J . An algebraic subset of Cn is a subset that is equal
to V (J) for some set J .

If X is a subset of Cn, we define I(X) to be the set of all f ∈ C[x1, . . . , xn] such that
f(ξ) = 0 for all ξ ∈ X.

Exercise 2.4 (A commutative algebra warmup). (i) Let J ′ be the radical ideal gener-
ated by J . Show that V (J) = V (J ′).1

(ii) For any X ⊂ Cn show that I(X) is a radical ideal of C[x1, . . . , xn].

Theorem 2.5 (Hilbert’s Nullstellensatz). If J ⊂ K[x1, . . . , xn] is an ideal then I(V (J)) =√
J .

Exercise 2.6 (Easy, given the previous exercise). Use the Nullstellensatz to prove that
V (I(X)) = X for any algebraic subset of Cn.

Exercise 2.7 (Easy, given the previous exercise). Give a one-to-one correspondence between
algebraic subsets of Cn and (isomorphism classes of) surjections C[x1, . . . , xn]→ A with A
reduced.2

The actual Nullstellensatz is often formulated in different ways. In order to make the
statement, we generalize Definition 2.3 to an arbitrary field:

Definition 2.8. More generally, if K is a field with an algebraic closure K, and J ⊂
K[x1, . . . , xn] then we write V (J) for the set of all ξ ∈ Kn such that f(ξ) = 0 for all f ∈ J .
If X ⊂ Kn, we write I(X) for the set of all f ∈ K[x1, . . . , xn] such that f(ξ) = 0 for all
ξ ∈ X.

1An ideal J ′ is called radical if fn ∈ J ′ =⇒ f ∈ J ′. The smallest radical ideal containing J ′ is denoted√
J ′.
2A commutative ring is reduced if it has no nonzero nilpotent elements.
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nss:1 Theorem 2.9 (Nullstellensätze). (i) (Zariski’s lemma) If K is a field and L is a field
extension of K that is finitely generated as a commutative ring then L is finite dimen-
sional over K.

nss:5 (ii) (Weak Nullstellensatz) Let K be a field. Let J ⊂ K[x1, . . . , xn] be an ideal. Then
V (J) = ∅ if and only if J = K[x1, . . . , xn].

nss:6 (iii) (Hilbert’s Nullstellensatz) If K is a field and J ⊂ K[x1, . . . , xn] is an ideal then
I(V (J)) =

√
J .

nss:2 (iv) If K is an algebraically closed field then the maximal ideals of K[x1, . . . , xn] are all of
the form (x1 − ξ1, . . . , xn − ξn) for ξi ∈ K.

Exercise 2.10 (Some parts of this exercise are likely to be hard). Show that the different
statements of Hilbert’s Nullstellensatz are equivalent.

Solution. (i) =⇒ (ii). Suppose K is a field with algebraic closure K and J ⊂ K[x1, . . . , xn]
is an ideal. If J = K[x1, . . . , xn] then V (J) = ∅, clearly. Conversely, suppose that J 6=
K[x1, . . . , xn]. Let m be a maximal ideal containing J . Then L = K[x1, . . . , xn]/m is a
finitely generated K-algebra and it is a field. Therefore it is a finite extension of K, by (i),
so there is an embedding L ⊂ K. Let ξ = (ξ1, . . . , ξn) be the image of (x1, . . . , xn) in K
under this identification. Then ξ ∈ V (J).

(ii) =⇒ (iii). (Rabinowitsch’s trick) Let K be an algebraic closure of K. The inclusion
J ⊂ I(V (J)) is immediate. Suppose f ∈ I(V (J)). Consider the ideal J ′ = (J, yf − 1) of
K[x1, . . . , xn, y]. Under the projection Kn+1 → Kn, the set V (J ′) ⊂ Kn+1 projects to a
subset of V (J) where f is non-zero. By the choice of f , this subset is empty, so V (J ′) = ∅.
Thus J ′ = K[x1, . . . , xn, y]. But then JK[x1, . . . , xn, f

−1] = K[x1, . . . , xn] so there is some
n with fn ∈ J .

(iii) =⇒ (iv). Let J be a maximal ideal. Then V (J) ⊂ Kn is non-empty by (iii), hence
contains at least one point ξ. Therefore I(V (J)) ⊂ I(V (ξ)) = (x1 − ξ1, . . . , xn − ξn). But
both ideals are maximal.

(iv) =⇒ (i). Let L be a field that finitely generated as a K-algebra. Since it is finitely
generated, we can find a surjection K[x1, . . . , xn] → L whose kernel is a maximal ideal
m. Then Km ⊂ K[x1, . . . , xn] is an ideal (not necessarily maximal). Choose m ⊃ Km
that is maximal. The quotient K[x1, . . . , xn]/m is isomorphic to K by (iv) and we get
homomorphism

L = K[x1, . . . , xn]/m→ K[x1, . . . , xn]/m = K

which shows that L is a finitely generated subfield (any homomorphism of fields is injective)
of K, hence is finite dimensional over K.

We won’t prove the Nullstellensatz for a while. The modern perspective on algebraic
geometry treats all prime ideals as points, not just the maximal ideals, so the Nullstellensatz
isn’t quite as fundamental. The Nullstellensatz for prime ideals is much easier, and we will
prove it in the next lecture.

2.3 Morphisms of algebraic subsets

We already know what an algebraic function from Cn to C is: It’s just a polynomial in the
variables x1, . . . , xn. In other words, it’s an element of C[x1, . . . , xn]. If X is an algebraic
subset of Cn then we declare that a morphism from X to C is an element of C[x1, . . . , xn]
with f and g considered equivalent if f(ξ) = g(ξ) for all ξ ∈ Cn.
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Exercise 2.11. (i) Show that the morphisms from an algebraic set X ⊂ Cn to C are in
canonical bijection with C[x1, . . . , xn]/I(X).

(ii) Show that the maximal ideals of C[x1, . . . , xn]/I(X) are the same as the maximal
ideals of C[x1, . . . , xn] that contain I(X) are the same as the points of X. (Hint: You
will want to use the Nullstellensatz (Theorem 2.2) here.)

Suppose X ⊂ Cn and Y ⊂ Cm are algebraic subsets. What is a morphism X → Y ? We
should certainly have a morphism X → Cm in this case, which amounts to m morphisms
from X to C. That is, it means we have m elements of A = C[x1, . . . , xn]/I(X), which we
can also regard as a homomorphism

C[y1, . . . , ym]→ A.

Notice that the left side is the set of algebraic functions on Cm and the right side is the
set of algebraic functions on X. If ϕ denotes the map X → Cm then this homomorphism
just sends a function f ∈ C[y1, . . . , ym] to f ◦ϕ ∈ A. We usually write ϕ∗f for the function
f ◦ ϕ.

What does it mean for the image of ϕ to lie inside Y ? It means that for any f ∈ I(Y )
and ξ ∈ X we have f(ϕ(ξ)) = 0. In other words, ϕ∗f(ξ) = 0 for all ξ ∈ X. If g is
a representative for ϕ∗f in C[x1, . . . , xn] then this means g ∈ I(X). Thus ϕ∗f = 0 in
A = C[x1, . . . , xn]/I(X).

Thus our condition that ϕ define a map X → Y is that ϕ∗I(Y ) = 0 in A. By the
universal property of the quotient ring, this means ϕ∗ can be regarded as a homomorphism

B = C[y1, . . . , ym]/I(Y )→ C[x1, . . . , xn]/I(X) = A.

Of course, this isn’t surprising when we think about B as the ring of functions on Y . If
we have a map ϕ : X → Y and f is a function on Y then f ◦ ϕ is a function on X.

2.4 Abstract algebraic sets

In the last section, we saw that every algebraic set X ⊂ Cn gave rise to a reduced, finite
type C-algebra. Conversely, every reduced, finite type C-algebra is the quotient of some
C[x1, . . . , xn] by a radical ideal, hence corresponds to an algebraic set. Different choices of
generators give different embeddings in C[x1, . . . , xn] give different embeddings in Cn, but
the different algebraic sets are all isomorphic, according to our definition of morphisms of
algebraic sets above.

Exercise 2.12. Show that there is a contravariant equivalence between algebraic sets and
reduced3 finite type4 C-algebras.

2.5 Tangent vectors

Exercise 2.13. (i) Let ξ ∈ C. Construct an identification C[x]/m2
ξ ' C[ε]/(ε2) sending

x− ξ to ε.

3This means ‘has no nilpotents’.
4This means ‘finitely generated as a commutative ring’.



20 CHAPTER 1. INTRODUCTION TO ALGEBRAIC GEOMETRY

(ii) Show that under this identification, the map

C[x]→ C[x]/mξ ' C[ε]/(ε2)

sends f ∈ C[x] to f(ξ) + εf ′(ξ). (Suggestion for how to think about this: Interpret x
as ξ + ε and think about the Taylor series.)

Exercise 2.14. (i) Show that for any tangent vector v at a point ξ ∈ Cn the function

δ : C[x1, . . . , xn]→ C[ε]/(ε2)

δ(f) = f(ξ) +
(
v · ∇f(ξ)

)
ε

is a homomorphism of commutative rings (∇f denotes the gradient).

(ii) Show that the point ξ and the tangent vector v can be recovered from this homomor-
phism. (Hint: Write δ(f) = ϕ0(f) + εϕ1(f). Set ξi = ϕ0(xi) to get the point. Set
vi = ϕ1(xi) to get the vector.)

(iii) Conclude that there is a one-to-one correspondence between pairs (ξ, v) where ξ ∈
Cn and v is a tangent vector to Cn at ξ and homomorphisms of commutative rings
C[x1, . . . , xn]→ C[ε]/(ε2).

The next two exercises are not recommended. A lot of subtleties arise.

Exercise 2.15. Generalize the previous exercise to give an identification

TX ' HomC-Alg(C[x1, . . . , xn]/I(X),C[ε]/(ε2))

when X = V (J) ⊂ Cn is a manifold.5

Exercise 2.16. Show that when X is a compact complex manifold,

TX ' HomC-Alg(C∞(X),C[ε]/(ε2)).

A similar statement holds for real manifolds.

So far, we have shown that reduced, finite type C-algebras correspond to algebraic sets.
The algebra C[ε]/(ε2) is not reduced, but if we broaden our horizons just a little and pretend
it corresponds to a space D then we have

TX = Hom(D,X).

That is D is the universal point with tangent vector ! It will turn out that D is a scheme
that really does consist of one point with a little bit of infinitesimal ‘fuzz’ around it.

5This identification is always true once one has defined the tangent space of a singular space. We will
later take this as the definition of the tangent space.
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Geometry Algebra

ξ ∈ Cn evξ : C[x1, . . . , xn]→ C
mξ ⊂ C[x1, . . . , xn] maximal ideal

f : Cn → C f ∈ C[x1, . . . , xn]
C[y]→ C[x1, . . . , xn]

X ⊂ Cn algebraic subset I ⊂ C[x1, . . . , xn] radical ideal
C[x1, . . . , xn]→ A surjective,
A reduced, finite type C-algebra

algebraic set X
X = Hom(A,C)

reduced, finite type C-algebra
A = Hom(X,C)

morphism of algebraic sets
f : X → Y

homomorphism of commutative rings
B → A

tangent vector (ξ, v) ∈ TX v ∈ (mξ/m
2
ξ)
∨

A→ C[ε]/(ε2)

affine scheme X commutative ring A

morphism of affine schemes X → Y morphism of commutative rings B → A
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Chapter 2

Introduction to schemes

3 The prime spectrum and the Zariski topology

Reading 3.1. [MO, §I.1, pp. 1–4], [Vak14, §§3.2–3.5, 3.7], [Mum99, §II.1], [AM69, Chap-
ter 1, Exercises 15–28], [Har77, pp. 69–70]

3.1 The Zariski topology

In the last section, we saw that the points of Cn can be recovered algebraically from the
ring C[x1, . . . , xn]. However, the topology of Cn can’t be recovered algebraically. In this
section we will see how to get a topology that is coarser than the usual topology on Cn. The
construction is quite general, and works with C[x1, . . . , xn] replaced by any commutative
ring.

def:spec Definition 3.2 (The prime spectrum). We write SpecA for the set of prime ideals of a
commutative ring A. For each p ∈ SpecA, let

k(p) = frac(A/p).

This is called the residue field of p. We define

evp : A→ A/p→ frac(A/p) = k(p)

be the homomorphism that sends f to f mod p. It is convenient to write f(p) instead of
evp(f), although one must take care to remember that f(p) and f(q) don’t always live in
the same set when p 6= q.

For any J ⊂ A, let
V (J) = {p ∈ SpecA

∣∣ evp(J) = 0}.

Equivalently, V (J) is the set of p ∈ SpecA such that J ⊂ p.
We write D(J) for the complement of V (J) in SpecA. When we need to emphasize

the ring A, we write IA, VA, DA, etc. When J consists of just one element f , we write
V (f) = V ({f}) and D(f) = D({f}).

A subset Z ⊂ SpecA is called closed if Z = V (J) for some J ⊂ A. A subset U ⊂ SpecA
is called open if U = D(J) for some ideal J . Sets of the form D(f) for f ∈ A are called
principal open subsets or distinguished open subsets.

23
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We also define
I(Z) = {f ∈ A

∣∣ f(Z) = 0} =
⋂
p∈Z

p.

Question 3.3. Here is something to think about: Is every open subset principal? We will
answer this question later.

Exercise 3.4. Let p be a prime ideal of A. Show that {p} is a closed subset of SpecA if
and only if p is a maximal ideal.

Solution. The closure of {p} is V (p). So {p} is closed if and only if p is the only prime ideal
containing p. In other words, if and only if p is maximal.

The exercise shows that this topology usually is not Hausdorff. It contains many points
that are not closed. This sounds pathological, but it turns out to be convenient once you
get used to it.

Exercise 3.5. Show that

V (
∑

Ji) =
⋂
V (Ji)

V (JK) = V (J ∩K) = V (J) ∪ V (K)

for any ideals J and K. Conclude that the definitions of open and closed sets in Definition 3.2
give a topology, called the Zariski topology.

Solution. We prove that V (JK) = V (J ∩K) = V (J) ∪ V (K). We have JK ⊂ J ∩K ⊂ J
and J ∩K ⊂ K, so V (JK) ⊃ V (J ∩K) ⊃ V (J)∪V (K) by reversal of inclusions. We prove
that V (JK) ⊂ V (J) ∪ V (K).

Suppose that p ∈ V (JK) and p 6∈ V (K). Then there is some g ∈ K such that g(p) 6= 0.
But gJ ⊂ JK so g(p)f(p) = 0 for all f ∈ J . As g(p) 6= 0, this means f(p) = 0 for all f ∈ J ,
so p ∈ V (J), as requried.

3.2 Examples

Here are some useful facts from commutative algebra that you may want to recall for the
following exercise and later ones:

Theorem 3.6. (i) A principal ideal domain is a unique factorization domain.

(ii) If A is a unique factorization domain then A[x] is a unique factorization domain.

(iii) In a unique factorization domain, the ideal generated by an irreducible element is
prime.

Proof. The hardest statement to prove is the second one. Recall that a commutative ring is a unique
factorization domain if it satisfies the ascending chain condition on principal ideals and every irreducible
element is prime. Suppose that we have an ascending chain of principal ideals (f1) ⊂ (f2) ⊂ · · · ⊂ A[x].
Then the degrees of the polynomials fi are decreasing, hence must eventually stabilize. Then let ai be the
leading coefficient of fi. We also have an ascending chain of ideals (ai) ⊂ (ai+1) ⊂ · · · ⊂ A, so this must
eventually stabilize. One the degrees and leading coefficients are constant, we have (fi) = (fi+1) since
fi = cfi+1 where c is a polynomial of degree zero, and (ai) = (ai+1) implies that c is a unit, since A is an
integral domain.

Now we will show every irreducible element of A[x] is prime. Let f be an irreducible element of A[x]. If
f ∈ A then f is clearly prime since A[x]/fA[x] = (A/fA)[x] is an integral domain. We assume that f 6∈ A.
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Let K be the field of fractions of A. Then A[x] ⊂ K[x] and K[x] is a principal ideal domain, hence a
unique factorization domain. Suppose that f divides gh in A[x]. Then f divides g or f divides h in K[x],
since K[x] is a principal ideal domain. So we need to prove that if f divides g in K[x] then f divides g in
A[x].

In other words, under the assumption that f is irreducible in A[x] and g ∈ A[x] and g = fh in K[x],
we want to deduce that h ∈ A[x]. Equivalently, we want to show that the power of each irreducible t ∈ A
in h is non-negative. To show this, localize at the prime (t) in A. If u ∈ A(t) is not a unit then u = st

for some s ∈ A(t). Consider the chain (u) ⊂ (t−1u) ⊂ (t−2u) ⊂ · · · of submodules of K. Since A satisfies
the ascending chain condition on principal ideals, this chain must stabilize or eventually leave A. It cannot
stabilize, for if (t−iu) = (t−i−1u) then t would be a unit, since A is an integral domain. Therefore there is
some n such smallest n that t−nu 6∈ (t). Then t−nu is a unit, so (u) = (tn). In particular, every principal
ideal in A(t) is of the form (tn) for some integer n ≥ 0.

We can therefore choose k minimally so that tkh ∈ A[x]. Reduce modulo t to get tkg = ftkh in
(A/tA)[x]. Then (A/tA)[x] is a principal ideal domain since A/tA is a field. In particular, its only zero

divisor is zero. But f 6= 0 (since f is irreducible and f 6∈ A) and tkh 6= 0 (since k was chosen minimally) so

tkg 6= 0. Thus k = 0 and h ∈ A[x].

Exercise 3.7. Suppose k is a field.

(i) Show that Spec k is a single point.

(ii) Show that Spec k[ε]/(ε2) is a single point.

(iii) Show that Spec(k × k) consists of two points. What is the topology?

Solution. We have two maximal ideals, corresponding to the two projections to k. Let
e1 = (1, 0) and e2 = (0, 1). If p is a prime ideal then e1e2 = 0 so e1 ∈ p or e2 ∈ p,
so p contains one of the two maximal ideals (e1) or (e2), hence is equal to (e1) or to
(e2).

Exercise 3.8. Describe the points and topology of Spec Z.

Exercise 3.9. (i) Describe the points and topology of Spec C[x].

(ii) Describe the points and topology of Spec R[x].

(iii) Describe the points and topology of Spec Q[x].

Exercise 3.10. Suppose A is an integral domain. Show that SpecA contains a point that
is dense. This is called the generic point of SpecA.

Exercise 3.11. Give a point of Spec C[x, y] that is neither a point of C2 nor the generic
point.

3.3 Basic properties

Exercise 3.12. Suppose that A is a commutative ring and f ∈ A. Show that there is a
universal homomorphism ϕ : A→ B such that ϕ(f) is invertible. (Hint: B = A[u]/(uf−1).)

Exercise 3.13. (i) Show that D(J) =
⋃
f∈J D(f).

(ii) Show that the intersection of two principal open subsets is a principal open subset.

(iii) Conclude that the principal open subsets of SpecA form a basis of the Zariski topology.
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ex:affine-quasicompact Exercise 3.14 (Unions of principal open affine subsets. Important!). (i) Suppose A is a
commutative ring and f1, . . . , fn ∈ A. Show that SpecA =

⋃
D(fi) if and only if

(f1, . . . , fn)A = A.

(ii) Conclude that SpecA is quasicompact1 for any commutative ring A.

Exercise 3.15 (The prime Nullstellensatz). This is much easier than Hilbert’s Nullstellen-
satz, which might also be called the maximal Nullstellensatz.

(i) (You may want to use this one to prove the next one, or you may want to skip this
part because it is a special case of the next one.) For any commutative ring A, show
that IA(SpecA) is the radical of A. (Hint: Let f be an element of A that is contained
in every prime ideal. Consider A[f−1]. What are its prime ideals?)

Solution. Primes of A[f−1] are primes of A that don’t contain f . There are none.
Therefore A[f−1] is the zero ring. But this means f is nilpotent, since the kernel of
A→ A[f−1] consists of all elements of A annihilated by a power of f .

(ii) For any commutative ring A and any subset J ⊂ A, show that I(V (J)) is the radical
ideal generated by J . (Hint: Reduce to the previous part by replacing A with A/J .
Or imitate the proof of the previous part.)

Solution. By definition, I(V (J)) is the intersection of all prime ideals containing J .
This is certainly a radical ideal since all prime ideals are radical. Therefore it contains
the radical ideal

√
J generated by J . To see the converse, suppose f ∈ I(V (J)).

Consider the ring
A[f−1]/JA[f−1] = (A/JA)[f−1].

The prime ideals of this ring are exactly the prime ideals of A that contain J and do
not contain f . By definition, there are no such primes, so (A/JA)[f−1] has no prime
ideals—it is the zero ring. Thus there must be some n such that fn mod JA = 0,
i.e., fn ∈ JA. Thus f is contained in the radical ideal generated by J .

(iii) Conclude that Z ⊂ SpecA is closed if and only if Z = V (I(Z)).

Residue fields

We give two categorical characterizations of the points of the prime spectrum.

Exercise 3.16 (Minimal homomorphisms to fields). Call a homomorphism from A to a field k minimal if,
whenever L and K are fields and there is a commutative diagram of solid lines

k

  

��

A

>>

  

L

K

>>

1This is what non-algebraic geometers in North America usually call compact. It means that every open
cover of SpecA has a finite subcover.
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there is a unique dashed arrow extending the diagram. Two homomorphisms f : A→ k and g : A→ k′ are
said to be isomorphic if there is an isomorphism h : k → k′ with hf = g.

Show that the points of SpecA correspond to isomorphism classes of minimal homomorphisms A→ k,
where k is a field.

Exercise 3.17 (Epimorphisms to fields). A morphism of commutative rings f : A→ B is called an epimor-
phism if, for any commutative ring C, composition with f induces an injection Hom(B,C) → Hom(A,C).
In other words, f is an epimorphism if, for any homomorphisms g, h : B → C, we have gf = hf if and only
if g = h.

(i) Show that any surjective homomorphism is an epimorphism.

(ii) Not every epimorphism is a surjection: Suppose that A is an integral domain and B is its field of
fractions. Show that A → B is an epimorphism. (More generally, show that any localization is an
epimorphism.)

(iii) (This part may be difficult. The proof suggested below works in much greater generality, and we
will see it repeatedly.) Show that a homomorphism from a commutative ring A to a field K is an
epimorphism if and only if the image of A generates K as a field. (Hint: Replace A with the field
generated by its image in k. Show that k → K is an epimorphism if and only if k = K by taking
C = K ⊗A K in the definition of an epimorphism. Let i, j : K → K ⊗k K be given by i(x) = 1 ⊗ x
adn j(x) = x⊗ 1. Prove that i = j if and only if k = K by proving the sequence

0→ k → K
i−j−−→ K ⊗k K

is exact. Do this by proving the sequence

0→ K → K ⊗k K
i′−j′−−−−→ K ⊗k K ⊗k K

with i′(y ⊗ x) = y ⊗ 1 ⊗ x and j′(y ⊗ x) = y ⊗ x ⊗ 1 is exact. To verify this, show that the maps
K ⊗k K → K sending y ⊗ x to yx and K ⊗k K ⊗k K → K ⊗k K sending z ⊗ y ⊗ x to zy ⊗ x split
the sequence.

Solution. Note that (ds+sd)(y⊗x) = d(yx)+s(y⊗1⊗x−y⊗x⊗1) = yx⊗1+y⊗x−yx⊗1 = yx⊗1.
So id = ds+ sd. But then suppose d(f) = 0. We get f = ds(f) so f is in the image of d.

Thus both sequences are exact, so the equalizer of i and j is k. In particular, k → K can only be an
epimorphism if k = K.

3.4 Functoriality

Exercise 3.18 (Functoriality of the prime spectrum). Suppose f : A → B is a homomor-
phism of commutative rings. Show that p 7→ f−1p defines a function Spec f : SpecB →
SpecA. Show that this definition respects composition of homomorphisms.

Exercise 3.19. Let ϕ : A → B be a homomorphism and let u : SpecB → SpecA by the
induced morphism of spectra. Show that u−1D(f) = D(ϕ(f)). Conclude that u−1D(J) =
D(ϕ(J)B) and u−1V (J) = V (ϕ(J)) for any ideal J of A. Conclude from this that u is
continuous.

Solution. We have p ∈ u−1D(f) if and only if ϕ−1p ∈ D(f) if and only if f 6∈ ϕ−1p if and
only if ϕ(f) 6∈ p if and only if p ∈ D(ϕ(f)).

Solution. We have p ∈ u−1D(f) if and only if f(u(p)) 6= 0 if and only if ϕ(f)(p) 6= 0 if and
only if p ∈ D(ϕ(f)).

We get the statement aboutD(J) because u−1 preserves unions, and we get the statement
about V (J) because u−1 preserves complements.

Exercise 3.20. Show that every point of SpecA corresponds to a homomorphism of com-
mutative rings A→ k for some field k.
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ex:univ-prop-open-subset Exercise 3.21 (The universal property of an open subset). Let J ⊂ A be any subset and
let D(J) ⊂ SpecA be an open subset. Show that the map u : SpecB → SpecA associated
to f : A→ B factors through D(J) if and only if f(J)B = B.

Solution. We have u(SpecB) ⊂ D(J) if and only if u−1D(J) = SpecB if and only if
D(ϕ(J)) = SpecB if and only if ϕ(J)B = B.

ex:univ-prop-closed-subset Exercise 3.22 (The universal property of a closed subset). Show that ϕ : A → B induces
a map u : SpecB → SpecA factoring through V (J) if and only if f(J)B is a nilideal (every
element is nilpotent).

Solution. We have u(SpecB) ⊂ V (J) if and only if u−1V (J) = SpecB if and only if
V (ϕ(J)) = SpecB if and only if every element of ϕ(J) is nilpotent.

Exercise 3.23. Suppose that ϕ : A→ B is a ring homomorphism and u : SpecB → SpecA
is the corresponding morphism on affine schemes. Let p be a point of SpecA. Prove that
u−1p = SpecBp/pBp = SpecB ⊗A k(p).

Solution. Note that {p} = V (p) ∩D(A− p). Therefore u−1p = u−1V (p) ∩ u−1D(A− p) =
V (u−1p) ∩ D(ϕ(A − p)). By definition, these are the prime ideals of B that contain ϕ(p)
and do not meet ϕ(A− p). These are the same as the prime ideals of Bp/pBp.

Exercise 3.24 (Surjectivity of integral morphisms). Suppose A is a commutative ring
and f is an integral polynomial with coefficients in A. Let B = A[t]/(f). Show that
SpecB → SpecA is surjective. (Hint: Reduce to the case where A is a field.)

Solution. The fiber over p ∈ SpecA is Spec(B ⊗A k(p) = k(p)[t]/(f mod p). Since f is
integral, f mod p is not constant, so so k(p)[t]/(f mod p) is not the zero ring.

3.5 More examples

Exercise 3.25. If R is a discrete valuation ring then SpecR consists of two points, one
open and dense and the other closed. (If you don’t know what a discrete valuation ring is,
assume R = C[t](t) or R = Z(p).)

Exercise 3.26. Describe the points and topology of C[x, y](x,y).

Exercise 3.27. Describe the points and topology of Z[x].

Exercise 3.28. Let A′ → A be a surjection of commutative rings whose kernel is nilpotent.
Show that the map SpecA→ SpecA′ is a homeomorphism.

ex:affine-generic-point Exercise 3.29. Suppose A is a commutative ring.

(i) Let p be a prime ideal of A. Show that {p} is dense in V (p). Conclude that V (p) is
irreducible: it is impossible to write V (p) as the union of two closed subsets A ∪ B
unless at least one of them is equal to V (p) itself.

(ii) Suppose that Z ⊂ SpecA is an irreducible subset. Show that there is a unique prime
ideal p ⊂ A such that V (p) = Z.

Solution. Suppose p ∈ Z ⊂ V (p) and Z is closed. Then p ⊂ I(p) ⊃ I(Z) ⊂ I(V (p)) =
p, since p is a radical ideal. Therefore I(Z) = p, so Z = V (I(Z)) = V (p).

Suppose that Z ⊂ SpecA is irreducible, and let J = I(Z). Suppose fg ∈ J . That
means f(Z)g(Z) = 0, so V (f) ∪ V (g) ⊃ Z. But Z is irreducible, so either V (f) ⊃ Z
or V (g) ⊃ Z. That is f(Z) = 0 or g(Z) = 0, so f ∈ J or g ∈ J .
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4 Sheaves

Reading 4.1. [Vak14, §§2.1–2.4, 2.7 (pp. 69–83)], [Har77, §II.1 (pp. 60–65)]

4.1 Why sheaves?

In geometry, one usually has a ring of functions associated to a space. For example, in
differential geometry one can take the ring of C∞ functions, valued in R or in C. In
topology, one has a ring of continuous functions, valued in R or C (or any topological ring).

In algebraic geometry, we turn this around and declare that every commutative ring
should be the ring of functions on some space, which we call an affine scheme. We also allow
ourselves to glue spaces together along open subsets. In a sense, schemes are the minimal
collection of spaces that can be constructed from these axioms.

It is possible to proceed quite formally along these lines, and we will discuss this in
Lecture ??. For the sake of concreteness, and adherence to historical conventions, we will
first give a definition in which schemes do have an underlying space. However, there will be
one very strange departure: functions are not determined by their values at points.

Exercise 4.2. Give an example of a commutative ring A and two elements f, g ∈ A such
that evξ(f) = evξ(g) for all ξ ∈ SpecA. Interpret this as the failure of functions to be
determined by their values at points.

In differential geometry, for example, one can describe the maps of differentiable mani-
folds X → Y as the functions on the underlying sets that have some desirable local property.
Since functions in algebraic geometry are not determined by their values at points, one can-
not specify morphisms between schemes this way. Instead, we need to explicitly specify the
ring of functions. We describe a morphism of schemes as a morphism of topological spaces
with compatible homomorphism between their rings of functions.

But schemes can be glued together from affine schemes in nontrivial ways. In contrast
to differentiable manifolds, where the global functions always determine the local functions,
schemes often do not have many global functions at all. In fact, one already sees this in
complex geometry:

Exercise 4.3. Show that all holomorphic functions from a compact Riemann surface to C are constant.

Solution. If X is a compact Riemann surface and f is a holomorphic function on X then |f | achieves a
maximum value somewhere on X. But if f is not constant then f is an open map, so |f(X)| cannot include
an upper bound.

Locally, a scheme may have a lot of functions, but these can fail to glue together to give
global functions. When thinking about functions on a scheme, one is therefore obliged to
think about functions on all open subsets simultaneously. In other words, one thinks about
the sheaf of functions, not just the sheaf’s ring of global sections.

4.2 The definitions of presheaves and sheaves

def:sheaf Definition 4.4. Let X be a topological space. A presheaf (of sets) on X consists of the
following data and conditions:

PSH1 a set F (U) for each open U ⊂ X (one often writes Γ(U,F ) = F (U));

PSH2 a function ρUV : F (U)→ F (V ) whenever V ⊂ U are open subsets of X;
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PSH3 equality ρVW ◦ ρUV = ρUW when W ⊂ V ⊂ U are open subsets of X.

Usually one writes ξ
∣∣
V

instead of ρUV (ξ) when ξ ∈ F (U) and V ⊂ U . A presheaf is called
a sheaf if it satisfies the following additional conditions:

def:sheaf:1 SH1 if ξ, η ∈ F (U) and
⋃
Ui = U and ξ

∣∣
Ui

= η
∣∣
Ui

for all i then ξ = η;

def:sheaf:2 SH2 if
⋃
Ui = U and ξi ∈ F (Ui) for all i and ξi

∣∣
Ui∩Uj

= ξj
∣∣
Ui∩Uj

then there is a

ξ ∈ F (U) such that ξ
∣∣
Ui

= ξi for all i.

We obtain sheaves of groups, abelian groups, rings, commutative rings, etc. by substituting
the appropriate concept for set and the appropriate notion of homomorphism for function
in the definition of a presheaf.

Exercise 4.5. (i) All presheaves on a point are sheaves.

(ii) The category of sheaves on a point is equivalent (in fact isomorphic) to the category
of sets.

Exercise 4.6. Suppose F is a sheaf on a topological space. Prove that F (∅) is a 1-element
set.

Exercise 4.7. Recognize presheaves as contravariant functors from the category of open
subsets of X to the category of sets.

4.3 Examples of sheaves

Exercise 4.8 (Constant presheaf). Let X be a topological space and let S be a set. Define
F (U) = S for all open U ⊂ X. Give an example of X for which F is not a sheaf. (Hint:
Exercise 4.10 below may give a clue. For almost any space X you pick, F will not be a
sheaf, but you should try to find a simple example.)

Exercise 4.9 (Subsheaves). If F and G are presheaves, we say that F is a subpresheaf of
G if F (U) ⊂ G(U) for all U . Suppose that G is a sheaf and F is a subpresheaf of G. Prove
that F is a sheaf if and only if whenever ξ ∈ G(U) and there is an open cover of U by sets
V such that ξ

∣∣
V
∈ F (V ) then ξ ∈ F (U).

ex:sheaf-of-cont-funcs Exercise 4.10 (Sheaf of functions).Exercises 4.10 and 4.11
are very important!
They are essentially

equivalent, though, so
feel free to do just one
of them. Later we will

see that every sheaf
arises from these

constructions.

You should do at least one of this exercise or the next.
Let X and Y be topological spaces and define F (U) to be the set of continuous functions

U → Y , for each U ∈ Open(X). Show that F is a sheaf.
The collection of all functions is also a sheaf. If X and Y are manifolds, the differentiable

functions form a sheaf.

ex:sheaf-of-sections Exercise 4.11 (Sheaf of sections). Suppose that π : E → X is a continuous function. For
each open U ⊂ X, let F (U) be the set of continuous functions σ : U → E such that
π ◦ σ = idU . These are called sections of E over U . Prove that F is a sheaf.

4.4 Morphisms of sheaves

def:sheaf-morphism Definition 4.12. If F and G are presheaves on a topological space X, a morphism ϕ : F →
G consists of functions ϕU : F (U)→ G(U) such that whenever V ⊂ U is an open subset we
have ρUV ◦ ϕU = ϕV ◦ ρUV .

A morphism of sheaves is a morphism of the underlying presheaves.
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ex:sheaf-of-sheaf-homs Exercise 4.13 (The sheaf of morphisms).? Suppose that F and G are presheaves on X. For

each open U ⊂ X, let H(U) = HomSh(U)(F
∣∣
U
, G
∣∣
U

).

(i) Show that H is a presheaf in a natural way.

(ii) Show that if G is a sheaf then H is a sheaf.

4.5 Sheaves are like sets

Virtually any definition concerning sets can be interpreted in Sh(X) if we interpret ∀ and
∃ as follows:

(i) ∀ ξ ∈ F means “for all open U and all ξ ∈ F (U). . . ”

(ii) ∃ ξ ∈ F means “there is an open cover Ui and ξi ∈ F (Ui). . .

For example:

Definition 4.14. A morphism of sets ϕ : F → G is injective if for all ξ, η ∈ F we have
ϕ(ξ) = ϕ(η) only if ξ = η. A morphism of sheaves ϕ : F → G is injective if, for all open
subsets U of X and all ξ, η ∈ F (U), we have ϕ(ξ) = ϕ(η) only if ξ = η.

A morphism of sets ϕ : F → G is surjective if for all η ∈ G there is some ξ ∈ F such
that ϕ(ξ) = η. A morphism of sheaves of sets ϕ : F → G is surjective if, for all open U ⊂ X
and all η ∈ G(U), there is an open cover U =

⋃
Vi and elements ξi ∈ F (Vi) such that

ϕ(ξi) = η
∣∣
Vi

.

Exercise 4.15 (Axiom of choice). The axiom of choice says that for every surjection ϕ :
F → G there is a morphism σ : G → F such that ϕ ◦ σ = idG. Show that the axiom of
choice is false in Sh(S1), where S1 is the circle. (Hint: Let F be the sheaf of sections of the
universal cover R→ S1 and let G be the final sheaf G(U) = 1 for all open U ⊂ S1.)

Exercise 4.16 (Axiom of choice, redux). On the other hand, the above example is not a counterexample
if we interpret the existential quantifier in the axiom of choice according to the sheaf-theoretic translation.
Here is an example where even the sheaf-theoretic interpretation fails. Let X be the Hawai’ian earring.
Recall that there are projections X → Xn =

∧n
i=1 S

1 for each n ∈ N (in fact, X is the inverse limit of these
projections). For each n, let Yn be the universal cover of Xn and let Zn = Yn ×Yn X. Let Z =

∐
n∈N Zn.

We have an evident surjective map Z → X ×N. Let F be the sheaf of sections of Z and let G be the sheaf
of sections of X ×N. Show that F → G is surjective but does not have a section over any open cover of X.

Solution. If U is any open neighborhood of the basepoint in X then there is a number n such that U contains
all but n of the circles in X. Therefore Zn → X has no section over U , and hence Z → X ×N can have no
section over U .

Exercise 4.17. Show that a morphism of sheaves ϕ : F → G is an isomorphism if and
only if it is bijective (both injective and surjective). Note that isomorphism means has a
two-sided inverse.

4.6 Sheaves on a basis

Reading 4.18. [Vak14, §2.7]

Suppose X is a topological space and U ⊂ Open(X) is a basis of X. The definition of
a presheaf on U is obtained by substituting U for Open(X) in Definition 4.4. Since the
intersection of two basic open subsets is not necessarily a basic open subset, the definition
of a sheaf requires a small modification in condition SH2.



32 CHAPTER 2. INTRODUCTION TO SCHEMES

def:sheaf-basis Definition 4.19. Let U be a basis for a topological space X. A presheaf on U is said to
be a sheaf if it satisfies SH1 and

def:sheaf-basis:2 SH2′ if U =
⋃
i,j∈I Ui is an open cover in U , and ξ ∈ F (Ui) are elements such that, for

each i, j ∈ I, there is an open cover Ui ∩Uj =
⋃
k∈Kij Vijk with ξi

∣∣
Vijk

= ξj
∣∣
Vijk

for all

k ∈ Kij , then there is a ξ ∈ F (U) such that ξ
∣∣
Ui

= ξi for all i ∈ I.

Exercise 4.20. Show that if SH1 holds for F and U is stable under finite intersections,
conditions SH2 and SH2′ are equivalent.

Theorem 4.21. Suppose U ⊂ Open(X) is a basis. If F is a sheaf on U then F extends
in a unique way (up to unique isomorphism) to a sheaf on Open(X).

This procedure can be viewed as an example of sheafification, which we will discuss in
Lecture 9 using the espace étalé.

For each V ∈ Open(X), define

G(V ) = lim←−
U∈U
U⊂V

F (U).

In case you are not familiar with limits, here is an explicit description of this limit: It is a
tuple (ξU )U∈U

U⊂V
with each ξU ∈ F (U) such that whenever U ′ ⊂ U we have ξU

∣∣
U ′

= ξU ′ .

Exercise 4.22. Construct a canonical isomorphism G
∣∣
U
' F .

If H is any sheaf extending F to Open(X) then consider ξ ∈ H(V ). For every U ⊂ V
in U , we have ξ

∣∣
U
∈ F (U) and ξ

∣∣
U

∣∣
U∩U ′ = ξ

∣∣
U ′

∣∣
U∩U ′ so ξ determines an element of G(V )

(using SH2). This element is unique by SH1.

Exercise 4.23. Fill in the details from the last paragraph to show that if there is a sheaf
H extending F then there is a unique isomorphism H → G.

Exercise 4.24. Complete the proof by showing G is a sheaf.

Solution. Finally, we check G actually is a sheaf. Suppose ξ, η ∈ G(V ) agree on an open
cover {Vi}. Then consider any U ⊂ V in U . We get ξU

∣∣
U∩Vi

= ηU
∣∣
U∩Vi

for all i. The U ∩Vi
cover U and F is a sheaf on U , so we get ξU = ηU for all U ⊂ V in U . This implies ξ = η,
by definition of G(V ). This proves SH1.

Now suppose ξi ∈ Vi for all Vi in an open cover over V with ξ
∣∣
Vi∩Vj

= ξj
∣∣
Vi∩Vj

. For each

U ⊂ V in U , we get ξi
∣∣
U∩Vi

and ξi
∣∣
U∩Vi

∣∣
U∩Vi∩Vj

= ξj
∣∣
U∩Vj

∣∣
U∩Vi∩Vj

. Therefore the ξi
∣∣
U∩Vi

glue together to define ξU .
To get an element of G(V ), we have to check that ξU

∣∣
U ′

= ξU ′ . By definition, ξU ′
∣∣
Vi∩U ′

=

ξi
∣∣
Vi∩U ′

and ξU
∣∣
Vi∩U

= ξi
∣∣
Vi∩U

for all i. Thus

ξU
∣∣
U ′

∣∣
Vi∩U ′

= ξU
∣∣
Vi∩U

∣∣
Vi∩U ′

= ξi
∣∣
Vi∩U ′

= ξU ′
∣∣
Vi∩U ′

.

But the Vi ∩U ′ cover U ′ and F is a sheaf on U so by SH1, we get ξU
∣∣
U ′

= ξU ′ , as desired.
Thus (ξU ) defines an element of G(V ).

Exercise 4.25. Show that a morphism of sheaves defined on a basis of open sets extends
uniquely to a morphism defined on the whole space.
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5 Ringed spaces and schemes

Reading 5.1. [Vak14, §§3.2, 3.4, 3.5, 4.1, 4.3], [Mum99, §II.1], [Har77, pp. 69–74]

Definition 5.2 (Ringed space). A ringed space is a pair (X,OX) where X is a topological
space and OX is a sheaf of commutative rings on X.

We usually write X for a ringed space (X,OX), effectively using the same symbol for
both the underlying space and the space together with its structure sheaf. This is an abuse
of terminology, but usually doesn’t cause too much trouble. If we must distinguish X from
its underlying topological space, we write |X| for the topological space.

There are many familiar examples:

Exercise 5.3.Not an important
exercise to write up
carefully, but it is a

very good idea to think
about what has to be

checked in these
exercises.

The following are ringed spaces:

(i) X is a manifold and OX is the sheaf of C∞ functions on X valued in R or C;

(ii) X is a topological space and OX is the sheaf of continuous functions on X, valued in
any topological commutative ring;

(iii) X is a complex manifold and OX is the sheaf of holomorphic functions on X;

In the next exercise, we construct the structure sheaf of an affine scheme. As it will
be useful later, and incurs no greater effort, we will actually construct a sheaf on SpecA
associated to any A-module, M . The structure sheaf is the result of this construction applied
to M = A, in which case the sheaf is denoted OSpecA.

ex:structure-sheaf Exercise 5.4.This exercise is very
important! It

illustrates all kinds of
useful techniques.

Let A be a commutative ring and let M be an A-module. Define M̃(D(f)) =
M [f−1] for each principal open affine D(f) ⊂ SpecA.

(i) Define the restriction homomorphisms in a natural way so that this is a presheaf on
the basis of principal open subsets SpecA.

Solution. We have to construct maps M̃(D(f)) → M̃(D(g)) whenever D(g) ⊂ D(f).
Recall that we showed a map SpecB → SpecA associated to A→ B factors through
D(f) if and only if the image of f in B is invertible (Exercise 3.21). In other words,
the homomorphism A → A[g−1] must factor through A[f−1]. But D(g) is the image
of SpecA[g−1]→ SpecA so we get a map A[f−1]→ A[g−1]. Tensoring with M gives

the desired map M̃(D(f)) = M [f−1]→M [g−1] = M̃(D(g)).

ex:structure-sheaf:1 (ii) Show that this presheaf is a sheaf.This exercise is a
special case of
Theorem 8.43.def:scheme Definition 5.5. A ringed space (X,OX) is called an affine scheme if it is isomorphic to

(SpecA, Ã) for some commutative ring A. A sheaf F on an affine scheme SpecA is called

quasicoherent if there is an A-module M such that F ' M̃ .
A scheme is a ringed space that has an open cover by affine schemes.2 A sheaf F on a

scheme is called quasicoherent if its restriction to each affine open subscheme in a cover is
quasicoherent.

2Warning: In older literature, what is today called a ‘scheme’ was called a ‘prescheme’. The word ‘scheme’
was reserved for what is today called a ‘separated scheme’.
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5.1 Quasicoherent sheaves

Definition 5.6. Let X be a topological space with a sheaf of rings OX . A sheaf of OX -
modules is a sheaf of abelian groups F on X along with a map OX×F → F such that, for
every open U ⊂ X, the maps OX(U)×F (U)→ F (U) make F (U) into a OX(U)-module.

Definition 5.7. Suppose that X is a scheme. A sheaf of OX is said to be quasicoherent if,
for each open affine subscheme U = SpecA of X, the sheaf F

∣∣
U

on U is isomorphic to M̃
for some A-module M .

Exercise 5.8. Prove that a sheaf ofOX -modules is quasicoherent if and only if its restriction
to every open subset in an open cover is quasicoherent.

Definition 5.9. More generally, a sheaf F on a ringed space (X,OX) is said to be quasicoherent if can
be given locally by generators and relations. That is, if there is a cover of X by open subsets U such that
there are exact sequences of OU -modules:

O⊕rU → O⊕sU → F → 0

The direct sums are not necessarily finitely indexed.

5.2 Descent

The following exercises guide you through one solution to Exercise 5.4 (ii). While this
solution is longer than the others that follow, it is the simplest conceptually and has the
added benefit to generalize to the faithfully flat topology.

ex:subcover-1 Exercise 5.10. Let F be a presheaf on a basis U for a topological space X.

(i) Show that F satisfies SH1 if and only if

F (U)→
∏
i∈I

F (Ui) (5.1) eqn:8

is injective whenever U =
⋃
Ui is an open cover of U in U .

(ii) Show that a particular instance of (8.2) is injective if and only if there is a subcollection
J ⊂ I such that

⋃
i∈J Ui = U and

F (U)→
∏
i∈J

F (Ui) (5.2) eqn:11

is injective.

ex:subcover-2 Exercise 5.11. Assume that F is a separated presheaf (this means F satisfies SH1) on a
basis U for a topological space X that is closed under intersections.

(i) Show that F satisfies SH2 if and only if

F (U)→
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ∩ Uj) (5.3) eqn:9

is exact3 whenever U =
⋃
Ui is an open cover of U in U . (Note: Make sure you

understand what all of the maps are in this diagram!)

3A diagram of sets A
f
// B

g
//

h
// C is said to be exact if f is injective and the image of f is exactly

the collection of all b ∈ B such that g(b) = h(b). This condition is equivalent to exactness of the sequence

0→ A
f−→ B

g−h−−−→ C when the objects are abelian groups.
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(ii) Show that a particular instance of (∗) is exact if and only if there is a subcollection
J ⊂ I such that

⋃
i∈J Ui = U and the sequence

F (U)→
∏
i∈J

F (Ui) ⇒
∏
i,j∈J

F (Ui ∩ Uj) (5.4) eqn:10

is exact.

Solution. Suppose that J ⊂ I and (5.4) is exact. Injectivity of the first arrow in (∗) is
immediate from the assumption that F be a separated presheaf. Suppose xi ∈ F (Ui),
i ∈ I is a collection of objects such that xi

∣∣
Ui∩Uj

= xj
∣∣
Ui∩Uj

for all i, j ∈ I. Then in

particular, xi ∈ F (Ui) for all i ∈ J so by the exactness of (5.4), there is an x ∈ F (U)
such that x

∣∣
Ui

= xi for all i ∈ J . We need to show that x
∣∣
Ui

= xi for all i ∈ I.

Fix some i ∈ I. Note that
⋃
j∈J(Ui ∩ Uj) = Ui. Therefore by SH1, to check that

x
∣∣
Ui

= xi, it is sufficient to check that x
∣∣
Ui

∣∣
Ui∩Uj

= xi
∣∣
Ui∩Uj

for all j ∈ J . But we

have
x
∣∣
Ui

∣∣
Ui∩Uj

= x
∣∣
Uj

∣∣
Ui∩Uj

= xj
∣∣
Ui∩Uj

= xi
∣∣
Ui∩Uj

as desired.

Exercise 5.12. Combine the previous two exercises to show that a presheaf on a basis U
of quasicompact open subsets that is closed under intersection is a sheaf if and only if the
sequences (∗) are exact whenever U =

⋃
Ui is a finite cover in U .

Exercise 5.13. Generalize the last two exercises to apply to all bases, not just those closed under intersec-
tions.

ex:localization-faithfully-flat Exercise 5.14. Let A be a commutative ring. Let J be a subset of A that generates a A
as an ideal. Show that a sequence of A-modules

M ′ →M →M ′′

is exact if and only if the sequence of localized modules4

M ′f →Mf →M ′′f

is exact for all f ∈ J .

ex:structure-sheaf-bis Exercise 5.15. Let A be a commutative ring and let M be an A-module. Prove that M̃
is a sheaf on the basis U of principal open affine subsets of SpecA:

(i) Reduce the problem to showing that the sequence

M //
∏
i∈IM [f−1

i ] //
//
∏
i,j∈IM [f−1

i , f−1
j ] (5.5) eqn:13

is exact whenever I is a subset of A such that IA = A.

4Recall that Mf = A[f−1] ⊗A M is the module over A[f−1] induced by M . It can be constructed
explicitly as the set of symbols f−nx with x ∈M , subject to the relation f−nx = f−my if there is some k
such that fk(fmx− fmy). It can also be constructed as the direct limit lim−→n∈N f−nM , where f−nM = M

for all M and the map f−nM → f−mM for n < m, sends f−nx ∈ f−nM to f−mfm−nx ∈ f−mM .
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(ii) Prove that the exactness of (5.5) is equivalent to the exactness of the sequences

Mf
//
∏
i∈IMf [f−1

i ] //
//
∏
i,j∈IMf [f−1

i , f−1
j ] (∗∗I) eqn:12

for all f ∈ I. (Note: Af = A[f−1]. The mixed notation is just to make the equation
look prettier.) (Warning: Be careful about commuting localization with products.)

Solution. Since
⋃
D(fi) = SpecA, we can find a finite subcover J ⊂ I. By Exer-

cises 5.10 and 5.11, the exactness of (5.5) is equivalent to the exactness of (∗J), the
sequence associated to the cover J . Note that in this case the products in (5.5) are
finite, so they commute with localization. Therefore by Exercise 5.14, the exactness
of (∗J) is equivalent to the exactness of (∗∗J). Then by Exercise 5.10 and 5.11, again,
the exactness of (∗∗J) is equivalent to the exactness of (∗∗I).

(iii) Prove that the sequences (∗∗I) are exact. (Hint: You can do this by explicitly splitting
the sequence or by using a chain homotopy. There is a way to do this that doesn’t
require any messy algebra, using Exercises 5.10 and 5.11.)

Solution. The map Mf →
∏
Mf [f−1

i ] can be interpreted as

M̃(D(f))→
∏
i∈I

M̃(D(f) ∩D(fi)).

By Exercise 5.10, to show the injectivity, it is sufficient to prove the injectivity after
passage to a subcollection of I. Just take {f} ⊂ I, in which case the map is an
isomorphism!

This proves the injectivity part of (∗∗I), from which it follows that M̃ is a separated
presheaf. We can now apply Exercise 5.11 to the sequence

M̃(D(f)) //
∏
i∈I M̃(D(f) ∩D(fi))

//
// M̃(D(f) ∩D(fi) ∩D(fj)).

Replace I with the subcollection {f} and the sequence becomes

M̃(D(f)) //
∏
i∈I M̃(D(f)) //

// M̃(D(f)),

which is obviously exact!

Exercise 5.14 showed that if SpecA =
⋃
D(fi) then the rings A[f−1

i ] are a faithfully flat collection of
A-algebras:

Definition 5.16. Suppose that A is a commutative ring. A collection of A-algebras Bi, indexed by a set
I, is said to be faithfully flat if it is equivalent for a sequence (5.6)

M ′ →M →M ′′ (5.6) eqn:17

of A-modules to be exact or for the sequences (30.4)

Bi ⊗AM ′ → Bi ⊗AM → Bi ⊗AM ′′ (5.7) eqn:18

to be exact for all i.

Exercise 5.17. Verify that the proof outlined in Exercise ?? used nothing more than that the collection
of A-algebras A[f−1

i ] had a refinement by a finite, faithfully flat subcollection.
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5.3 Partitions of unity

This section guides you through another solution to Exercise (ii) that shares some spiritual
similarity with the partition of unity arguments that appear in differential geometry.

Exercise 5.18. Reduce the problem to showing that the sequence

0→M →
∏
i∈I

M [f−1
i ]→

∏
i,j∈I

M [f−1
i , f−1

j ] (5.8) eqn:14

is exact for whenever I ⊂ A and IA = A. Make sure you know what the maps in this
sequence are before you try to prove anything!

Exercise 5.19. (i) If x ∈ M and x restricts to zero in M [f−1
i ] then fni x = 0 for some

n ≥ 0.

(ii) If (f1, . . . , fk) = A then (fn1
1 , . . . , fnkk ) = A as well.

Solution. The radical of (fn1
1 , . . . , fnkk ) is the same as the radical of (f1, . . . , fk). But

1 ∈ (f1, . . . , fk) so 1n ∈ (fn1
1 , . . . , fnkk ), i.e., (fn1

1 , . . . , fnkk ) = A.

Exercise 5.20. (i) Prove the exactness of (5.8) at M .

Solution. In the sheaf conditions, we can assume U = SpecA. Suppose g, h ∈
M̃(SpecA) and g

∣∣
D(fi)

= h
∣∣
D(fi)

. Then fkii (g−h) = 0 so there is a single n such that

fni (g − h) = 0. But
∑
aif

n
i = 1 for some ai. Thus

∑
aif

n
i (g − h) = g − h = 0, i.e.,

g = h.

(ii) Prove the exactness of (5.8) at
∏
i∈I A[f−1

i ].

Solution. Suppose gi ∈ M̃(D(fi)). For each i, choose hi ∈ M̃(U) such that hi
∣∣
D(fi)

=

fni gi. (One can assume there are finitely many fi.) Then hi
∣∣
D(fifj)

= hj
∣∣
D(fifj)

for

all i and j. Choose m such that fmj hi
∣∣
D(fi)

= fmj hj
∣∣
D(fi)

for all i, j. (Again, using

that there are finitely many indices.) Then take ai such that
∑
aif

n+m
i = 1. Take

g =
∑
aif

m
i hi. Then

g
∣∣
D(fi)

=
∑

ajf
m
j hj

∣∣
D(fi)

=
∑

ajf
m
j hi

∣∣
D(fi)

=
∑

ajf
n+m
j gi = gi

as desired.

5.4 Chain homotopies

We give a third solution of Exercise 5.4 (ii).

Exercise 5.21. Suppose that K• is a complex of A-modules with differential di : Ki →
Ki+1 and that there are morphisms si : Ki → Ki−1 for all i satisfying di−1si+ (−1)isi+1di.
Prove that K• is exact.
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Exercise 5.22. Prove that the sequences

0→M [f−1
k ]⊗k O(U)→M [f−1

k ]⊗M
∏
i

O(Ui)→M [f−1
k ]⊗M

∏
i,j

O(Ui ∩ Uj)

are exact using the method from the previous exercise and use this to complete the proof of
Exercise 5.4 (ii).

Solution. We want to prove the sequence

0→ O(U)→
∏
i

O(Ui)→
∏
i,j

O(Ui ∩ Uj)

is exact. This can be verified locally: It is sufficient to check that the sequence

0→M [f−1
k ]⊗k O(U)→M [f−1

k ]⊗M
∏
i

O(Ui)→M [f−1
k ]⊗M

∏
i,j

O(Ui ∩ Uj)

is exact. This sequence simplifies (using the finiteness of the products):

0→M [f−1
k ]→

∏
i

M [f−1
k , f−1

i ]→
∏
i,j

M [f−1
k , f−1

i f−1
j ]

Now we construct a chain homotopy between the identity and the zero map. Define:

h0 :
∏
i

M [f−1
k , f−1

i ]→M [f−1
k ] : (ai) 7→ ak

h1 :
∏
i,j

M [f−1
k , f−1

i ]→
∏
i

M [f−1
k , f−1

i : (ai,j)i,j 7→ (ai,k)i.

Then we check:

(dh−1 + h0d)(a) = h0d(a) = h0(a
∣∣
D(fkfi)

)i = a

(dh0 + h1d)((ai)i) = d(ak) + h1((ai
∣∣
D(fkfifj)

− aj
∣∣
D(fkfifj)

)i,j)

= (ak
∣∣
D(fkfi)

)i + (ai
∣∣
D(fkfi)

− ak
∣∣
D(fkfi)

)i

= (ai)i.



Chapter 3

First properties of schemes

6 Examples

Reading 6.1. [Vak14, §§4.4]

6.1 Open subschemes

Exercise 6.2. Show that an open subset of a scheme is equipped with the structure of a
scheme in a natural way. (Hint: Restriction of a sheaf is a sheaf.)

6.2 Affine space

Definition 6.3 (Affine space). The scheme Spec Z[x1, . . . , xn] is denoted An and is called
n-dimensional affine space.

6.3 Gluing two affine schemes

Exercise 6.4. Suppose that X and Y are two schemes and U ⊂ X and V ⊂ Y are open
subsets such that U ' V and under this isomorphism OU ' OV . Construct a scheme Z
whose underlying topological space is the union of X with Y along U ' V and for which
OZ
∣∣
X

= OX and OZ
∣∣
Y

= OY . (The statement of this exercise is deliberately vague in
several ways. Part of your job is to make it precise.)

Exercise 6.5. Using the notation of the last exercise, let k be a field (you may find it easier
to assume k is algebraically closed) and let X = A1

k = Spec k[x] and let Y = A1
k = Spec k[y].

There is an open subset U = D(x) ⊂ X and V = D(y) ⊂ Y .

(i) Construct two distinct homeomorphisms U ' V and corresponding identifications
OU ' OV . (Hint: One should correspond to x = y and one should correspond to
x = y−1.)

(ii) Apply the last exercise to obtain a scheme Z for each of these two isomorphisms.
Describe these spaces qualitatively and explain why they are different. (Hint: Consider
a point ξ ∈ X. Move ξ so that x(ξ) approaches 0. Move ξ so that x(ξ) approaches
∞.)

39
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6.4 Gluing more than two affine schemes

Exercise 6.6. How should this construction be modified when gluing 3 or more affine
schemes along open subsets?

6.5 Projective space

In topology, CPn is the set of 1-dimensional subspaces of Cn+1. It is topologized as the
quotient of Cn+1 r {0} by C∗. For each i = 0, . . . , n, let Vi ⊂ Cn+1 be the span of the n
coordinate vectors excluding ei. Then ei + Vi consists of all vectors whose i-th coordinate
is 1. The image of ei + Vi is an open subset Ui of CPn and this gives a system of charts for
CPn as a complex manifold.

We can’t imitate all of this algebraically, at least not yet. However, we can imitate the
charts.

For each i, let Ui = SpecAi where

Ai = Z[x0/i, . . . , xn/i]/(xi/i − 1).

The choice of notation makes the gluing that is about to happen easier. Later on, we will
see that there is a way to think about xk/i as xk/xi in some bigger ring, but introducing
this notation now would probably be misleading. Let

Aij = A[x−1
j/i].

Exercise 6.7. Verify that there is an identification Aij ' Aji sending

xk/i 7→ xk/jx
−1
i/j .

Let

Aijk = A[x−1
j/i, x

−1
k/i].

Note that Aijk = Aikj and that the exercise above gives induces an isomorphism Aijk → Ajik
for any i, j, k.

Exercise 6.8. The previous exercise gives two identifications between Aijk and Akji:

Aijk → Ajik = Ajki → Akji

Aijk = Aikj → Akij = Akji

Show that these two maps are the same.

Exercise 6.9. Use these identifications to glue the Ui = SpecAi together into a scheme,
Pn.

Projective space is extremely important because almost every scheme one encounters in
practice can be constructed as the intersection of an open subscheme and a closed subscheme
of projective space.
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6.6 The Grassmannian

There is also a space whose points correspond to the k-dimensional subspaces of Cn, called the Grassman-
nian, Grass(k, n). One way to construct the Grassmannian is to take the set V ⊂ Cn×k of all n×k matrices
whose columns are linearly independent.

Exercise 6.10.This exercise may be
skipped. We will see

later that V is open in
the Zariski topology.

Check that the set V ⊂ Cn×k is open.

The group GL(k) of invertible k × k matrices acts on the V by multiplication on the right. The orbits
of this group action correspond to k-dimensional subspaces of Cn, so Grass(k, n) = V/GL(k).

This constructs Grass(k, n) as a topological space. In order to get the structure of a complex manifold,
we construct charts. For each subset I ⊂ {1, . . . , n}, let VI ⊂ V be the subset whose I × k submatrix is the
identity.

Exercise 6.11. For each I ⊂ {1, . . . , n}, construct a bijection VI ' C(n−k)×k.

The maps VI → Grass(k, n) are injective, and we can use them as charts for the structure of a complex
manifold.

We can’t yet imitate the quotient construction for the Grassmannian but we can imitate the charts.

For each I ⊂ {1, . . . , n}, we construct a ring:

AI = Z
[
xij/I

∣∣1 ≤ i ≤ n, 1 ≤ j ≤ k]/(xii/I − 1, xij
∣∣i, j ∈ I, i 6= j

)
If J ⊂ {1, . . . , n} is another k-element subset (potentially the same as I). Let MIJ be the J × k matrix

whose entries are the variables xij/I with i ∈ J . Let

AJ/I = AI
[
det(MJ/I)−1

]
.

Exercise 6.12. Verify that there is an isomorphism of commutative rings φJI : AI/J → AJ/I by the map(
xij/J

)
1≤i≤n
1≤j≤k

7→
(
xij/I

)
1≤i≤n
1≤j≤k

M−1
J/I

.

If K ⊂ {1, . . . , n} is yet another k-element subset, let AJK/I be

AJK/I = AI
[
det(MJ/I)−1, det(MK/I)−1

]
.

Note that AJK/I = AKJ/I . The formula for φJI also gives an isomorphism AIK/J → AJK/I and we now
have two isomorphisms:

AJK/I
φIJ−−−→ AIK/J

φJK−−−→ AIJ/K

AJK/I
φIK−−−→ AIJ/K

Exercise 6.13. Verify that these two isomorphisms are the same.

Exercise 6.14. Use these isomorphisms to glue the UI = SpecAI into a scheme, Grass(k, n).

7 Absolute properties of schemes

Most useful properties of schemes are relative, meaning they may be applied to families of
schemes. We can’t talk about relative properties yet since we haven’t yet defined morphisms
of schemes, so we’ll only introduce a limited array of definitions.

Reading 7.1. [Vak14, §§3.3, 3.6], [Har77, §II.3]
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7.1 Connectedness

Definition 7.2. A scheme X is connected if its underlying topological space is connected.

Exercise 7.3.Worth being aware of,
not necessarily

important to write up. (i) Show that a scheme X is disconnected if and only if Γ(X,OX) contains an idempotent
element other than 0 and 1. (Hint: Let e be an idempotent. Then D(e) and D(1− e)
are disjoint open subsets whose union is X.)

(ii) Show that Spec(A×B) = Spec(A)q Spec(B).

Solution. Let e1 = (1, 0) and e2 = (0, 1) inside C = A × B. Then (e1, e2)C = C,
so D(e1) ∪ D(e2) = SpecC. Also, V (e1, e2) = V (C) = ∅, so D(e1) ∩ D(e2) =
∅. This shows SpecC = SpecA q SpecB as a topological space. The open subset
D(f) ⊂ SpecA corresponds to D(f, 0) ⊂ SpecC and D(g) ⊂ SpecB corresponds to
D(0, g) ⊂ SpecC.

To check that this is an identification of schemes, we need to check that the structure
sheaves agree. We have

OSpecC(D(f, 0)) = C[(f, 0)−1] = C[e−1
1 ][(f, 0)−1] = A[f−1] = OSpecA(D(f))

OSpecC(D(0, g)) = C[(0, g)−1] = C[e−1
2 ][(0, g)−1] = B[g−1] = OSpecA(D(g)).

Exercise 7.4.An exercise for the
logically oriented. The
first 4 parts should be

easy. The last is pretty
hard.

Let Ai be a collection of commutative rings, indexed by i in a set I.

(i) Construct a map
∐

SpecAi → Spec
∏
Ai.

Solution. We have
∏
Ai → Ai for all i, giving SpecAi → Spec

∏
Ai for all i. This gives the desired

map by the universal property of the coproduct.

(ii) Show that this map is an isomorphism if I is a finite set. (Hint: Use an earlier exercise.)

(iii) Show that this map is always injective.

Solution. Let p and q be points of
∐

SpecAi with the same image. Then p ∈ SpecAi for some i and
q ∈ SpecAj for some j. If p and q have the same image then the two maps

∏
SpecAi → k(p) and∏

SpecAi → k(q) have the same kernel. In particular, i = j. Then the map
∏

SpecAi → k(p) = k(q)
factors through the projection on Ai, which implies p = q in SpecAi.

(iv) Show that this is not an isomorphism if I is infinite. (Hint: Affine schemes are quasicompact.)

(v) Construct an element of Spec
∏
Ai that is not in the image of

∐
SpecAi. (Hint: I don’t suggest

attempting this problem unless you know what an ultrafilter is.)

7.2 Quasicompactness

Definition 7.5. A scheme X is said to be quasicompact if every open cover of X has a
finite subcover.

Exercise 7.6.This is a repeat of
Exercise 3.14.

Show that every affine scheme is quasicompact.

Exercise 7.7.Not very important,
should be easy.

(i) Construct an example of a scheme that is not quasicompact.
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Solution. An infinite disjoint union of nonempty affine schemes.

(ii) Construct an example of a connected scheme that is not quasicompact.

Solution. The complement of the origin in A∞.

Exercise 7.8. (i) Show that a scheme with a finite cover by affine open subschemes is
quasicompact.

(ii) Conclude that projective space is quasicompact.

7.3 Quasiseparatedness

Definition 7.9. A scheme X is said to be quasiseparated if the intersection of any two
quasicompact open subsets of X is quasicompact.

Exercise 7.10. Give an example of a scheme that is not quasiseparated.

Solution. Join A∞ = Spec k[x1, x2, x3, . . .] to itself along the complement of V (x1, x2, x3, . . .).
The intersection of the two copies of A∞ is A∞ r {0}. This is not quasicompact.

7.4 Nilpotents

Definition 7.11. Recall that a commutative ring is said to be reduced if it contains no
nonzero nilpotent elements. A scheme X is said to be reduced if OX(U) is a reduced ring
for all open subsets U of X.

ex:reduced-scheme Exercise 7.12. Let X be any scheme. Construct a reduced scheme Xred with the same
underlying topological space as X by replacing OX(U) by its associated reduced ring.

Definition 7.13. A scheme is said to be integral if it is reduced and irreducible.

7.5 Irreducibility

Definition 7.14. A scheme X is reducible if its underlying topological space is the union
of two closed subsets, neither of which is equal to X. Otherwise it is irreducible.

Exercise 7.15.Important, but should
be easy.

Show a scheme X is irreducible if and only if every pair of open subsets of
X have non-empty intersection.

Solution. If X is reducible, say X = Y ∪ Z. Let U = X r Y and V = X r Z. Then
U ∩ V = X r (Y ∪ Z) is empty if and only if Y ∪ Z = X.

Exercise 7.16.Important, but should
be easy.

Show that an affine scheme X = SpecA is reducible if and only if A contains
a non-nilpotent divisor of zero.

Solution. Suppose |X| = |V (I)| ∪ |V (J)| and neither |V (I)| nor |V (J)| is contained in the
other. We can assume I and J are radical ideals. Then neither I nor J is contained in the
other. Choose f ∈ I r J and g ∈ J r I. Then fg ∈ I(|V (I)|)∩ I(|V (J)|) so fg is nilpotent.
Say (fg)n = 0. Then fngn = 0. But neither fn nor gn is nilpotent because all nilpotents
appear in both I and J .

Conversely, if fg = 0 then |X| = |V (f)| ∪ |V (g)|. If f and g are not nilpotent then
|V (f)| 6= |X| and |V (g)| 6= |X|.
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Exercise 7.17 ([Har77, Proposition II.3.1]).This is a good one to
do. It’s not extremely

important, but it
requires putting

together a few different
ideas without being

too difficult.

Prove that a reduced scheme X is irreducible
if and only if OX(U) is an integral domain for all open U ⊂ X.

Solution. Assume X is integral. Let U be an open subset of X. Then U is irreducible.
Suppose fg = 0 in OX(U). Then VU (f)∪VU (g) = U so VU (f) = U or VU (g) = U . Without
loss of generality, assume the former. Then for every open affine subset U ′ ⊂ U , we have
VU ′(f

∣∣
U ′

) = U ′. Hence f
∣∣
U ′

is nilpotent in OX(U ′) and X is reduced so f
∣∣
U ′

= 0. Thus
f = 0, since OX is a sheaf. This proves OX(U) is an integral domain.

Conversely, suppose that X = Y ∪Z for two closed subsets Y and Z, neither containing
the other. Let U = V qW where V is a nonempty open affine subset of Y r Z and W
is an open affine subset of Z r Y . Then OX(U) = OX(V ) × OX(W ) is not an integral
domain.

7.6 Noetherian and locally noetherian schemes

Definition 7.18. A scheme that has an open cover by spectra of noetherian rings is called
locally noetherian. If the cover can be chosen to be finite then the scheme is said to be
noetherian.

Exercise 7.19.A useful fact to know.
The first part should
be easy. The second
part uses a trick you

should become familiar
with if you aren’t

already.

(i) Show noetherian is equivalent to the conjunction of locally noetherian and quasi-
compact.

(ii) Show that SpecA is locally noetherian if and only if A is a noetherian ring. (Hint:
Two ideals that are locally the same are the same.)

Solution. Choose f1, . . . , fn ∈ A such that A[f−1
i ] is noetherian for all i. Let Ij be an

ascending collection of ideals in A. The chains IjA[f−1
i ] all stabilize for sufficiently

large j. We can choose j to work for all i, since there are only finitely many fi. Thus
there is a j0 such that IjA[f−1

i ] is constant for all i and all j ≥ j0.

We argue this means Ij is constant for j ≥ j0. This reduces to the following assertion:
If I and J are ideals and IA[f−1

i ] = JA[f−1
i ] for all i then I = J . Choose x ∈ I. Then

for each i we can find ni such that fnii x ∈ J . Choose ai such that
∑
aif

ni
i = 1. Then

x =
∑
aif

ni
i x ∈ J . Thus I ⊂ J and the same argument shows that J ⊂ I as well.

Exercise 7.20.This exercise and the
next are essentially the

same. Think about
both, but don’t write
up more than one of

them.

If X is a noetherian scheme then every open subset of X is quasi-compact.
(In fact, every subset whatsoever is quasicompact, and the proof isn’t any harder.)

Solution. Choose a finite cover of X by affine opens U , each noetherian. Consider an
ascending collection of open subsets of X. This stabilizes in each affine open U in the cover.
Since there are only finitely many in the cover, the whole chain stabilizes.

Exercise 7.21. Show that the underlying topological space of a noetherian scheme is
noetherian: any increasing union of open subsets stabilizes.

Solution. This is true in an open affine subscheme, and there is a finite cover by open
affines.

Exercise 7.22 (Irreducible components).Important fact! Prove that a noetherian scheme is the union of
finitely many irreducible closed subsets. Conclude that a noetherian ring has finitely many
minimal prime ideals.
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Solution. We prove there is at least one irreducible closed subset of X with nonempty
interior. If X is irreducible this is obvious. Otherwise, X = Y ∪ Z, with Y and Z both
closed, neither equal to X. We can assume that Y ∩ Z does not meet the interior of either
Y or Z. By noetherian induction, at least one of these has an irreducible closed subset with
nonempty interior, which is not contained in the intersection Y ∩Z, hence is a closed subset
of X with nonempty interior.

Now pick an irreducible closed subset Z of X with nonempty interior. Let X1 be the
closure of its complement. Repeat with X replaced by X1 to get X2. We get a descending
chain of closed subsets of X, which must stabilize. But it can’t stabilize to something other
than the empty set, which completes the proof.

Exercise 7.23 (Noetherian induction (cf. [Har77, Exercise 3.16])). Let X be a noetherian
scheme and S a collection of closed subsets of X. Assume that whenever Z ⊂ X is closed
and S contains all proper closed subsets of Z, the set Z also appears in S. Prove that X
appears in S.

Solution. Let T be the complement of S among closed subsets of X. If T is nonempty, we
can choose a maximal descending collection in T . Since X is noetherian, this descending
chain has a smallest element. Call it Z. Then every closed subset of Z other than Z itself
is in S. Therefore Z is in S. This is a contradiction, so T must have been empty. Thus S
contains all closed subsets of X, in particular X itself.

Exercise 7.24. Find equations defining the union of the 3 coordinate axes in A3.

7.7 Generic points

Exercise 7.25.Important fact. The
argument is fairly

straightforward
topology, hence not too
important to write up.

Each irreducible closed subset Z of a scheme X has a unique point that is
dense in Z. This is called the generic point of Z.

Solution. Let Z be an irreducible closed subset of X and let U ⊂ X be an affine open subset
whose intersection with Z is nonempty. Then Z ∩U is dense in U because Z is irreducible.
If Z∩U = A∪B for two closed subsets A and B then Z = A ∪B = A∪B (closure commutes
with finite unions) so Z = A or Z = B, say the former. Then A is dense in Z, so A is dense
in U , and as A is closed in U , this means A = U . This shows U is irreducible.

Each irreducible closed subset of an affine scheme has a unique generic point (Exer-
cise 3.29). Then the generic point of U ∩ Z is dense in U ∩ Z, hence in Z.

We still have to prove that the generic point is unique. Suppose that Z contains two
generic points ξ and η. Let U ⊂ Z be an affine open subset. Then ξ and η are both
contained in U ∩ Z because ξ and η are contained in every open subset of Z. Then ξ = η
because irreducible closed subsets of affine schemes have unique generic points (Exercise 3.29
again).

7.8 Specialization and generization

Definition 7.26. Suppose x and y are points of a scheme X. If y lies in the closure of x
then we say x specializes to y and y generizes to x. We often write x; y for this.

ex:specialization Exercise 7.27.Important fact, not
important to write up.

(i) Show that closed subsets are stable under specialization and open subsets are stable
under generization.
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(ii) Give an example of a subset of a scheme that is stable under generization but not
open and an example of a subset that is stable under specialization but not closed.

Solution. The set of all closed points of A1
C is stable under specialization (closed points

only specialize to themselves) but not closed (the only infinite closed subset of A1
C is

the whole space).

7.9 Constructible sets

Definition 7.28. A subset of an affine scheme SpecA is called constructible if it can be
desribed using a finite sentence involving elements of A and the logical operations and, or,
and not.

A subset of a scheme X is called locally constructible if its intersection with every affine
open subscheme of X is constructible.

Exercise 7.29. On a noetherian scheme, a constructible set is a finite union of locally
closed subsets.

Exercise 7.30. Let X be a scheme and Z ⊂ X a locally constructible subset. If Z is stable
under generization then Z is open. If Z is stable under specialization then Z is closed.

Solution. It is sufficient to assume X = SpecA. Assume Z ⊂ X is stable under specializa-
tion. Then Z is a finite union of D(f) ∩ V (g1, . . . , gn)

8 Faithfully flat descent

Reading 8.1. [MO, §I.5], [Har77, §II.5]

The object of this section is a rather abstract reconstruction theorem for modules under
a commutative rings. It is known as fpqc descent, or faithfully flat descent. Two important
corollaries are that quasicoherent sheaves are indeed sheaves in the Zariski topology, and
that the category of quasicoherent sheaves on an affine scheme SpecA is equivalent to the
category of A-modules.

8.1 Modules and diagrams

Definition 8.2. Let B be a category and let A be a commutative ring. A diagram of
A-algebras is a functor B : B → A-Alg.

Definition 8.3. Let B : B → A-Alg be a diagram of A-algebras. A B-module is a system
of

(i) a B(α)-module M (α), for each α ∈ B, and

(ii) a B(u) : B(α) → B(β) homomorphism M (u) : M (α) →M (β) (also notated u∗) for
each u : α→ β in B, such that

(iii) the composition M (u)◦M (v) = M (uv) whenever u and v are composable morphisms
of B.

The diagram is called cartesian or quasicoherent if
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(iv) for every u : α→ β in B, the map

B(β)⊗B(α) M (α)→M (β) : λ⊗ x 7→ λ.u∗(x)

is an isomorphism.

A morphism of B-modules M → N is a collection of morphisms ϕα : M (α) → N (α)
such that, for every u : α→ β in B, the diagram below commutes:

M (α)

u∗

��

ϕα // N (α)

u∗

��

M (β)
ϕβ
// N (β)

The category of B-modules is denoted B-Mod. The full subcategory of quasicoherent
B-modules is denoted QCoh(B).

Exercise 8.4. (i) Suppose that A is a commutative ring and M is a quasicoherent mod-
ule over A-Alg. Then M (A) is an A-module. Show that this gives a functor:

QCoh(A-Alg)→ A-Mod

(ii) Show that this functor is an equivalence of categories.

Exercise 8.5. Generalizing the first part of the last exercise, suppose that F : B → B′ is
a functor, that B′ → A-Alg makes B′ into a diagram of A-algebras, and that B = B′ ◦ F .
Construct a functor

B′-Mod→ B-Mod

sending M to M ◦F . Show that this takes quasicoherent modules to quasicoherent modules.

8.2 Galois theory

Definition 8.6. Let L be a finite extension field of a field K. We call L a Galois extension
if L ⊗K L ' Ln for some positive integer n. The Galois group of a Galois extension is its
automorphism group as a K-algebra.

Suppose that L is a finite dimensional Galois extension of K and let G be its Galois
group. A G-L-module is an L-vector space M with an L-semilinear action of G. That is,
we have

g.(x+ y) = (g.x) + (g.y)

g.(λx) = (g.λ)(g.x)

for all x, y ∈M and g ∈ G.

Exercise 8.7. Let L be the full subcategory of K-Alg spanned by L. Show that the
category of G-L-modules is equivalent to the category of L -modules (all of which are au-
tomatically quasicoherent).

If M is a K-vector space, we can get a G-L-module by taking N = L⊗KM and defining

g.(λ⊗ x) = (g.λ)⊗ x.
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Theorem 8.8 (Fundamental theorem of Galois theory). The functor K-Mod→ G-L-Mod
is an equivalence of categories.

Exercise 8.9. Use the following steps to deduce a more familiar formulation of the funda-
mental theorem:

(i) Note that K-Mod→ G-L-Mod preserves tensor products.

(ii) Define a (commutative) G-L-algebra to be a G-L-module M with a G-L-module ho-
momorphism M ⊗LM →M such that the induced map M ×M →M makes M into
a commutative ring. Conclude that K-Alg ' G-L-Alg.

(iii) Call an L-algebra split if it is isomorphic to HomSets(S,L) = LS for some finite set S.
Prove that the full subcategory of split L-algebras in L-Alg is equivalent to the cate-
gory of sets via this functor. (Hint: the inverse functor sends A to HomL-Alg(A,S).)

(iv) Call a G-L-algebra L-split if its underlying L-algebra is split. Deduce that the category
of L-split G-L-algebras is equivalent to the category of G-sets.

(v) Define an L-split K-algebra to be a K-algebra A such that L ⊗K A is split as an
L-algebra. Prove that the category of K-split L-algebras is equivalent to the category
of L-split G-L-algebras.

(vi) Conclude that the category of L-split K-algebras is contravariantly equivalent to the
category of finite G-sets.

(vii) Prove that under your equivalence, the action of G on itself corresponds to the K-
algebra L and the (unique) action of G on a 1-element set corresponds to the K-
algebra K. Deduce that subextensions of K correspond to transitive G-sets with a
distinguished basepoint. Remark that transitive G-sets with a basepoint correspond
to subgroups of G.

8.3 Quasicoherent sheaves on affine schemes

Let A be a commutative ring. Suppose that U is a collection of affine open subsets of
SpecA. Each affine open subset U of SpecA corresponds to an A-algebra, so we can think
about U as a diagram of A-algebras:

O : U → A-Alg.

Theorem 8.10. Suppose that U is a collection of affine open subsets of SpecA such that,
for any finite collection V ⊂ U , the open set

⋂
V ∈V V can be covered by elements of U .

Then the functor
A-Mod→ QCoh(U )

is an equivalence of categories. More precisely:

(i) if U covers SpecA then the functor is faithful;

(ii) if U covers SpecA and contains all pairwise intersections of a subcover, then the
functor is fully faithful;

(iii) if U covers SpecA and contains all triple intersections of a subcover, then the functor
is an equivalence of categories.
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Exercise 8.11. Suppose that M is an A-module. Prove that M̃ is a quasicoherent sheaf
on the category of all principal open affine subsets of SpecA.

Solution. Suppose that SpecA =
⋃
D(fi). Let U consist of all pairwise intersections of the

D(fi). Then

M = HomA-Mod(A,M) = HomQCoh(U )(Ã, M̃) = Γ(U ,M )

is the sheaf condition.

Exercise 8.12. Suppose that U is a basis for SpecA. Then QCoh(U ) = QCoh(SpecA).

8.4 Flatness

Definition 8.13. Let A be a commutative ring. An A-module M is called flat if, whenever

N ′ → N → N ′′

is an exact sequence of A-modules, the sequence

M ⊗A N ′ →M ⊗A N →M ⊗A N ′′

is also exact. An A-algebra is called flat if it is flat as a module.

Exercise 8.14. Prove that an A-module M is flat if and only if, for every injection N ′ → N
of A-modules, the map M ⊗A N ′ →M ⊗A N is an injection.

Exercise 8.15. Prove that A[f−1] is a flat A-algebra.

Exercise 8.16. Suppose that Mi, i ∈ I is a flat family of A-modules. Prove that the direct
sum

⊕
Mi is a flat A-module.

Exercise 8.17. (i) Suppose that M is a free A-module. Prove that M is a flat A-module.

(ii) Suppose that M is a projective A-module. Prove that M is a flat A-module.

Definition 8.18. Let B be a family of A-algebras. We say that B is faithfully flat if, for
a sequence of A-modules

N ′ → N → N ′′

is exact if and only if the sequences

B ⊗A N ′ → B ⊗A N → B ⊗A N ′′

are exact for all B ∈ B.

ex:fp Exercise 8.19. Show that if B is a faithfully flat family of A-algebras then

(i) if M is an A-module and M̃ = 0 then M = 0;

(ii) the map M → Γ(B, M̃) is injective;

(iii) if ϕ : M → N is an A-module homomorphism and ϕ̃ = 0 then ϕ = 0;

(iv) if ϕ : M → N is an A-module homomorphism and ϕ̃ is an isomorphism then ϕ is an
isomorphism.
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8.5 Faithfully flat descent

Definition 8.20. Suppose that B : B → A-Alg is a diagram A-algebras. A morphism
u : α → β in B is called cartesian if, for every morphism v : α → γ and every morphism
ϕ : B(β) → B(γ) such that ϕ ◦ B(u) = B(v), there is a unique morphism w : β → γ such
that wu = v.

We call B a (covariantly) cartesian diagram if every α ∈ B is the source of a cartesian
arrow.

There is a simple way of extending any diagram B of A-algebras to a fibered diagram.
We define B to be the category of pairs (α,C, ϕ) where α ∈ B and ϕ : B(α) → C is a
morphism of A-algebras. Morphisms (α,C, ϕ) → (β,D, ψ) in B consist of an isomorphism
u : α→ β and ρ : C → D such that the diagram below commutes:

B(α)
ϕ
//

B(u)

��

C

ρ

����

B(β)
ψ
// D

The projection B : B → A-Alg sends (α,C, ϕ) to C.

Definition 8.21. Suppose that B is a diagram of A-algebras (in other words, a functor
B : B → A-Alg). We call it a presieve if it is fibered and faithful; we will call it a sieve if
it is fibered and fully faithful.

Exercise 8.22. Suppose that B is a cartesian diagram of A-algebras. There is a universal
way to make B a presieve or a sieve:

(i) define B∗ to consist of the same objects as B but define HomB∗(α, β) to be the image
of HomB(α, β) in HomA-Alg(O(α),O(β));

(ii) define B∗∗ to consist of the same objects as B but define HomB∗∗(α, β) = HomA-Alg(O(α),O(β)).

Our goal in this section is to identify some conditions on a diagram B of A-algebras
under which

A-Mod ' QCoh(B).

The strategy will be to relate these in via series of functors:

A-Mod
∼←− QCoh(A-Alg)→ QCoh(B∗∗)→ QCoh(B∗)→ QCoh(B)

∼−→ QCoh(B)

The basic lemma

Exercise 8.23. Suppose that B contains a faithfully flat collection of A-algebras.

(i) Then the functor

QCoh(A-Alg)→ QCoh(B)

is faithful and conservative.

(ii) The map M → Γ(B, M̃) is injective for all A-modules M .
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From diagrams to cartesian diagrams

Exercise 8.24. (i) Show that, for any diagram B of A-algebras, the functor

QCoh(B)→ QCoh(B)

is an equivalence.

(ii) Conclude that
QCoh(A-Alg)→ A-Mod

is an equivalence.

From cartesian diagrams to presieves

Exercise 8.25. Suppose that B is a cartesian diagram of A-algebras containing two arrows
f, g : B → B′ whose underlying ring homomorhisms are the same. Suppose that M is a
quasicoherent module on B. Show that f∗, g∗ : M (B) → M (B′) coincide if the following
condition holds:

There is a faithfully flat collection of maps h : B′ → C in B such that h∗f∗ =
h∗g∗.

Solution. Let C be the diagram of B′-algebras consisting of all B′-algebras h : B′ → C
such that h∗f∗ = h∗g∗ as maps M (B) → M (C). We wish to prove that the maps
f∗, g∗ : M (B)→M (B′) coincide, for which it is equivalent to show that the isomorphisms
idB′f∗, idB′g∗ : B′ ⊗B M (B)→M (B′) are the same.

By faithfully flat descent for identities between homomorphisms, it is sufficient to show
that the maps idC ⊗B′ idB′f∗ and idC ⊗B′ idB′g∗ coincide (these are maps C ⊗B′ B′ ⊗B
M (B) = C ⊗B M (B)→ C ⊗B′ M (B′).

Exercise 8.26. Suppose that B is a digram of A-algebras. Prove that the functor

QCoh(B∗)→ QCoh(B)

is an equivalence of categories if the following condition is satisfied:

Whenever f, g : B → C are morphisms in B whose images in A-Alg are the
same, there is a faithfully flat collection of morphisms h : C → D such that
h∗f∗ = h∗g∗.

From presieves to sieves

Now suppose that B is a diagram of A-algebras. If C is an A-algebra, we write C-Alg(B) for
the category of pairs (B,ϕ) where B ∈ B and ϕ : C → B is an A-algebra homomorphism.
A morphism from (B,ϕ) to (B′, ϕ′) is a commutative diagram

C
ϕ
//

ϕ′   

B

ψ

��

B′

where ψ : B → B′ is in B.
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Exercise 8.27. Suppose that U is cartesian, with a finite, cofinal subdiagram, and that B
is a flat A-algebra. Then the map

B ⊗A lim←−
U∈U

M (U)→ lim←−
V ∈B-Alg/O(U )

M (V )

is a bijection.

Solution. Choose a finite, cofinal U0 → U . We have

B ⊗A lim←−
U∈U

M (U) = B ⊗A lim←−
U∈U0

M (U)

= lim←−
U∈U0

B ⊗A M (U)

= lim←−
U∈U

B ⊗A M (U)

= lim←−
V ∈B-Alg/O(U )

M (V )

as was required.

Exercise 8.28. Suppose that B is cartesian, with a finite, cofinal subdiagram, and contains
a faithfully flat collection of A-algebras. Then the map

M → lim←−
B∈B

B ⊗AM

is a bijection, for all A-modules M .

Solution. Suppose that C ∈ B is flat. Observe that the B-module M (B) = B ⊗A M is
quasicoherent, so we can use the previous exercise on it. Also note that C-Alg/B ' B-Alg.
Combining these, the map

C ⊗AM
∼←− lim←−

B∈C-Alg

B ⊗AM
∼−→ lim←−

B∈C-Alg/B

B ⊗AM
∼−→ C ⊗A lim←−

B∈B

B ⊗AM

is a bijection. But B contains a faithfully flat collection of A-algebras, so this means

M → lim←−
B∈B

B ⊗AM

is a bijection.

Exercise 8.29. Let M be a quasicoherent module on a faithful sieve B of A-algebras. Let
B∗ be the associated sieve. If B has the following property then

QCoh(B∗)→ QCoh(B)

is an equivalence of categories:

For every pair B and C in B, and every A-algebra homomorphism ϕ : B → C
(not necessarily on B), let C ⊂ C-Alg be the category of all C-algebras C ′ such

that the map B
ϕ−→ C → C ′ appears in B. Then C contains a finite, cofinal

subcategory and a faithfully flat collection of C-algebras.
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Solution. In order to make the extension, we suppose that ϕ : B → C is a homomorphism
between two algebras B and C in B. We need to construct ϕ∗ : M (B)→M (C) and argue
that it is unique. It is the same to produce C ⊗B M (B) → M (C). Let C be as in the
condition and note that the functor

QCoh(C-Alg)→ QCoh(C )

is an equivalence of categories. Now, for each C-algebra D, let N (D) = D⊗BM (B). Then
the isomorphisms

D ⊗B M (B) 'M (D)

give us a map N → M
∣∣
C

. By virtue of the equivalence of categories, this comes from a
unique morphism

C ⊗B M (B)→M (C),

as required.

This explains how to extend a module to a sieve. Now we wish to extend from a sieve
to all A-modules.

Exercise 8.30. Suppose that B is a sieve of A-algebras has a finite cofinal diagram and
contains a faithfully flat collection of A-algebras. Then

QCoh(A-Alg)→ QCoh(B)

is an equivalence of categories.

Proof. We have a functor in the reverse direction sending M to Γ(B,M )∼. There are
canonical maps:

M → Γ(B, M̃)

Γ(B,M )∼ →M

We argue that these are isomorphisms. In fact, we can argue that both are isomorphisms
at the same time. The first map is a homomorphism of A-modules, and the second is a
collection of homomorphism

C ⊗B Γ(B,M )→M (C)

that we regard as maps of A-modules. Suppose that D is a flat A-algebra in B. Let B0 → B
be a finite coinitial diagram. Then tensoring with D we get:

D ⊗AM → D ⊗A Γ(B, M̃) = D ⊗A lim←−
B∈B

M̃(B)

∼−→ D ⊗A lim←−
B∈B0

M̃(B)

∼ lim←−
B∈B0

D ⊗A M̃(B)

∼←− lim←−
B∈D/B

M̃(D)

∼−→ M̃(D)
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This is certainly an isomorphism by definition of M̃ . Similarly:

D ⊗A Γ(B,M )∼(C) = D ⊗A C ⊗A lim←−
B∈B

M (B)

' D ⊗A C ⊗A lim←−
B∈B0

M (B)

' C ⊗A lim←−
B∈B0

D ⊗A M (B)

' C ⊗A lim←−
B∈B

M (D ⊗A B)

' C ⊗A lim←−
B∈D/B

M (B)

' C ⊗A M (D)

'M (C)

Exercise 8.31. Suppose that B is a flat A-algebra and that U has a finite cofinal subdia-
gram. Prove that

B ⊗A N (U)→

Exercise 8.32. Assume that U is cartesian. Construct a functor:

lim←−
(U,ϕ)∈B-Alg/O(U )

M (U)→ lim←−
V ∈U

B ⊗A M (V )

Show this functor is a bijection.

Exercise 8.33. Suppose that B contains a faithfully flat collection of A-algebras and M
is an A-module. Then

M → Γ(B, M̃)

is injective.

Exercise 8.34.

Suppose that A is a commutative ring, B : B → A-Alg is a diagram of A-algebras,
and A′ is an A-algebra. We write B′ = A′ ⊗A B for the diagram whose shape is B, with
B′(α) = A′⊗AB(α) for all α ∈ B. We define A′/B to be the category of pairs (α,ϕ) where
α ∈ B and ϕ : A′ → B(α) is an A-algebra homomorphism. A morphism (α,ϕ) → (β, ψ)
consists of a morphism u : α → β of B such that B(u) is an A′-algebra homomorphism
with respect to the A′-algebra structures inherited from ϕ, ψ. In other words, the diagram
below commutes:

A′
ϕ
// B(α)

B(u)

��

A′ // B(β)

Observe that if B is cartesian then there is a map A′ ⊗A B → A′/B, since if B is cartesian
then B(α)→ A′ ⊗A B(α) appears in B whenever α ∈ B.
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Definition 8.35. Suppose that B0 and B are diagrams of A-algebras and that B0 is induced
from a functor B0 → B. We say that B0 is n-cofinal in B if, for every quasicoherent B-
module M restricting to M0 on B0, the map

Γ(B,M )→ Γ(B0,M0)

is an n-equivalence (i.e., is injective if n = −1 and bijective if n = 0). We say it is 1-cofinal
if the map

QCoh(B)→ QCoh(B0)

is an equivalence of categories.
We say that B0 is universally n-cofinal in B if A′ ⊗A B0 is cofinal in A/B for all A-

algebras A′.

Theorem 8.36. Suppose that B is a diagram of A-algebras.

(i) Suppose that B contains a faithfully flat collection of A-algebras. Then, for any A-
module M , the map

M → Γ(B, M̃)

is injective.

(ii) Suppose that B is a −1-sieve that contains a faithfully flat collection of A-algebras
and has a finite 0-cofinal diagram. Then, for any A-module M , the map

M → Γ(B, M̃)

is bijective.

(iii) Suppose that B contains a faithfully flat collection of A-algebras and has a finite 1-
cofinal diagram. Then ∼ defines an equivalence of categories

A-Mod→ QCoh(B).

Proof. Suppose that x ∈M . View this as a homomorphism A→M and let K be its kernel.
For each α ∈ B, let x(α) be its image in M̃(α) = B(α)⊗AM . For each B(α) in a faithfully
flat collection of A-algebras, we have

0→ B(α)⊗A K → B(α)
x(α)−−−→ B(α)⊗AM

is exact. If each x(α) is zero then

0→ K → A→ 0

is exact by faithful flatness, so Ax = 0, and therefore x = 0. This proves the first claim.
For the second claim, let B0 be a 0-cofinal diagram and suppose that A′ = B(α) is a

flat A-algebra in the diagram B. Note that we have a map of diagrams A′ ⊗ B0 → A′/B.
We have a commutative square:

A′ ⊗A Γ(B, M̃) //

��

A′ ⊗A Γ(B0, M̃0)

��

Γ(A′/B, M̃) // Γ(B0, A
′ ⊗A M̃)
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The vertical arrow on the right is an isomorphism since B0 is finite and A′ is flat. The
horizontal arrow on top is an isomorphism because B0 is 0-cofinal in B. The bottom arrow
is an isomorphism because A′⊗AB0 is cofinal in A′/B. But, by assumption, A′ ∈ A′/B, so

that Γ(A′/B, M̃) = M (A′). Following the diagram around, we deduce an isomorphism
For the third claim, we argue that ∼ and Γ are inverse equivalences of categories. We

have already seen that M is isomorphic to Γ(B, M̃) under weaker hypothesis, so we need
to consider a quasicoherent B-module M and show that the map

Γ(B,M )∼ →M

is an isomorphism. This means that we have to show the maps

B(α)⊗A Γ(B,M )→M (α)

are isomorphisms for every α ∈ B. Pick a finite, 1-cofinal diagram B0 of B. Then the

8.6 Descent

Definition 8.37. Suppose that B is a diagram of commutative rings. A B-module is

(i) a B-module M (B) for each B ∈ B,

(ii) a B-module homomorphism M (B) → M (C) for each morphism B → C in B, such
that

(iii) the map M (B) → M (D) associated to a composition B → C → D in B is the
composition of the maps M (B)→M (C)→M (D).

It is called quasicoherent if

(iv) the maps C ⊗B M (B)→M (C) induced from M (B)→M (C) is an isomorphism.

A morphism of B-modules M → N is a family of morphisms M (B)→ N (B) such that,
for every morphism B → C in B, the diagram

M (B) //

��

M (C)

��

N (B) // N (C)

is commutative.

Exercise 8.38.This exercise is not
important and requires

definitions that we
have not given here.

Verify that a B-module is a commutative diagram of functors:

AlgMod

��

B //

::

ComRing

where AlgMod is the category of pairs (A,M) in which A is a commutative ring and M is
an A-module. (It is up to you to figure out what the morphisms are.)

Verify as well that the module is quasicoherent if and only if the map B → AlgMod is
covariantly cartesian over ComRing.
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Suppose that B is actually a diagram of A-modules, where A is a commutative ring.
There are two natural functors

(−)∼ : A-Mod→ QCoh(B)

Γ(B,−) : B-Mod→ A-Mod

with the following definitions:

M̃(B) = B ⊗AM
Γ(B,M ) = lim←−

B∈B

M (B)

Exercise 8.39. Complete the description of these functors and verify that they are adjoints:

HomB-Mod(M̃,N ) = HomA-Mod(M,Γ(B,N ))

for any A-module M and any B-module N .

def:coinitial Definition 8.40. Suppose that B is a digram. A coinitial subdiagram of B is a subdiagram
B0 such that

cond:coinitial-1 (i) if B ∈ B there is some B0 ∈ B0 and a map B0 → B in B;

cond:coinitial-2 (ii) if there are two morphisms i0 : B0 → B and i1 : B1 → B in B, with Bi ∈ B0

and B ∈ B, then there are morphisms j0 : B0 → B2 and j1 : B1 → B2 and a map
i2 : B2 → B in B such that the diagram below commutes:

B0

i

0
  

j0

��

B2
i2 // B

B1

i1

>>

j1

OO

(8.1) eqn:24

Exercise 8.41. Suppose that B is a diagram of sets and B0 is a subdigram. Show that
the map

lim←−
B∈B

B → lim←−
B∈B0

B

(i) is an injection if B0 satisfies ?? of Definition 8.40, and

(ii) is a bijection if B0 satisfies both (i) and (ii) of Definition 8.40.

Solution. Let A = lim←−B∈B
B and let A0 = lim←−B∈B0

B. We argue that the map A → A0 is

injective and surjective. First, suppose that x ∈ A. We must show that x is determined by
x(B0) for all B0 ∈ B0. Indeed, if B ∈ B then there is a map ϕ : B0 → B, where ϕ ∈ B.
Then x(B) = ϕ∗x(B0), which means that x(B0) determines x(B), as asserted.

For the surjectivity, we need to show that each x ∈ A0 extends to A. Pick B ∈ B. By
assumption, there is a map i0 : B0 → B with B0 ∈ B0. Define x(B) = i0∗x(B0). We must
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verify that this does not depend on the choice of B0 and i0. If we also had i1 : B1 → B
then there would be a diagram (8.1), which means:

i0∗x(B0) = i2∗j0∗x(B0) = i2∗x(B2) = i2∗j1∗x(B1) = i1∗x(B1)

Now we have to verify that if ϕ : B → B′ is a morphism in B then ϕ∗x(B) = x(B′). Choose
i : B0 → B as before. Then by definition, x(B) = i0∗x(B0) and x(B′) = ϕ∗i0∗x(B0), so
ϕ∗x(B) = x(B′), as required.

Exercise 8.42. Show that, if B has a finite, coinitial diagram then, for any flat A-algebra
A′, then for any B-module, the map

A′ ⊗A Γ(B,M )→ Γ(A′ ⊗A B,M )

is an isomorphism.

thm:fpqc-descent Theorem 8.43. Let B be a diagram of A-algebras.

(i) Suppose that there is a faithfully flat collection of A-algebras. Then ∼ is faithful and

the map M → Γ(B, M̃) is injective.

(ii) Suppose that B has a finite, coinitial subdiagram and a faithfully flat collection of
A-algebras B such that, for every C ∈ B, the maps B → B ⊗A C and C → ⊗AC
appear in B. Then ∼ is fully faithful and M → Γ(B, M̃) is bijective.

(iii) With the same conditions as in the last part, if M is a quasicoherent B-module then
the map Γ(B,M )∼ →M is an isomorphism and ∼ is an equivalence of categories.

Definition 8.44. Suppose that A→ A′ is a homomorphism of commutative rings. We call
the homomorphism flat if the functor A′ ⊗AM is an exact functor of the A-module M .

We say that a family of homomorphisms A → A′ is faithfully flat if a sequence of A-
modules E is exact if and only if A′ ⊗A E is exact.

Proof of Theorem 8.43. The first case is Exercise 8.19.
We consider the second claim. Let M be an A-module. We argue that M → Γ(B, M̃)

is an isomorphism. It is already known to be injective by the previous case. Suppose
ϕ ∈ Γ(B, M̃). We argue that ϕ is induced from an element of M . By Exercise 8.19, it is
sufficient to demonstrate that the map

A′ ⊗AM → A′ ⊗A Γ(B, M̃)

is an isomorphism for all A′ in a faithfully flat collection of A-algebras. But we have a
commutative diagram:

A′ ⊗AM // A′ ⊗A Γ(B, M̃)

o
��

A′ ⊗AM // Γ(A′ ⊗A B, (A′ ⊗AM)∼)

The vertical arrow on the right is an isomorphism by Exercise ??. But all of the properties
in the statement of the theorem are stable under tensor product with A′, so we can replace
A with A′, M with A′ ⊗AM , and B with A′ ⊗A B.
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For this to be useful, we need a convenient faithfully flat collection of A-algebras A′. We
choose the collection B0 guaranteed by the hypothesis of the theorem. Then A is replaced
with A′ and A′ ∈ B0 is replaced with B = A′⊗AA′. Notice that the inclusion A′ → A′⊗AA′
has a retraction, by the multiplication map a ⊗ b 7→ ab : A′ ⊗A A′ → A′. This means that
when we replace A with A′, there is an algebra B ∈ A′ ⊗A B0 with a retraction onto A′.

All of this means it is sufficient to prove the second part of the theorem under the
assumption that there is a B ∈ B0 with a retraction of the inclusion A→ B.

Now, we already know that M → Γ(B, M̃) is injective, so we prove the surjectivity.

Suppose that x ∈ Γ(B, M̃) and let y be the image of x(B) ∈ M̃(B) = M ⊗A B under the
homomorphism

M̃(B) = M ⊗A B →M ⊗A B ⊗B A = M.

We argue that ỹ = x.
For this, we must show that ỹ(C) = x(C) for every C ∈ B. By assumption, there is a

commutative diagram:

C // C ⊗A B // A⊗B B ⊗A C
∼

C

A //

OO

B //

OO

A

OO

And we can chase the elements around:

x(C) // x(C ⊗A B) // x(C) ỹ(C)

x(B) //

OO

y

OO
(8.2) eqn:8

Since the diagram commutes, we get ỹ(C) = x(C); this holds for all C, so x̃ = y, as required.

The proof of the third part is a very similar diagram chase. Once again, we are trying
to show that the maps

M (C)→ Γ(B,M )∼

are isomorphisms. We regard these as maps of A-modules, so we can tensor with the
faithfully flat family of A-algebras A′ ∈ B0 to simplify matters. This means that we can
assume, as before, that there is a B ∈ B0 and a retraction B → A.

Define M = M (B) ⊗B A. We argue that M̃ ' M . It follows from this that M̃ '
Γ(B,M ), by the second part. First we construct maps M̃(C) → M (C), similar to what
we did above. Chasing modules in diagram (8.2), we get:

M (C) //M (C ⊗A B) //M (C)
∼

M̃(C)

M (B) //

OO

A⊗B M (B) // M

OO

Since the diagram commutes, and the target of each arrow is characterized by a universal
property, we get a unique isomorphism M (C) ' M̃(C) making the diagram commute.
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We are not done because we must still prove the isomorphism is natural, which is to say
that for every morphism C → C ′ in B, we must check the squares

M (C) //

o

M (C ′)

o

M̃(C) // M̃(C ′)

are commutative. Applying our construction of the isomorphism M (C) ' M̃(C) to both C
and C ′, we get a commutative diagram:

M (C ′) //M (C ′ ⊗A B) //M (C ′)
∼

M̃(C ′)

M (C) //

OO

M (C ⊗A B) //

OO

M (C)
∼

OO

M̃(C)

OO

M (B) //

OO

A⊗B M (B) // M

OO

The square we want is the outer right.
Now we have shown that M = M̃ , but we still need to show that the map Γ(B,M )∼ →

M is an isomorphism. The isomorphism M̃ →M induces a composition of maps:

M → Γ(B, M̃)→ Γ(B,M )

The first of these was shown to be an isomorphism, in the second part of the proof of the
theorem, and the second is an isomorphism because it is obtained by applying Γ to an
isomorphism. The composition is the isomorphism we want.

8.7 Applications to quasicoherent sheaves

Corollary 8.44.1. Let A be a commutative ring and let M be an A-module. Let U be the
category of open sets D(f) ⊂ SpecA. Then M̃ is a sheaf on U .

Proof. Suppose that U = SpecA[f−1] ∈ U and U =
⋃
g∈S D(g). Let V be the category of

all finite intersections of the D(g). Note the sheaf condition for this cover says that

M̃(U) = lim←−
V ∈V

M̃(V ).

But if we take B to be the diagram of A[f−1]-algebras A[g−1], for g ∈ S, then this is saying
that the map

Mf → lim←−
B∈B

M̃f (B).

Now, localizations are flat, and V contains a cover, so B is a faithfully flat collection of
algebras. It has a finite coinitial subdiagram because U is quasicompact. Therefore the
theorem applies.
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Corollary 8.44.2. Let X be a scheme and let U be any basis of open affine subschemes.
Then

QCoh(X)→ QCoh(U )

is an equivalence of categories.

Proof. First we prove that the functor is fathful. Suppose that f, g : M → N are homo-
morphisms that agree when restricted to U . For each open affine V = SpecA of X, we
have two maps of modules, fV , gV : M (V )→ N (V ). If U = SpecB ∈ U is contained in V
then fU , gU : B ⊗A M (U) → B ⊗A N (U) agree. But the U ∈ U contained in V cover V ,
so the corresponding rings are faithfully flat over A. Therefore fV = gV . This holds for all
open affine V ⊂ X, so f = g, by definition.

Now we prove the functor is full. Suppose that M and N are quasicoherent modules
on X and f : M

∣∣
U
→ N

∣∣
U

is a homomorphism. Let V be the collection of all open
affines V ⊂ X that are contained in some U ∈ U . If V ∈ V is contained in U ∈ U ,
define fV = fU

∣∣
V

. We must verify that this is well-defined. But if V ⊂ U ′ then fU ′
∣∣
V

and fU
∣∣
V

give two maps between the quasicoherent modules M
∣∣
V

and N
∣∣
V

that agree, by

assumption, on the basis Open(V ) ∩U . Therefore fU ′
∣∣
V

= fU
∣∣
V

.
Now we have extended f to a covering sieve V of open affine subsets of X. If W ⊂ X

is an open affine subset then V ∩ Open(W ) is a covering sieve of open affine subsets of
W . Therefore by faithfully flat descent, there is a unique extension of f

∣∣
V ∩Open(W )

to

fW : M
∣∣
W
→ N

∣∣
W

.
Finally, we prove that the functor is essentially surjective. Let V be the category of

pairs (V,U) where U ∈ U and V ⊂ U is open an open affine subscheme. There is a map
(V,U) → (V ′, U ′) if V ⊂ V ′ and U ⊂ U ′. For any pair (V,U) ∈ V , with V = SpecB and
U = SpecA, we define

M ′(V,U) = B ⊗A M (U).

Now let V ∗ be the category with the same objects as V , but there is a map (V,U) →
(V ′, U ′) if V ⊂ V ′, with no condition on U . We argue that there is a unique extension of
M ′ from V to V ∗. To do this, we construct an isomorphism M ′(V,U ′) ' M ′(V,U) for
all (V,U) and (V,U ′) in V . To get this, let W be the collection of all W ∈ U such that
W ⊂ V . Then M ′(−, U)

∣∣
W

and M ′(−, U ′)
∣∣
W

can both be identified (canonically) with M .
By the full faithfullness proved above, this gives us an isomorphism M ′(V,U ′) 'M ′(V,U).
We omit the various naturality verifications.
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Chapter 4

The category of schemes

9 Relating sheaves on different spaces
sec:sheaves-2

Reading 9.1. [Vak14, §§2.3, 2.6]

9.1 Pushforward

Definition 9.2 (Pushforward of presheaves). Let f : X → Y be a continuous function. If
F is a presheaf on X then f∗F is the presheaf on Y whose value on and open subset U ⊂ Y
is f∗F (U) = F (f−1U).

Exercise 9.3 (Pushforward of sheaves). The pushforward of a sheaf is a sheaf.

Exercise 9.4 (Pushforward to a point). Let F be a sheaf on a topological space X and let
π : X → (point) be the projection to a point. Show that π∗F = Γ(X,F ) when sheaves on
a point are regarded as sets.

9.2 Sheaf of sections

Definition 9.5. Let π : Y → X be a continuous function. A section of π over a map
f : Z → X is a map s : Z → Y such that πs = f . In particular, a section over X is a section
over the identity map id : X → X. We write Γ(Z, Y ) for the set of sections of π : Y → X
over f : Z → X (leaving the names of the maps implicit).

We define a presheaf Y sh on X by Y sh(U) = Γ(U, Y ) for all open U ⊂ X.

Exercise 9.6 (The sheaf of sections). Show that Y sh, as defined above, is a sheaf.

9.3 Espace étalé

Definition 9.7. A function π : E → X is called a local homeomorphism or étale if there is
a cover of E by open subsets U such that π

∣∣
U

: U → X is an open embedding.1

A morphism of étale spaces π : E → X and π′ : E′ → X is a continuous map f : E → E′

such that π′f = π. We write ét(X) for the category of all étale spaces over X.2

1The word étale is also applied to certain morphisms of schemes, but the definition is different.
2This will cause a technical, but not moral or spiritual, conflict of notation when we study étale morphisms

of schemes later.
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ex:map-between-etale Exercise 9.8. Show that any map between étale spaces over X is a local homeomorphism.

If F is a presheaf over X, construct a diagram Open(X)/F whose objects are pairs
(U, ξ) where U ∈ Open(X) and ξ ∈ F (U). There is exactly one arrow (U, ξ) → (V, η)
whenever U ⊂ V and η

∣∣
U

= ξ. Define

F ét = lim−→
(U,ξ)∈Open(X)/F

U.

There is a projection π : F ét → X by the universal property of the direct limit, setting
U → X to be the inclusion on the (U, ξ) entry.

Exercise 9.9 (The espace étalé). Show that π : F ét → X is a local homeomorphism.
(Hint: Show that the map U → F ét associated to ξ ∈ F (U) is an open embedding using
Exercise 9.8 and the fact that such a map is a section.)

Exercise 9.10 (Sheaves and étale spaces are equivalent). Show that the constructions E 7→
Esh and F 7→ F ét are inverse equivalences between ét(X) and Sh(X) for any topological
space X.

Solution. We construct a natural identification between Γ(U,F ét) and U . Given ξ ∈ F (U),
we get U → lim−→(U,ξ)

U . This gives the desired map F (U)→ Γ(U,F ét).

To get the inverse we need the sheaf condition on F . For each ξ ∈ F (V ) we have an
open subset U(V,ξ) ⊂ F ét. Consider the preimages s−1U(V,ξ) ⊂ U . Over each such s−1U(V,ξ)

we have a section ω(V,ξ) ∈ Γ(U,F ét). We have s−1U(V,ξ) ∩ s−1U(W,η) = s−1(U(V,ξ) ∩ U(W,η))

(since s is injective). On the other hand, U(V,ξ) ∩ U(W,η) ⊂ F ét is U
(T,ξ
∣∣
T

)
= U

(T,η
∣∣
T

)
where

T is the largest open subset of V ∩W on which ξ and η agree. Thus ω(V,ξ)

∣∣
U(V,ξ)∩U(W,η)

=

ω(W,η)

∣∣
U(V,ξ)∩U(W,η)

for all (V, ξ). Therefore these sections glue together to give a section

ω ∈ F (U).

The verification that these constructions are inverses is omitted.

9.4 Associated sheaf

Definition 9.11. If F is any presheaf then (F ét)sh is a sheaf, called the associated sheaf of
F . We write F sh = (F ét)sh for brevity.

Exercise 9.12 (Universal property of the associated sheaf).Very important.
Writing it up can get
technical, so it might

be more valuable to
think it through than

to write your proof
down carefully.

Let F be a presheaf on a
topological space X.

(i) Construct a map F → F sh and show that it is universal among maps from F to
sheaves.

(ii) Prove that for any sheaf G,

HomPsh(X)(F,G) ' HomSh(X)(F
sh, G)

in a natural way. (This is really a restatement of the first part.)



9. RELATING SHEAVES ON DIFFERENT SPACES 65

9.5 Pullback of sheaves
sec:sheaf-pullback

def:fiber-product Definition 9.13 (Fiber product). If f : X ′ → X and p : E → X are continuous functions,
a fiber product is a universal topological space E′ fitting into a commutative diagram3

E′
f ′
//

p′

��

E

��

X ′ // X.

We often write E′ = f−1E and call E′ the pullback of E.

Exercise 9.14 (Existence of fiber product in topological spaces). Show that a fiber product
can be constructed in topological as the set of all pairs (x, e) ∈ X ′×E such that f(x) = p(e),
topologized as a subspace of the product.

Exercise 9.15 (Pullback of local homeomorphisms). In the notation of Definition 9.13,
suppose that p : E → X is a local homeomorphism. Show that p′ : E′ → X ′ is also a local
homeomorphism.

Definition 9.16 (Pullback of sheaves). If f : X → Y is a continuous map and G is a sheaf
on Y then define

f−1G = f−1(Gét)sh

Exercise 9.17. Let f : X → Y be a continuous map of topological spaces, let F be a sheaf
on X, and let G be a sheaf on Y . Construct a natural bijection

HomSh(X)(f
−1G,F ) ' HomSh(Y )(G, f∗F ).

Solution. Consider two presheaves on Gét:

P (U) = HomSh(Y )(U
sh, f∗F ) = Homét(Y )(U, (f∗F )ét)

Q(U) = HomSh(X)(f
−1U sh, F ) = Homét(X)(f

−1U,F ét).

(Note that an open subset of Gét is an étale space over Y , so it has a corresponding sheaf
of sections.)

Both P and Q are sheaves on Gét. We will show P and Q are isomorphic. It’s enough
to do this on a basis U of Gét. We choose the basis of all open subsets of Gét that project
homeomorphically to their images in Y . If U is such a subset then

P (U) = HomSh(Y )(U
sh, f∗F ) = f∗F (U) = F (f−1U) = HomSh(X)(f

−1U sh, F ) = Q(U),

exactly as required.
Now take global sections of P and Q. We discover:

Γ(Gét, P ) = HomSh(Y )(G, f∗F )

Γ(Gét, Q) = HomSh(X)(f
−1G,F )

3In fact this definition applies in any category.
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9.6 Stalks

Definition 9.18. If F is a presheaf over X, write π : F ét → X for the espace étalé of F .
The fiber π−1x of F ét over x ∈ X is called the stalk of F at X and is often denoted Fx.

Exercise 9.19. If F is a presheaf on X, construct a natural isomorphism

Fx = lim−→
U∈Open(X)

x∈U

F (U).

(Hint: One proof of this uses the universal property of f−1, proved in Section 9.5.)

Solution. We use the fact that colimits commute with base change for étale spaces. (To
prove this, you can use the fact that the underlying set of a colimit of topological spaces is
the colimit of the underlying sets of the topological spaces and a bijection of étale spaces is
a homeomorphism.) By definition, we have

Fx = {x} ×X F ét

= {x} ×X lim−→
(U,ξ)∈Open(X)/F

U

= lim−→
(U,ξ)∈Open(X)/F

x∈U

{x}

= lim−→
x∈U∈Open(X)

F (U)

as desired.

Solution. We do an explicit calculation using adjunction. Let G be any sheaf on {x} (i.e.,
a set) and let i : x → X be the inclusion. Then i∗G(U) = G if x ∈ U and i∗G(U) = 1
otherwise. To give a map F → i∗G we must give maps F (U) → i∗G(U) for all U ∈
Open(X). This is trivial except when x ∈ U , so we have to give compatible maps F (U)→ G
for all open neighborhoods U of x. In other words, we have to give a map

lim−→
U∈Open(X)

x∈U

F (U)

as desired.

ex:structure-sheaf-locally-ringed Exercise 9.20. Prove that the stalks of the structure sheaf of a scheme are local rings.
(Hint: Reduce immediately to the case of an affine scheme.)

Exercise 9.21. Let η be a point of a topological space X and let ξ be a point of X in
the closure of η. Fix a set S and let F be the skyscraper sheaf at η associated to S. (If
j : η → X is the inclusion then F = j∗S.) Compute the stalk of F at ξ. (If i : ξ → X is the
inclusion then you are computing i−1j∗S.)

10 Morphisms of schemes

Reading 10.1. [Vak14, §§6.1–6.3,7.1,8.1], [MO, § I.3]
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10.1 Morphisms of ringed spaces

def:morph-ringed-spaces Definition 10.2 (Morphisms of ringed spaces). A morphism of ringed spaces from (X,OX)
to (Y,OY ) is a continuous function ϕ : X → Y and a homomorphism of sheaves of rings
ϕ∗ : OY → ϕ∗OX .4

Exercise 10.3. Show that we could equivalently have specified a morphism of ringed spaces
as a continuous function ϕ : X → Y and a homomorphism of sheaves of rings ϕ∗ : ϕ−1OY →
OX .

Exercise 10.4. (i) Show that a homomorphism of commutative rings ϕ : B → A induces
a morphism of ringed spaces f : SpecA→ SpecB.

Solution. We have already gotten the map of topological spaces. We need to get the
map OSpecB → f∗OSpecA. It’s sufficient to specify this on a basis. Suppose g ∈ B.
Then OSpecB(D(g)) = B[g−1] and f∗OSpecA(D(g)) = OSpecA(D(ϕ(g))) = A[ϕ(g)−1].
There is a canonical map

B[g−1]→ A[ϕ(g)−1]

induced by the universal property of B[g−1] and the map B → A→ A[ϕ(g)−1].

(ii) Show that f−1D(g) = D(ϕ(g)) for any g ∈ A.

Exercise 10.5.Not difficult, but not
important either.

Could be good practice
with sheaves if you are

new to sheaves.

Construct a morphism of ringed spaces SpecB → SpecA that is does not
come from a morphism of rings A→ B.

Solution. Let A = Z and let B = Q. Let ξ be a nonzero prime ideal of Z. We get a map
f : Spec Q→ Spec Z sending the unique point of Spec Q to ξ. Then f−1OSpecZ = Zξ is the
localization of Z at ξ. Let f∗ : Zξ → Q be the inclusion (in fact, this is the only such map).
This is a map of ringed spaces but there is no map Z→ Q such that the preimage of (0) is
ξ.

10.2 Locally ringed spaces

Suppose that (X,OX) is a ringed space and f ∈ Γ(U,OX) for some open U ⊂ X. Let D(f)
be the largest open subset U of X such that f

∣∣
U

has a multiplicative inverse.

Exercise 10.6.Important to know,
less important to do.

Use the sheaf conditions to prove that D(f) exists. (One approach: Let

F (U) = {g ∈ OX(U)
∣∣ gf = 1}. Show that F is a sheaf and that F (U) is either empty or a

1-element set for all U . Conclude that there is an open V ⊂ X such that F (U) = 1 if and
only if V ⊂ U .)

Definition 10.7 (Locally ringed space [AGV 3, Exercise IV.13.9]). A locally ringed space
is a ringed space (X,OX) such that if f1, . . . , fn ∈ Γ(U,OX) and (f1, . . . , fn) = Γ(U,OX)
then D(f1) ∪ · · · ∪D(fn) = U .

Exercise 10.8. (i) Prove that any ringed space with an open cover by locally ringed
spaces is a locally ringed space.

4Warning: Other authors often use ϕ] instead of ϕ∗ here.
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Solution. Suppose f1, . . . , fn ∈ Γ(U,O) generate the unit ideal. We argue that D(f1)∪
· · ·∪D(fn) = U . Choose a cover of U by open subsets Vi that are locally ringed spaces.
Then DVi(fj) = D(fj) ∩ Vi. Then

Vi ∩ (D(f1) ∪ · · · ∪D(fn)) = (Vi ∩D(f1)) ∪ · · · ∪ (Vi ∩D(fn)) = Vi

since Vi is a locally ringed space. But then taking the union over i, we get

D(f1) ∪ · · · ∪D(fn) =

n⋃
i=1

Vi ∩ (D(f1) ∪ · · · ∪D(fn)) =

n⋃
i=1

Vi = U

as we wanted.

(ii) Prove that affine schemes are locally ringed spaces.

Solution. It’s the definition of the Zariski topology! If (f1, . . . , fn) = A then we have
V (f1, . . . , fn) = ∅ so its complement D(f1, . . . , fn) = D(f1) ∪ · · · ∪ D(fn) is all of
SpecA.

(iii) Conclude that all schemes are locally ringed spaces.

Exercise 10.9. (i)This is important to
know for schemes

(Exercise 9.20), much
less important to know

for locally ringed
spaces. For schemes,

the verification should
be easy.

Prove that x ∈ U is in D(f) if and only if the germ of f at x is
invertible.

Solution. Suppose x ∈ D(f). Then (f
∣∣
U

)−1
x is the inverse of f in OX,x.

Suppose fx is invertible in OX,x. Let g ∈ Γ(V,OX) represent the inverse. We can
assume V ⊂ U . Then (f

∣∣
V
g)x = 1. Therefore there is some open W ⊂ V with x ∈W

such that f
∣∣
W
g
∣∣
W

= 1. Therefore x ∈W ⊂ D(f).

(ii)This is the usual
definition of a locally

ringed space, so this is
important to know for

the sake of
communication. It’s

not an important
exercise.

Prove that a ringed space (X,OX) is a locally ringed space if and only if all of the
stalks of OX are local rings. (Hint: A commutative ring is local if and only if its
non-unit elements form an ideal.)

Solution. Suppose X is a locally ringed space and x ∈ X. We want to show that OX,x
is a local ring. Equivalently, we want to show that the nonunits form an ideal. Suppose
f, g ∈ OX(U) represent non-units. Then D(f) ∪ D(g) = U . Therefore x ∈ D(f) or
x ∈ D(g). Thus either f or g is a unit in OX,x.

Conversely, suppose that each OX,x is a local ring. Let f1, . . . , fn ∈ OX(U). If they
generate the unit ideal then they generate the unit ideal in OX,x. Therefore at least
one fi is a unit in OX,x. So x ∈ D(fi). So

⋃
D(fi) = U .

If f ∈ Γ(X,OX) then we can regard OX as a sheaf of ‘functions’ on X: Restrict f to
the stalk OX,ξ. Let mξ be the maximal ideal of OX,ξ. Then the residue of f in the residue
field k(ξ) = OX,ξ/mξ is the value of f at ξ.

Exercise 10.10. Show that this definition coincides with the more familiar notion of value
for ξ ∈ Cn ⊂ Spec C[x1, . . . , xn].

Exercise 10.11. Show that when f(ξ) is interpreted as the value of ξ in the residue field
of ξ that D(f) is the set of points ξ where f(ξ) 6= 0.
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10.3 Morphisms of locally ringed spaces

def:schemes-morphism Definition 10.12 (Morphisms of schemes). If ϕ : X → Y is a morphism of ringed spaces
and both X and Y are locally ringed spaces and ϕ−1(DU (f)) = Dϕ−1U (ϕ∗f) for any open
U ⊂ Y and any f ∈ Γ(U,OY ) then we say ϕ is a morphism of locally ringed spaces.

A morphism of schemes ϕ : X → Y is a morphism of the underlying locally ringed
spaces.

Exercise 10.13. Suppose that f : X → Y is a morphism of ringed spaces.

(i) Suppose there is a cover of Y by open subsets U such that f−1U → U is a morphism
of locally ringed spaces. Show that f is a morphism of locally ringed spaces.

Solution. Cover X by open subsets Ui such that f−1Ui → Ui is a morphism of locally
ringed spaces. Suppose V ⊂ X is open and x ∈ Γ(V,OX). Then

f−1D(x) = f−1
⋃
i

Ui∩D(x) =
⋃
i

Df−1Ui(f
∗x
∣∣
f−1Ui

) = D⋃
f−1Ui(f

∗x) = Df−1V (f∗x)

as desired.

(ii) Suppose that there is a cover of X by open subsets U such that U → Y is a morphism
of locally ringed spaces. Show that f is a morphism of locally ringed spaces.

Solution. Suppose x ∈ Γ(V,OY ) for some open V ⊂ Y . Let Ui ⊂ X be a cover of X
by open subsets such that each map Ui → Y is local morphism. Then

f−1D(x) =
⋃
i

f
∣∣−1

Ui
D(x) =

⋃
i

DUi(f
∗x) = D(f∗x)

as desired.

Solution. Both parts of the exercise can be solved simultaneously using Exercise 10.14,
below: The map f is a local morphism if and only if the maps OY,f(x) → OX,x are local
homomorphisms of local rings for all x ∈ X. This condition only depends on an open
neighborhood of x ∈ X, hence can be verified on a cover.

In other words, if X and Y are schemes then a morphism of ringed spaces f : X → Y
is a morphism of schemes if for each point x ∈ X, there is an open affine neighborhood
U = SpecA of X and an open affine neighborhood V = SpecB of f(x) such that f(U) ⊂ V
and the map SpecA→ SpecB is induced from a homomorphism B → A.

ex:locally-ringed-space-stalks Exercise 10.14 (The usual definition of morphisms of locally ringed spaces [AGV 3, Exercise IV.13.9 c)]). With
notation as in Definition 10.12, show ϕ is a morphism of locally ringed spaces if and only
if for every point x of X, the map ϕ∗ : OY,ϕ(x) → OX,x is a local homomorphism of local
rings. (Recall that this means ϕ∗mϕ(x) ⊂ mx.)

Solution. First we show that Definition 10.12 implies the morphisms on stalks are local.
Suppose (X,OX)→ (Y,OY ) is a morphism of locally ringed spaces. Choose x ∈ X. Suppse
f ∈ mϕ(x). Represent f as a local section in Γ(U,OY ). Then ϕ(x) 6∈ DU (f). Thus
x 6∈ ϕ−1DU (f) = Dϕ−1U (ϕ∗f). Thus ϕ∗f lies in mx, by definition of Dϕ−1U (ϕ∗f).
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Conversely, suppose that the homomorphisms of local rings are local homomorphisms.
Fix U ⊂ Y open and f ∈ Γ(U,OY ). We want to show that x ∈ Dϕ−1U (ϕ∗f) if and only if
ϕ(x) ∈ DU (f). But recall that x ∈ Dϕ−1U (ϕ∗f) if and only if ϕ∗f 6∈ mx and ϕ(x) ∈ DU (f)
if and only if f ∈ mϕ(x). Thus we have

x ∈ Dϕ−1U (ϕ∗f) ⇐⇒ ϕ∗f 6∈ mx

⇐⇒ f 6∈ mϕ(x)

⇐⇒ ϕ(x) ∈ DU (f)

as desired.

Since ϕ∗ : OY,ϕ(x) → OX,x is a local homomorphism, it induces a homomorphism:

k(ϕ(x)) = OY,ϕ(x)/mϕ(x) → OX,x/mx = k(x)

We also write ϕ∗ for this homomorphism.

Conversely, if ϕ : X → Y is a morphism of locally ringed spaces, then the condition in
Exercise 10.14 is equivalent to saying that there is a commutative diagram (10.1):

OY,ϕ(x)
//

��

OX,x

��

k(ϕ(x)) // k(x)

(10.1) eqn:alt-lrs

We can summarize this in a motto:

A locally ringed space is a ringed space where functions have values at points.
A morphism of locally ringed spaces is a morphism of ringed spaces ϕ : X → Y
such that the formula ϕ∗f(x) = f(ϕ(x)) makes sense.

10.4 Morphisms to affine schemes

Reading 10.15. [MO, Theorem I.3.7]

Theorem 10.16. If (X,OX) is a locally ringed space then Hom(X,SpecA) = Hom(A,Γ(X,OX))
in a natural way.

Proof. Note that a map f : X → SpecA gives OSpecA → f∗OX . Taking global sections, we
get

A→ Γ(SpecA,OSpecA)→ Γ(SpecA, f∗OX) = Γ(X,OX).

Conversely, suppose we have a homomorphism ψ : A → Γ(X,OX). For any x ∈ X, we get
a map

A→ Γ(X,OX)→ OX,x → OX,x/mx. (10.2) eqn:1

The kernel of this map is a prime ideal, so this gives a map of topological spaces ϕ : X →
SpecA. To see it is continuous, suppose that f ∈ A. Then ϕ−1D(f) is the collection of all
x ∈ X such that the map (10.2) does not contain f in its kernel. This is precisely D(ψf)
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To specify the map of sheaves of rings, it is enough to specify it on a basis of open sets.
We need to specify maps

Γ(D(f),OSpecA(D(f)))
ϕ∗
// Γ(D(f), ϕ∗OX)

A[f−1] Γ(D(ψf),OX).

But by definition, the restriction of ψf to Γ(D(ψf),OX) has an inverse, so the map A →
Γ(D(ψf),OX) factors through A[f−1], by the universal property of localization.

Exercise 10.17. Complete the proof by verifying these two constructions are inverse to
one another.

Exercise 10.18. If A and B are commutative rings then

HomSch(SpecB, SpecA) = HomComRng(A,B).

Solution. We have

Hom(SpecB, SpecA) = Hom(A,Γ(SpecB,OSpecB)) = Hom(A,B).

Exercise 10.19. (i) Show that for any affine scheme, Hom(SpecA,A1) = A in a natural
way.

(ii) Show that for any scheme, Hom(X,A1) = Γ(X,OX).

10.5 Morphisms from affine schemes

Reading 10.20. [MO, Proposition I.3.10]

In general, it is difficult to characterize the morphisms from an affine scheme to an arbi-
trary locally ringed space. The reason for this is that we can only desribe what morphisms
look like locally, and affine schemes generally have many open covers. However, there are
some affice schemes with no nontrivial open covers.

def:llrs Definition 10.21. A locally ringed space is called local if it contains a point that is in the
closure of all other points.

Exercise 10.22. Prove that a scheme is local if and only if it is the spectrum of a local
ring.

Proof. Let x be a point of X that is in the closure of all other points. Since X is a scheme,
x has an affine open neighborhood U . But U must be all of X: if y ∈ X then x is in the
closure of {y}, so every open neighborhood of x contains y. This means that X is affine.

Say X = SpecA. Then the points of X correspond to the prime ideals of A and p is in
the closure of q, if and only if f(q) = 0 implies f(p) = 0, if and only if q ⊃ p. Thus every
prime ideal is contained in mx, which means A is a local ring.
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Exercise 10.23. Let X be a local locally ringed space (Definition 10.21) with closed point
x and let Y be a scheme. Then to give a local homomorphism X → Y is the same as to
give a point y of Y and a local homomorphism of local rings OY,y → OX,x.

Proof. Certainly ϕ : X → Y gives y = ϕ(x) and ϕ∗ : OY,y → OX,x. Conversely, suppose
that we are given y ∈ Y and ψ : OY,y → OX,x. Pick an affine open neighborhood U = SpecA
of y in Y . We have canonical morphisms:

X → Spec Γ(X,OX)
∼←− SpecOX,x

Specψ−−−−→ SpecOY,y → SpecA = U ⊂ Y

Note that the map Γ(X,OX)→ OX,x is an isomorphism since X is local. The composition
gives us the desired map X → Y .

11 Fiber products of schemes

Reading 11.1. [MO, § I.4]

Suppose that we have a diagram

X

��

Y // Z

(11.1) eqn:fib-prod-problem

in some category C . A fiber product of X and Y over Z is a universal (final) object
X ×Z Y that completes the diagram to a commutative square. That means that we have a
commutative square

X ×Z Y //

��

X

��

Y // Z

and that any commutative diagram of solid lines (11.2) can be completed by a unique dashed
arrow:

W

  

''

$$

X ×Z Y //

��

X

��

Y // Z

(11.2) eqn:fib-prod

When Z is the final object of the category C then the fiber product is called the product,
and it is denoted X × Y .

Exercise 11.2. Construct the fiber product in the category of sets. Use this construction
to construct the fiber product in the categories of groups, rings, and topological spaces.

Exercise 11.3. Show that fiber products do not always exist in the category of manifolds. However, show
that diagram (11.1) does have a fiber product in the category of manifolds if one or the other of the maps
X → Z or Y → Z is submersive.
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Exercise 11.4. Let An
k = Spec k[x1, . . . , xn]. Show that A2

k ' A1
k ×Spec k A1

k but that this
isomorphism does not identify |A2| with |A1| × |A1|.

Exercise 11.5. Generalizing the previous exercise, suppose in diagram 11.1 that X =
SpecB, Y = SpecC, and Z = SpecA. Prove that Spec(B ⊗A C) is a fiber product of
diagram 11.1 in the category of locally ringed spaces.

ex:fib-prod-points Exercise 11.6. Give an example of a diagram (11.1) in the category of schemes (or locally
ringed spaces) where |X|, |Y |, and |Z| all consist of exactly one point, and X ×Z Y exists
but |X ×Z Y | is not just one point.

Exercise 11.7. Show that if diagram (11.1) is a diagram in a category C with fiber product
X ×Z Y then, for any W ∈ C , we have a canonical bijection

HomC (W,X ×Z Y )
∼−→ HomC (W,X)×HomC (W,Z) HomC (W,Y )

where the fiber product on the right side is formed in the category of sets.

In this lecture, we want to see that there are fiber products in the category of schemes.
In fact, we will prove that fiber products exist in the category of locally ringed spaces and
show that the fiber product of schemes is a scheme.

If we want to construct the fiber product, we will need to construct its underlying
topological space. In all of the examples considered above, the category in question had a
‘point object’ P such that the underlying set of X was Hom(P,X). In view of the exercise
above, this meant that the underlying topological space of the fiber product had to be the
fiber product of the underlying topological spaces. We have no ‘point object’ in the category
of schemes, so we will have to be more careful.

However, we can figure out what the underlying set of X ×Z Y must be with a similar
sort of reasoning. In fact, Exercise 11.6 tells us exactly what to do:

ex:points-of-fiber-product Exercise 11.8. Suppose that X ×Z Y exists.

(i) For each x ∈ X and y ∈ Y with common image z ∈ Z, construct a map

x×z y → X ×Y Z.

(ii) Observe that x×z y = Spec
(
k(x)⊗k(z) k(y)

)
.

(iii) Suppose that X ×Y Z exists. Use the map from the first part to construct a bijection⋃
x∈|X|,y∈|Y |,z∈|Z|
f(x)=z=g(y)

∣∣Spec
(
k(x)⊗k(z) k(y)

)∣∣ =
⋃

x∈|X|,y∈|Y |,z∈|Z|
f(x)=z=g(y)

|x×z y|
∼−→ |X ×Z Y |.

Solution. We construct an inverse. Suppose t ∈ |X ×Z Y |. Let x ∈ X, y ∈ Y , and
z ∈ Z be the projections. Then we get a commutative diagram of fields:

k(z) //

��

k(x)

��

k(y) // k(t)

(11.3) eqn:fib-prod-res
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This induces a homomorphism k(x)⊗k(z) k(y)→ k(t). Let p be the kernel. This is a
point of |Spec(k(x)⊗k(z) k(y))| ⊂ |T |. This gives the required function.

Now, suppose that t is a point of x×z y. Let t′ be its image in X×Z Y . Since f(t′) = x
and g(t′) = y we get a unique map t′ → x ×z y and we let t′′ be its image. Now we
have

t→ t′ → t′′ → x×y z.
But therefore t and t′ represent the same point of |x×y z|.
Now suppose that t is a point of X ×Y Z with images x and y and z in X and Y and
Z. Then let t′ be the image of t in x ×y z and let t′′ be the image of t′ in X ×Y Z.
Then we have

t→ t′ → t′′ → X ×Y Z
so that t and t′′ represent the same point of X ×Y Z, as required.

We can turn this around and use it to construct |X ×Z Y |. Let

|X ×Z Y | =
⋃

x∈X,y∈Y,z∈Z
f(x)=z=g(y)

x×z y.

Exercise 11.9. Show that there is a commutative diagram of functions:

|X ×Z Y |
p

//

q

��

r

$$

|X|

��

|Y | // |Z|

Solution. The commutative diagram of functions is immediate from the construction of
|X ×Z Y |. We only need to verify the continuity of p and q. Suppose that U ⊂ |X| is
open.

Suppose that U ⊂ X, V ⊂ Y , and W ⊂ Z are open subsets such that f(U) ⊂ W and
g(V ) ⊂ W . Let A = Γ(W,OW ), let B = Γ(U,OU ), and let C = Γ(V,OV ). Then we have a
function

p−1|U | ∩ q−1|V | = |U ×W V | → | SpecB ⊗A C|.
Give |X ×Z Y | the coarsest topology so that all of these maps are continuous, for all open
subsets U ⊂ X, V ⊂ Y , and W ⊂ Z, and the maps p and q are continuous.

Define:
OX×ZY = p−1OX ⊗r−1OZ q

−1OY
Exercise 11.10. Let A be a sheaf of commutative rings on a topological space X, and let
F and G be A -modules. Define F ⊗A G to be the sheaf associated to the presheaf whose
value on U ⊂ X is F (U)⊗A (U) G (U).

(i) Show that F ⊗A G has the following universal property: any bilinear map of sheaves
of A -modules

F × G →H

factors uniquely through a linear map

F ⊗A G →H .
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(ii) Now suppose that B and C are A -algebras. Show that B ⊗A C has the following
universal property: any pair of A -algebra homomorphisms B → D and C → D factor
uniquely through an A -algebra homomorphism

B ⊗A C → D .

Exercise 11.11. Verify that X ×Z Y , as constructed above, has the universal property of
a fiber product in the category of locally ringed spaces.

Proof. Suppose that we have a commutative diagram of locally ringed spaces:

W
p1 //

q1

��

r1

  

X

��

Y // Z

Suppose w ∈ W . Let x = p1(w) and let y = q1(w) and let z = f(p1(w)) = g(q1(w)). Then
we get

w → x×z y

and hence a well-defined point of |X ×Z Y |. This gives a function |W | → |X ×Z Y |.
We check it is continuous. Since the topology on |X ×Z Y | is given universally, we need
to check p1 and q1 are continuous (which is given) and that if U ⊂ X, V ⊂ Y , and
W ⊂ Z, with A = Γ(W,OW ), B = Γ(U,OU ), and C = Γ(V,OV ) open subsets then the map
p−1

1 (U) ∩ q−1
1 (V )→ SpecB ⊗A C is continuous. But the maps

p−1
1 U ∩ q−1

1 V //

��

SpecB

��

SpecC // SpecA

are continuous precisely because p−1U → X and q−1V → Y are morphisms of locally ringed
spaces. Then use the universal property of Spec(B⊗AC) = SpecB×SpecA SpecC as a fiber
product.

Now that we have a continuous map h : |W | → |X ×Z Y | we need to augment it to a
morphism of ringed spaces. We certainly have homomorphisms of commutative rings:

h−1p−1OX = p−1
1 OX → OW

h−1q−1OY = q−1
1 OY → OW

By the universal property of tensor product, we have

h−1OX×ZY = h−1
(
p−1OX ⊗r−1OZ q

−1OY
)

= h−1p−1OX ⊗h−1r−1OZ h
−1q−1OY

= p−1
1 OX ⊗r−1

1 OZ
q−1
1 OY

→ OW

as required.
Now we must check it is a morphism of locally ringed spaces. Suppose that a is a local

section of OX×Y Z . We want to show that h−1D(a) = D(h∗a). This is a local problem on
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|X×Z Y |, so we can replace by an open cover. In particular, we can assume that a is a global
section of OX×ZY . Restricting to a smaller open cover, it is even possible to represent a
locally as a finite linear combination

∑
bi⊗ ci where the bi and ci are global sections of OX

and OY , respectively. Then
∑
bi ⊗ ci is an element of R = Γ(X,OX) ⊗Γ(Z,OZ) Γ(Y,OY ),

and a is pulled back from X ×Z Y → SpecR. But W → SpecR is a morphism of locally
ringed spaces, so we may conclude.

Exercise 11.12. Show that if X, Y , and Z are all schemes then X ×Z Y is a scheme.

12 Properties of morphisms

12.1 Nilpotents

Exercise 12.1. Let A = Spec C[ε]/(ε2). Show A has only one point but that there are
nonzero functions SpecA→ A1 that take the value 0 at this point.

12.2 Open embeddings

Exercise 12.2 (Open subschemes). If X is a scheme U ⊂ X is an open subset, define OU
to be the restriction of OX to U . Show that U is a scheme.

Definition 12.3. A morphism of schemes U → X is said to be an open embedding if it can
be factored as U → V → X where U → V is an isomorphism and V → X is the inclusion
of an open subscheme.

12.3 Affine morphisms

Definition 12.4 (Affine morphism). A morphism of schemes f : X → Y is said to be affine
if, whenever U ⊂ Y is an affine open subset, f−1U ⊂ X is an affine open subset.

Exercise 12.5. Show that any morphism between affine schemes is affine.

12.4 Closed embeddings

Definition 12.6. A morphism of schemes f : Z → X is called a closed embedding if it is
affine and for all affine open subsets U ⊂ X with U = SpecA and f−1U = SpecB, the map
A→ B is a surjection.

Exercise 12.7. Show that f : Z → X is a closed embedding if and only if it is the inclusion
of a closed subset and the map f∗ : OX → f∗OZ is surjective.

Exercise 12.8. Show that a morphism of schemes f : Z → X is a closed embedding if and
only if there is a cover of X by open affine subschemes U = SpecA such that f−1U → U is
isomorphic to SpecA/I → SpecA for some ideal I of A.

12.5 Locally closed embeddings

def:locally-closed Definition 12.9. A locally closed subscheme is a closed subscheme of an open subscheme.
A morphism of schemes f : Z → X is called a locally closed embedding if it can be factored
as a closed embedding followed by an open embedding.
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Exercise 12.10.It’s valuable to know
pathologies like this

can exist, less
important to have

actually seen them.

(i) Let X = A∞ = Spec C[x1, x2, . . .] and let U ⊂ X be the complement of the origin
(0, 0, . . .). (In other words U = D(x1, x2, . . .).) Show that there is a closed subscheme
Y ⊂ U such that Y ∩D(xm) is

Y ∩D(xm) = Spec k[x1, x2, . . . , x
−1
m ]/(xm1 , x

m
2 , . . . , x

m
m−1, xm+1, xm+2, . . .).

(ii) Show that the smallest closed subscheme of X containing Y is X itself.

(iii) Conclude that Y is not an open subscheme of a closed subscheme of X.

Exercise 12.11.This is a surprisingly
important fact.

Show that if X is a noetherian scheme then every locally closed subscheme
of X is an open subscheme of a closed subscheme of X.

12.6 Relative schemes

We frequently want to distinguish between coefficients in a ring and variables. For example,
if you define the coordinate ring of a curve over C as C[x, y]/(f(x, y)), don’t want to think
of automorphisms of C as automorphisms of the curve. We accomplish this algebraically by
introducing the category of C-algebras.

Definition 12.12. Let A be a commutative ring. An A-algebra is a pair (B,ϕ) where
B is a commutative ring and ϕ : A → B is a homomorphism of commutative rings. A
homomorphism of A-algebras (B,ϕ) → (C,ψ) is a homomorphism of commutative rings
f : B → C such that f ◦ ϕ = ψ.

In other words, homomorphisms of A-algebras are homomorphisms of commutative rings
that hold the coefficient ring constant. If we translate this geometrically, we obtain the
notion of a relative scheme:

Definition 12.13. Let A be a commutative ring. An A-scheme is a pair (X,π) where
π : X → SpecA is a morphism of schemes. A morphism of A-schemes (X,π) → (Y, τ) is a
morphism of schemes f : X → Y such that τ ◦ f = π.

Exercise 12.14.Should be easy. Do it
if it’s not obvious.

Verify that A-algebras and affine A-schemes are contravariantly equivalent
categories. (You’ll have to define an affine A-scheme. There are two obvious definitions,
both equivalent.)

We can generalize this definition and think about schemes that are constructed using
coefficients coming from the structure sheaf of another scheme:

Definition 12.15. Let S be a scheme. An S-scheme is a pair (X,π) where π : X → S is a
morphism of schemes. A morphism of S-schemes (X,π)→ (Y, τ) is a morphism of schemes
f : X → Y such that τ ◦ f = π.

Usually when we are working with S-schemes we refer to an S-scheme (X,π) as X and
sometimes don’t even introduce a letter for π. This shouldn’t be a source of confusion, since
π is usually clear from context.
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12.7 Examples

Exercise 12.16. Show that the disjoint union of two schemes is a scheme in a natural way
(you will have to specify the structure sheaf yourself). Show that your construction has the
universal property of a coproduct: Hom(X q Y, Z) = Hom(X,Z)×Hom(Y,Z) for all Z.

Exercise 12.17.Recommended
exercise!

Let X be a scheme (in fact, X can be a locally ringed space). Construct
a bijection between maps X → P1 and the set of quadruples (V0, V1, x0, x1) such that

(i) Vi ⊂ X are open subsets of X with V0 ∪ V1 = X,

(ii) xi ∈ Γ(Vi,OX), and

(iii) x0

∣∣
V0∩V1

x1

∣∣
V0∩V1

= 1.

Solution. Suppose that f : X → P1 is a morphism of schemes. Set Vi = f−1Ui. Note
U0 = Spec Z[t] and U1 = Spec Z[t−1]. Then set x0 = f∗t ∈ Γ(V0,OX) and x1 = f∗t−1 ∈
Γ(V1,OX). We have

x0

∣∣
V0∩V1

x1

∣∣
V0∩V1

= f∗(t
∣∣
U0∩U1

t−1
∣∣
U0∩U1

)

= f∗1 = 1.

Going the other way, x0 ∈ Γ(V0,OX) gives a map V0 → U0 and x1 ∈ Γ(V1,OX) gives
V1 → U1. We get two maps V0 ∩ V1 → U0 ∩ U1 = Spec Z[t, t−1] by restriction. These
correspond to maps

Z[t, t−1]→ Γ(V0 ∩ V1,OX).

One sends t to x0

∣∣
V0∩V1

and the other sends t−1 to x1

∣∣
V0∩V1

. But x0

∣∣−1

V0∩V1
= x1

∣∣
V0∩V1

, so

these maps agree. We therefore get a map of topological spaces f : X → P1 and we get
maps of sheaves

OP1

∣∣
Ui
→ f∗OX

∣∣
Ui
.

These maps agree on U0 ∩ U1, so they glue to a morphism of sheaves on P1. We can check
that it is a morphism of locally ringed spaces by working locally in P1, where it reduces to
the fact that Vi → Ui are morphisms of locally ringed spaces.



Chapter 5

Representable functors

13 The functor of points
sec:functor-of-points

Reading 13.1. [Mum99, §II.6], [Vak14, §§6.6.1–6.6.2, 9.1.6–9.1.7]

13.1 The problem with the product

The world would be unjust if we could not say that

A1 ×A1 = A2.

Exercise 13.2. (i) Show that

|A1| × |A1| 6= |A2|,

where |X| denotes the underlying topological space of a scheme X. (Hint: Find a
point of A2 that does not correspond to an ordered pair of points. Feel free to work
over a field, or even an algebraically closed field, where the important phenomenon
will already be visible.)

(ii) Show that A2 has the correct universal property of a product in the category of
schemes.1 (Hint: A map from a scheme X to SpecA is a homomorphism of commuta-
tive rings A→ Γ(X,OX). Use the universal property of a polynomial ring or a tensor
product.)

This tells us that the universal property is a better way of identify products than by
looking at the underlying set of points.

13.2 About underlying sets

Reading 13.3. [Mum99, pp. 112–113]

Many mathematical objects of interest have underlying sets. Algebraic objects like rings
and groups are defined by adding an algebraic structure to an underlying set. A topological
space is an underlying set and a collection of subsets of that set. A manifold is a topological

1This means that a map X → A2 corresponds to a pair of maps X → A1.

79
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space with additional structure, and its underlying set is the underlying set of the underlying
topological space.

In each of these examples, passage to the underlying set defines a functor, sometimes
called a forgetful functor :

F : C → Sets

In fact, all of these functors are representable. This means that there is some object X ∈ C
such that F ' hX , where hX(Y ) = HomC (X,Y ).

Exercise 13.4.Important general
knowledge, but not

particularly important
for this class.

Find objects representing the forgetful functors for groups, rings, topolog-
ical spaces. (Hint: Free object with one generator.)

All of the forgetful functors described above are faithful. This means that the map

HomC (X,Y )→ HomSets(FX,FY ) (∗) eqn:9

is injective. In other words, you can tell if two morphisms in C are the same by looking at
how they behave on the underlying sets.

Not every category C has an ‘underlying set’ functor to the category of sets, but (essen-
tially) every category does have a faithful functor to the category of sets:

Exercise 13.5.Think about this, but
don’t write it up. This

exercise will be
generalized by the

Yoneda lemma later.

Let C be a category. Prove that the functor

F (Y ) =
∏
X∈C

Hom(Y,X)

is a faithful functor from C to Sets. (If you are the kind of person who likes to worry
about set-theoretic issues, assume that C is a small category so that the product exists. If
you are the kind of person that likes to worry about set-theoretic issues and work with big
categories, find out what a presentable category is and assume that C is one.)

Of course, the forgetful functors we have encountered are not full. To be full means that
the map (∗) is a surjection. However, the functors above can be promoted to fully faithful
functors by recording extra structure:

Exercise 13.6.This exercise won’t
serve any further

purpose in this course,
so you shouldn’t do it.
It is important in the

construction of
cohomology theories

for algebraic
structures, though.

In the following problems, you will need to figure out what ‘compatible’
means.

(i) Show that compatible functions

HomComRing(Z[x], A)→ HomComRing(Z[x], B)

HomComRing(Z[x, y], A)→ HomComRing(Z[x, y], B)

are induced by a unique homomorphism of commutative rings A→ B. (Hint: Use the
map Z[x]→ Z[x, y] sending x to x+ y and the map sending x to xy.)

(ii) Let Fn denote the free group on n generators. Show that compatible functions

HomGrp(F1, A)→ HomGrp(F1, B)

HomGrp(F2, A)→ HomGrp(F2, B)

are induced by a unique homomorphism of groups A→ B.
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It is harder to come up with a small collection of objects and arrows that give a fully
faithful embedding of topological spaces into a category that is similarly set-theoretic, and
harder still to do it for schemes. However, if we allow ourselves an enormous amount of data,
as we shall in the next section, we will see that every category has a fully faithful functor
to a category that is essentially set-theoretic (meaning its objects are sets with structural
morphisms between them). In other words, morphisms in any category can be constructed
set-theoretically. This can be quite a coup for categories like schemes, where the definition
of the category is very elaborate.

13.3 Yoneda’s lemma

Definition 13.7. If C is a category, a presheaf on C is a contravariant functor from C to
Sets. If X ∈ C then we write hX for the functor hX(Y ) = HomC(Y,X). If F is a presheaf
on C and F ' hX then we say F is representable by X.

ex:yoneda Exercise 13.8 (Yoneda’s Lemma). (i) Let C be a category. Show that X 7→ hX is a

covariant functor from C to Ĉ.

Solution. For any map f : X → Y , we get a map

hX(Z) = Hom(Z,X)→ Hom(Z, Y ) = hY (Z)

by composition with f and this is obviously compatible with composition. The natu-
rality in Z is the commutativity of the diagram

Hom(Z,X) //

��

Hom(Z, Y )

��

Hom(W,X) // Hom(W,Y )

for any map g : W → Z.

(ii) Show that X 7→ hX is fully faithful. (Show in other words that HomC(X,Y ) =
HomĈ(hX , hY ) via the natural map.)

Solution. We need to give an inverse to the map constructed in the first part. If we
have ϕ : hX → hY , then ϕ(idX) ∈ hY (X) = Hom(X,Y ).

If f : X → Y is a map in C then the induced map ϕ : hX → hY sends g ∈ hX(Z) to
f ◦ g ∈ hY (Z). So ϕ(idX) = f ◦ idX = f , as desired.

Conversely, if ϕ : hX → hY is natural, let f = ϕ(idX). Let g : Z → X be any map.
We have a commutative diagram by naturality of ϕ:

hX(X) //

��

hX(Z)

��

hY (X) // hY (Z)

Then idX ∈ hX(X) maps to g ∈ hX(Z) maps to ϕ(g) ∈ hX(Z). On the other hand,
idX maps to f ∈ hY (X) maps to f ◦ g ∈ hY (Z). Thus ϕ(g) = f ◦ g, as desired.
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(iii) Show that for any F ∈ Ĉ, there is a unique natural bijection HomĈ(hX , F ) ' F (X)
under which ϕ : hX → F corresponds to ϕ(idX) ∈ F (X).

Yoneda’s lemma tells us that we can think of a scheme in terms of the contravariant
functor it represents. Remarkably this can often be a lot easier than thinking about the
scheme as a ringed space.

13.4 Initial and final objects
sec:initial

Let F : C ◦ → Sets be a functor. Out of this, we can build a category C /F whose objects are
pairs (X, ξ) where X ∈ C and ξ ∈ F (X). A morphism (X, ξ)→ (Y, η) is a map f : X → Y
in C such that f∗η = ξ.

Exercise 13.9. Show that F is representable by (X, ξ) if and only if (X, ξ) a final object
of C /F .

Now suppose that F : C → Sets is a functor and let F/C be the category of pairs (X, ξ)
where X ∈ C and ξ ∈ F (X). A morphism (X, ξ) → (Y, η) is a map f : X → Y such that
f∗ξ = η.

Exercise 13.10. Show that F is representable by (X, ξ) if and only (X, ξ) an initial object
of F/C

13.5 The adjoint functor theorem
sec:aft

The adjoint functor theorem is a very powerful tool for showing that a functor is repre-
sentable.

ex:functor-colimit Exercise 13.11. Suppose that F : C → D is a functor and that {Xi} is a diagram in C .
Construct a canonical map:

F (lim←−
i

X)→ lim←−
i

F (X)

Give an example of a functor F and a diagram X where this map is not an isomorphism.

When the morphism constructed in the exercise is an isomorphism for all small (indexed
by a set) diagrams X, we say that F preserves limits.

Theorem 13.12. Suppose that F : C → Sets is a functor such that

(i) C admits all small limits;

(ii) F preserves limits; and

(iii) F/C has an essentially small coinitial subcategory.

Then F is representable.

The condition that F/C have a small coinitial subcategory means here that there is a
small subcategory C0 ⊂ C such that, for every (x, ξ) ∈ F/C , there is a (y, η) ∈ C0 and a
morphism (y, η)→ (x, ξ).
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Proof. Since F/C has a small coinitial subcategory C0 and C admits all small limits, there
is a limit e = lim←−(x,ξ)∈C0

1 in C . Since F preserves small limits, we have an bijection:

F (e)
∼−→ lim←−

(x,ξ)∈C0

F (x)

Now, there is a canonical element of the limit, namely the tuple η(x, ξ) = ξ so this gives a
canonical element ε ∈ F (e). We will show that (e, ε) represents F .

This means that we have to construct a unique morphism (e, ε) → (x, ξ) for every
(x, ξ) ∈ F/C . But C0 is coinitial, so if (x, ξ) ∈ F/C there is some (y, η) ∈ C0 and a
map (y, η) → (x, ξ). By definition of the limit, we have a projection (e, ε) → (y, η) and
composition gives us a map (e, ε)→ (x, ξ).

We still have to prove that the map (e, ε)→ (x, ξ) is unique. Suppose we had two maps
a, b : e⇒ x and let u : f → e be the equalizer of the two maps e⇒ x in C (which exists since
C has small limits). Then, since F preserves small limits, there is a unique φ ∈ F (f) such
that u∗(φ) = ε. Now, choose (y, η) ∈ C0 and a map (y, η) → (f, φ) (since C0 is coinitial).
But now the two compositions

y → f → e⇒ x

coincide, by definition of the equalizer. Let v : y → e denote the composition y → f → e,
above. I claim that v∗ε = ε. Once we show this, we will be done, since we have a unique
map w : e→ y with w∗ε = η. Then vw is the identity on e and the two compositions

e→ y → f → e⇒ x

agree.
We check that v∗ε = ε. It is sufficient to check that for every z ∈ C0 and every projection

map t : e→ z, that tv = t. To check this, we need to show that t∗ε = t∗v∗ε. But we have

t∗v∗ε = t∗η = v∗ε

since (y, η)→ (z, ζ) is a morphism in C0.

The existence of a small coinitial subcategory looks intimidating, but it is usually very
easy to verify. For example, if the objects of C have some kind of underlying sets and you
can find a coinitial subcategory of F/C0 where the underling sets have some kind of upper
bound, then you have a coinitial subcategory. This frequently works in algebraic examples,
like the following exercise:

Exercise 13.13. Let Grp be the category of groups. Define F : Grp→ Sets by F (G) =
Gn where n is any integer ≥ 0 (in fact, any cardinal would be fine). Prove that F is
representable. This constructs the free group on n generators.

Solution. Let α be an infinite cardinal that is ≥ n. Let C0 consist of all groups of cardinality
≤ α. Then C0 is essentially small, since the group structures on a group of cardinality ≤ α
are bounded by αα×α. Furthermore,

F (lim←−Gi) = (lim←−Gi)
n = lim←−(Gni )

so F preserves limits. Therefore F is representable, by the adjoint functor theorem.
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14 Localization of ringed spaces

Reading 14.1. [MO, §I.7], [Gil11]

14.1 The spectrum of a sheaf of rings

In this section LRS will be the category of locally ringed spaces and RS will be the category
of ringed spaces.

Let X be a topological space with a sheaf of rings A . We construct a new topological
space, Spec A . The points of Spec A are pairs (x, p) where x ∈ X and p is a prime ideal of
the stalk Ax.

If (x, p) ∈ Spec A , let k(x, p) be the field of fractions of Ax/p. For any open U ⊂ X
containing x, let ev(x,p) be the composition of homomorphisms:

ev(x,p) : A (U)→ Ax → Ax/p = k(x)

We write f(x, p) = ev(x,p)(f).
If U ⊂ X is open, and f ∈ A (U), define DU (f) to be the set of all (x, p) ∈ Spec A such

that x ∈ U and f(x, p) 6= 0. We give Spec A the coarsest topology such the sets DU (f) are
all open.

Exercise 14.2. Show that the map π : Spec A → X sending (x, p) to x is continuous.

Now we give Spec A a sheaf of rings. Essentially, we want to imitate the construction
of the spectrum over a point, and define O(DU (f)) = A (U)[f−1]. The only trouble is that
this might not be well-defined, because DU (f) could coincide with DV (g) for U 6= V or
f 6= g. It is possible to get around this with a bit of categorical trickery, but we will instead
build the espace étalé of the sheaf directly and take its sheaf of sections.

For each (x, p) ∈ Spec A , let Ax,p be the local ring of Ax at the prime p ⊂ A .
Let O be the topological space defined as follows:

• the underlying set of O is
∐

(x,p)∈Spec Ax,p;

• for each open U ⊂ X, each f ∈ A (U), and each g ∈ A (U)[f−1], the image of the map

g : DU (f)→
∏

(x,p)∈DU (f)

Ax,p

is open.

To be clear, this map sends a point (x, p) ∈ DU (f) to the tuple whose (x, p)-component is
the image of g under the homomorphism

evx,p : A (U)[f−1]→ Ax,p.

There is a projection O → X sending Ax,p to x.

Exercise 14.3. Show that the projection O → X is a local homeomorphism.

We define OSpec A to be the sheaf of sections of O on Spec A .
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Exercise 14.4. Construct a morphism of ringed spaces

(Spec A ,OSpec A )→ (X,A )

whose underlying morphism of sets is π(x, p) = x.

Exercise 14.5. Suppose that S is a locally ringed space and ϕ : S → (X,A ) is a morphism
of ringed spaces. Show that there is a unique factorization of ϕ through a morphism ψ :
S → Spec A (i.e., such that πϕ = ψ) such that ψ is a morphism of locally ringed spaces.

Solution. First we show the factorization is unique if it exists. Let ψ be a factorization that
is a morphism of locally ringed spaces. Then we have a commutative diagram:

A (U) //

��

Ax
// Aψ(s)

//

��

k(ψ(s))

��

OS(ϕ−1U) // OS,s // k(s)

(14.1) eqn:28

This means that ψ(s) is the pair (x, p) where p is the preimage of mS,s under the homomor-
phism Ax → OS,s. The latter map is determined by ϕ, so the map of sets underlying ψ is
determined by ϕ. Furthermore, the map of sheaves ψ−1OSpec A → OS is determined by the
maps on stalks, which the diagram above shows are determined by ϕ. Hence ψ is uniquely
determined by ϕ.

Now we must construct ψ from ϕ. The above diagram shows us that we should define
ψ(s) to be the preimage of the maximal ideal mS,s under the homomorphism:

Ax → OS,s

This gives πψ = ϕ and we need only construct the map of sheaves

OSpec A → ψ∗OS .

By definition of the espace étalé, we can regard a section of OSpec A (U) as a tuple g ∈∏
(x,p)∈U Ax,p. If ψ(s) = (x, p), we have a map

Ax,p → OS,s

where so we get a map ∏
(x,p)∈U

Ax,p →
∏

s∈ψ−1U

OS,s.

We want to show that the image of g under this map is contained in the image of OS(ψ−1U).
But this is a local question, since OS is a sheaf, so, by definition of OSpec A , it is sufficient
to assume that U = DV (f) for some open U ⊂ X, some f ∈ A (V ), and that g is in the
image of

A (V )[f−1]→
∏

(x,p)∈DV (f)

Ax,p.

But now we have a commutative diagram

A (V )[f−1] //

��

OS(ψ−1DV (f))

��

Ax,p // OS,s



86 CHAPTER 5. REPRESENTABLE FUNCTORS

for each s ∈ ψ−1DV (f) with ψ(s) = (x, p). Taking products in the bottom row, we find
that the image of g is contained in OS(ψ−1DV (f)), exactly as required.

Finally, we can check that ψ is a morphism of locally ringed spaces. This comes down
to the fact that if g ∈ OSpec A (U) then g(ψ(s)) = 0 if and only if ψ∗g(s) = 0, which is the
commutativity of diagram (14.1), again.

14.2 The maximal locally ringed subspace

Exercise 14.6. Let X be a ringed space and let X ′ ⊂ X be the set of all x ∈ X such that
OX,x is a localy ring. Give X ′ the induced topology, let i : X ′ → X be the inclusion, and
define OX′ = i−1OX . Show that X ′ is the largest locally ringed subspace of X.

Exercise 14.7. Let X and Y be locally ringed spaces and let u : X → Y be a morphism of
ringed spaces. Show that there is a largest subspace X ′ ⊂ X such that u

∣∣
X′

is a morphism
of locally ringed spaces.

Solution. Let X ′ be the set of points x ∈ X such that OY,u(x) → OX,x is a local homomor-
phism of local rings.

Exercise 14.8. Suppose that u : X → Y is a ringed space morphism between locally ringed
spaces and v : Z → X is a locally ringed space morphism such that uv : Z → Y is a locally
ringed space morphism. Show that u factors through the maximal subspace X ′ ⊂ X on
which u

∣∣
X′

is a morphism of locally ringed spaces.

Solution. By assumption, OY,y
f−→ OX,x

g−→ OZ,z is a local homomorphism. So gf(my) ⊂ mz.
But g−1mz = mx, since g is a local homomorphism, so this means f(my) ⊂ mx, which means
that u is a local homomorphism at x ∈ X. Therefore x ∈ X ′, as required.

14.3 Fiber products

Exercise 14.9. Let X → Z and Y → Z be morphisms of locally ringed spaces. Show that
there is a fiber product X ×RS

Z Y in the category of ringed spaces. (Hint: take the fiber
product of the topological spaces with the sheaf of rings p−1OX ⊗r−1OZ q

−1OY .)

Exercise 14.10. Let W be the maximal subspace of `(X ×RS
Z Y ) such that the two pro-

jections W → X and W → Y are local morphisms of locally ringed spaces. Show that W is
the fiber product X ×Z Y in the category of locally ringed spaces.

14.4 The relative spectrum

Exercise 14.11. Suppose that X a locally ringed space and A is a sheaf of OX -algebras.
For each locally ringed space S, let F (S) be the set of pairs (u, ϕ) where u : S → X is
a morphism of locally ringed spaces and ϕ : A → u∗OS is an A -algebra homomorphism.
Show that F is representable by a locally ringed space SpecX A . (Hint: take the maximal
subspace of Spec A such that the projection to X is a local morphism of locally ringed
spaces.)

Exercise 14.12. Prove that if X is a scheme and A is quasicoherent then SpecX A is a
scheme.
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15 Presheaves representable by schemes

Reading 15.1. [Vak14, §§9.1.6–9.1.7],

Recall that the Yoneda lemma gave us a fully faithful functor

Sch→ Sch∧

where Sch∧ is the category of presheaves on Sch. In this section, we want to characterize
the image of this functor. In other words, we want to be able to determine which presheaves
on Sch are representable by schemes. This will give us a new way to construct schemes that
will often be easier than constructing a ringed space. In fact, this will give us an entirely
new way to think about what a scheme is.

thm:presheaf-scheme Theorem 15.2. A presheaf on the category of schemes is representable by a scheme if and
only if

(i) it is a sheaf in the Zariski topology, and

(ii) it has an open cover by presheaves that are representable by affine schemes.

IfA is a commutative ring then hA : ComRing→ Sets sendingB to HomComRing(A,B).
If X is a scheme then hX : Sch◦ → Sets is the functor sending Y to HomSch(Y,X). Abu-
sively, we think of hA and hSpecA as being the same object. In reality, hA is a functor
defined on ComRing = Aff◦ ( Sch◦ and hSpecA is defined on all of Sch. More generally,
when X is a scheme, we sometimes think of hX as a covariant functor defined on ComRing
and we abbreviate hX(SpecA) to hX(A). We will see below that the composition of the
Yoneda embedding with restriction

Sch→ Sch∧ → Aff∧

is fully faithful, so this abuse of notation does not cause any trouble. Later on, we will even
permit ourselves to write X(A) in place of hX(A).

15.1 Zariski sheaves

Let Y be a scheme. Note that Open(Y ) can be regarded as a subcategory of Sch. If F is
a presheaf on Sch then we can restrict it to Open(Y ) and get a presheaf on Y .

Definition 15.3. A presheaf F on Sch is said to be a Zariski sheaf if, for any scheme Y ,
the presheaf F

∣∣
Open(Y )

is a sheaf on Y .

The following lemma says that hX is a Zariski sheaf for any scheme X:

Lemma 15.4. Suppose X and Y are schemes. Define a presheaf F on X by F (U) =
Hom(U, Y ). Then F is a sheaf. (Hint: Use Exercise 4.10 and Exercise 4.13. It may be
helpful to think of a map of ringed spaces as a continuous map f : X → Y and a morphism
of sheaves of rings f−1OY → OX . Observe that if U ⊂ X is open then f−1OY

∣∣
U

=

(f
∣∣
U

)−1OY .)
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Proof. First we prove SH1. Suppose that U is an open subset of X and we have a two maps
f, g : U → Y in F (U). Let {Ui} cover U and assume that f

∣∣
Ui

= g
∣∣
Ui

. Since continuous

functions form a sheaf (Exercise 4.10) this means that f and g have the same underlying
map of topological spaces.

To prove that f = g, we need to show that the two maps f∗, g∗ : OY → f∗OU =
g∗OU coincide. Regard these as maps f∗, g∗ : f−1OY → OU . Then for each i, the maps
f−1OY

∣∣
Ui
→ OU

∣∣
Ui

= OUi coincide. Since OU is a sheaf, this implies that f∗ and g∗ are the
same morphism of sheaves and therefore that f and g are the same morphism of schemes.

Next we prove SH2. Suppose we have fi : Ui → Y for each Ui in a cover of U with
fi
∣∣
Ui∩Uj

= fj
∣∣
Ui∩Uj

for all i and j. These glue to a continuous map f : U → Y . We now

have maps
f−1OY

∣∣
Ui

= f−1
i OY → OUi = OU

∣∣
Ui

that agree when restricted to Ui ∩ Uj . Since morphisms between two sheaves form a sheaf
these glue to a map f−1OY → OX . We have to check that this is a morphism of schemes,
i.e., that it has the right local form. But each map Ui → Y is locally a morphism of affine
schemes and the Ui cover U , so U → Y is locally a morphism of affine schemes.

ex:zariski-sheafification Exercise 15.5. Suppose that F is a presheaf on Sch. Show that there is a universal map F → F sh where
F sh is a Zariski sheaf. This is called the sheafification of F . (Hint: Sheafify F

∣∣
Open(X)

for each X ∈ Sch.)

Solution. For each X ∈ Sch, define F ′(X) = Γ(X,F
∣∣sh
Open(X)

). We show first that F ′ is a presheaf. If

f : Y → X is a morphism of schemes, we get F
∣∣
Open(X)

→ f∗F
∣∣
Open(Y )

, since F is a presheaf on Sch.

We also have F
∣∣
Open(Y )

→ F
∣∣sh
Open(Y )

, which gives

F
∣∣
Open(X)

→ f∗(F
∣∣
Open(Y )

)→ f∗(F
∣∣sh
Open(Y )

)

and the universal property of F
∣∣sh
Open(X)

induces a map F
∣∣sh
Open(X)

→ f∗F
∣∣sh
Open(Y )

. This gives in particular

F ′(X) = F
∣∣sh
Open(X)

(X)→ f∗(F
∣∣sh
Open(Y )

)(X) = F
∣∣sh
OpenY

(Y ) = F ′(Y ).

A similar argument shows that these restriction maps are stable under composition, so F ′ is a presheaf.
To verify that F ′ is a sheaf, we note that for any presheafG on Open(X), we haveGsh(U) = (G

∣∣
U

)sh(U).

Indeed, the construction of the espace étalé is compatible with pullback. This implies that F ′
∣∣
Open(X)

=

F
∣∣sh
Open(X)

and in particular shows that F ′
∣∣
Open(X)

is a sheaf for each X ∈ Sch.

15.2 Open subfunctors

Exercise 15.6.Should be simple If ϕ : F → G is a natural transformation between presheaves and G′ ⊂ G
is a subpresheaf then define F ′(U) = ϕ−1G′(U) for all U . Show that F ′ is a subpresheaf of
F . We denote F ′ = ϕ−1G′.

ex:zariski-subsheafification Exercise 15.7.This exercise is a
special case of

Exercise 15.5, although
we’ll only have use for

this one right now.
The first part is not so

important to do, so
much as to know. The
second part might be

good practice.

Suppose that F is a sheaf and Gi, i ∈ I is a family of subsheaves of F . Let
G(X) =

⋃
i∈I Gi(X). Say that ξ ∈ F (X) lies locally in G if there is an open cover X =

⋃
Uj

such that for each j, the restriction ξ
∣∣
Uj

lies in G(Uj).

(i) Show that G is not necessarily a sheaf.

ex:zariski-subsheafification:2 (ii) Show that there is a smallest subsheaf G′ of F that contains all of the Gi. (Hint: Let
G′(X) be the set of all ξ ∈ F (X) that lie locally in G.)

(iii) Suppose that F = hX is representable. Show that G′ = F if and only if idX lies locally
in G. (Hint: hX is the only subpresheaf of itself containing idX .)
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The sheaf constructed in part (ii) is called the sheaf theoretic union or the sheaf union of
the Gi.

Definition 15.8. Suppose that F is a presheaf on the category of schemes and F ′ ⊂ F
is a subpresheaf. We say that F ′ is open in F if, for any map ϕ : hX → F , the preimage
ϕ−1F ′ ⊂ hX is representable by an open subscheme of X.

A collection of open subfunctors F ′i ⊂ F is said to cover F if F is the sheaf theoretic
union of the F ′i .

ex:zariski-cover Exercise 15.9.This might be a good
exercise to do. It will

force you to unpack
some of the definitions.

You don’t necessarily
have to prove all of the

equivalences.

Let F be a presheaf on Sch and F ′i ⊂ F open subpresheaves. Prove that
the following conditions are equivalent:

ex:zariski-cover:1 (i) F is the sheaf union of the F ′i .

ex:zariski-cover:2 (ii) hX is the sheaf union of the ϕ−1F ′i for all ϕ ∈ F (X) = Hom(hX , F ).

ex:zariski-cover:4 (iii) For any scheme X and any ϕ ∈ F (X) = Hom(hX , F ) let Ui ⊂ X be open subschemes
such that ϕ−1F ′i = hUi . Then X =

⋃
Ui.

ex:zariski-cover:3 (iv) F (k) =
⋃
i F
′
i (k) for all fields k.

Solution. (i) =⇒ (ii). We have f ∈ hX(Y ). Then ϕ(f) ∈ F (Y ). This lies locally in⋃
F ′i (Y ) because F is the sheaf union of the F ′i . Thus f lies locally in ϕ−1F ′i (Y ).
(ii) =⇒ (i). Suppose ϕ ∈ F (X). Then ϕ lies locally in F ′i if and only if idX lies locally

in ϕ−1F ′i . But idX lies locally in ϕ−1F ′i if and only if hX is the sheaf union of the ϕ−1F ′i .
(ii) =⇒ (iii). Condition (ii) implies that idX lies locally in

⋃
hUi(X). That is, there is

an open cover by Vj such that each idX
∣∣
Vj
∈ hUi(Vj) for some j. In particular, Vj ⊂ Ui, so

the Ui cover X.
(iii) =⇒ (iv). Apply (iii) when X = Spec k and k is a field. Then

⋃
Ui = Spec k, which

means that at least one Ui = Spec k, since Spec k is a point. If ϕ ∈ F (k) = Hom(Spec k, F )
then idSpec k ∈

⋃
i ϕ
−1F ′i (k) so ϕ = ϕ(idSpec k) ∈

⋃
i F
′
i (k). Thus

⋃
i F
′
i (k) = F (k).

(iii) =⇒ (ii). Suppose that X =
⋃
Ui with hUi = ϕ−1F ′i . Then idX

∣∣
Ui
∈ hUi(Ui) =

ϕ−1F ′i (Ui) so idX lies locally in
⋃
ϕ−1F ′i .

(iv) =⇒ (iii). Pick ξ ∈ X. Then we get ι ∈ Spec k(ξ) → X. Choose i such that
ϕ ◦ ι ∈ F ′i (k). Then ι ∈ ϕ−1F ′i (k) = hUi(k(ξ)) so ξ ∈ Ui.

Exercise 15.10.Reality check.
Shouldn’t be difficult.

Show that every scheme has an open cover by subfunctors that are rep-
resentable by affine schemes.

Lemma 15.11 ([Vak14, Exercise 9.1.I]). If F is a Zariski sheaf on schemes that has an
open cover by affine schemes then F is representable by a scheme.

Proof. First we assemble the underlying set of the topological space. Let |F | be the set of
isomorphism classes of injections of functors hSpec k → F , with k restricted to be a field.
If F ′ ⊂ F is an open subfunctor then declare that |F ′| ⊂ |F | is open. We verify this is a
topology.

It is sufficient to show that for any map hX → F , the preimages of the open subfunctors
of F in |hX | = X are closed under unions, intersections, and contain ∅ and X. But by
definition, a subfunctor of F is open if and only if its preimage in hX is representable by
open subschemes, which are in one to one correspondence with the open subsets of X.

This gives the topological space. Now we find the sheaf of rings. Note that the open
subfunctors of F are in bijection with the open subsets of |F |. Indeed, suppose F ′ and F ′′
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induce the same open subset |F ′| = |F ′′|. Then consider hX → F . The preimages of F ′ and
F ′′ induce the same open subset of X = |hX |. So F ′×F hX and F ′′×F hX are representable
by the same open subscheme (because an open subscheme of a scheme is determined by its
underlying subset). But this means that F ′(X) = F ′′(X) for any scheme X.2

For any open subfunctor F ′ ⊂ F , define OX(F ′) = Hom(F ′, hA1). This is a presheaf of
rings because A1 is representable by a ring. Furthermore, it is a Zariski sheaf because it is
representable by a scheme!

Thus (X,OX) is a ringed space. It just remains to find an open cover by affine schemes.
But by assumption, F has a cover by open affine subfunctors F ′. By definition, |F ′| ⊂ |F |
is an open subset, and if we write (X ′,OX′) for the ringed space associated to F ′, then
restricting OX to X ′ recovers OX′ . Now note that for any open affine subfunctor hSpecA ⊂
F ′ we have OX′(|SpecA|) = Hom(SpecA,A1) = A, so that OX′ coincides with OSpecA, as
desired.

Finally, we must check that (X,OX) represents F . First we get a map hX → F using
the fact that F is a sheaf. (Whenver U ⊂ X is an open affine, we get a corresponding open
subfunctor F ′ ⊂ F and an identification F ′ ' hU . These identifications are compatible
with restriction, so by the sheaf condition, we get an element of F (X), hence hX → F by
Yoneda.) The rest of the proof is basically to observe that since F and hX agree locally and
are both sheaves, they must be isomorphic.

15.3 The basis of affines

Since every scheme has an open cover by affine schemes, the full subcategory Aff ⊂ Sch
behaves a lot like a basis, at least with respect to Zariski sheaves:

Exercise 15.12. Show that a Zariski sheaf on Aff extends in a unique way (up to unique
isomorphism) to a Zariski sheaf on Sch.

Using this we can get another perspective on what a scheme is.

Definition 15.13. Let A be a commutative ring and let hA : ComRng → Sets be the
functor represented by A. For any subset J ⊂ A, let hD(J) be the subfunctor of hA defined
as follows:

hD(J)(B) = {ϕ : A→ B
∣∣ ϕ(J)B = B}.

A subfunctor of hA is called open if it is isomorphic to hD(J) for some subset J ⊂ A.

Warning: hD(J) usually is not representable by a commutative ring!

Exercise 15.14. Show that if hA is regarded as a contravariant functor Aff → Sets then
hD(J) is represented by the subscheme D(J) ⊂ SpecA, whence the notation.

Exercise 15.15.Not really important

(i) Show that the intersection of two open subfunctors is an open subfunctor.

(ii) Show that the union of two open subfunctors is not necessarily an open subfunctor.

Exercise 15.16. Suppose that F ⊂ G is an inclusion of Zariski sheaves and F has an
open cover by subfunctors that are also open subfunctors of G. Prove that F is an open
subfunctor of G.

2If g ∈ F (X) then g ∈ F ′(X) if and only if idX ∈ (F ′ ×F hX)(X) = (F ′′ ×F hX)(X) if and only if
g ∈ F ′′(X).
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Definition 15.17. A morphism F → G of presheaves on Aff is said to be an open embedding
if, for every morphism ϕ : hA → G, the preimage ϕ−1F ⊂ hA is an open subfunctor.

Definition 15.18. A morphism F → G of presheaves is said to be a cover (with respect
to schematic points) if F (k)→ G(k) is a bijection for all fields k.

Definition 15.19 (Alternate definition of a scheme). A presheaf F on Aff is called a
scheme if it is a Zariski sheaf and has a cover by open, representable subfunctors.

Exercise 15.20. Show that the two definitions of schemes (via ringed spaces and via
presheaves) yield equivalent categories.

15.4 Fiber products

Reading 15.21. [Vak14, §§9.1–9.3]

Suppose that p : X → Z and q : Y → Z are morphisms of schemes. Define F =
hX ×hZ hY . That is,

F (W ) = {(f, g) ∈ Hom(W,X)×Hom(W,Y )
∣∣ pf = qg ∈ Hom(W,Z)}.

Exercise 15.22. Prove that F is a Zariski sheaf.

Exercise 15.23. If X = SpecB, Y = SpecC, and Z = SpecA then F ' hSpec(B⊗AC).

Exercise 15.24. Show that F has an open cover by functors representable by affine schemes.
(Hint: For any point ξ ∈ F (k), choose open affine neighborhoods U ⊂ X, V ⊂ Y , and
W ⊂ Z containing the images of ξ, with p(U) ⊂ W and q(V ) ⊂ W . Let f : F → hX and
g : F → hY denote the projections. Show that f−1hU ∩ g−1hV is open in F and affine.)

Fibers

Suppose that p : X → S is a morphism of schemes. The fiber of p over a point ξ ∈ S is the
fiber product X ×S Spec k(ξ).

Equalizers and the diagonal

Exercise 15.25.Important! Suppose that f, g : X → Y are two morphisms of schemes. Show that
there is a universal map h : Z → X such that fh = gh. This is called the equalizer of f and
g and is sometimes denoted eq(f, g). (Hint: One way to do this is to construct a sheaf and
find an open cover by representable functors. Another way is to build the equalizer using
fiber products. It’s valuable to think about it both ways, but the second is more common
in the algebraic geometry literature.)

15.5 Examples

Exercise 15.26. For any scheme (or locally ringed space) X, let Gm(X) = Γ(X,OX)∗.

(i) Show directly that Gm is a Zariski sheaf.

(ii) Show that Gm is in fact representable by an affine scheme.
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Exercise 15.27. For any scheme (or locally ringed space)X, let GLn(X) = GLn(Γ(X,OX))
be the set of n× n matrices with coefficients in Γ(X,OX).

(i) Show directly that GLn is a Zariski sheaf.

(ii) Show that GLn is in fact representable by an affine scheme.

Exercise 15.28. Let X = SpecA be an affine scheme and let I ⊂ A be an ideal. For each
locally ringed space Y , let U(Y ) be the set of morphisms of locally ringed spaces f : Y → X
such that the ideal of OY generated by f−1I is all of OY .

(i) Prove directly that U is a Zariski sheaf.

(ii) Show that U is representable by the open subscheme D(I).

Exercise 15.29. What scheme represents the functor that sends a scheme (or locally ringed
space) X to Γ(X,OX)?

16 Vector bundles

Contrary to what we’ve come to expect, the definition of a vector bundle in algebraic
geometry in exactly the same way as in differential geometry or topology. We will give this
definition, as well as two others, one aligned philosophically with thinking of schemes as
locally ringed spaces, and the other aligned with thinking in terms of the functor of points.

16.1 Transition functions

In differential geometry, a vector bundle over a manifold S is usually defined as a projection
p : E → S along with

(i) a cover U of S along with specified isomorphisms p−1U ' U × V over U for each
U ∈ U , where V is a vector space, possibly depending on U , such that

(ii) if U1 and U2 are two open sets in U , the transition function

(U1 ∩ U2)× V1
∼−→ p−1(U1 ∩ U2)

∼−→ (U1 ∩ U2)× V2

is a family of linear isomorphisms.

It is important to unpack the meaning of a ‘family of linear isomorphisms’. For man-
ifolds, this means that the map is of the form (x, y) 7→ (x, F (x)y) where F : U1 ∩ U2 →
HomVect(V1, V2) is a C∞ function. In other words, a family of linear maps from Rn to Rm

over U is a m× n matrix of C∞ functions on U whose determinant takes values in R∗.
This definition makes sense when S is a scheme. We just need to say explicitly what we

mean by a ‘vector space’ and a ‘family of linear maps’. By a vector space, we will simply
mean Ar. A family of linear maps U × Ar → U × As is a morphism that is given in
coordinates on each SpecA in an affine open cover of U in the form

A[t1, . . . , ts]→ A[t1, . . . , tr]

ti 7→ tiM

for some M ∈ Mats×r(A).
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Definition 16.1 (Vector bundle, version 1). Let S be a scheme. A vector bundle over S is
a projection p : E → S, along with

(i) a cover U of S by open subschemes and, for each U ∈ U , an isomorphism p−1E '
U × V over U for each U ∈ U , where V is some affine space Ar, such that

(ii) if U1 and U2 are two open sets in U , the transition function

(U1 ∩ U2)× V1
∼−→ p−1(U1 ∩ U2)

∼−→ (U1 ∩ U2)× V2

is a family of linear maps over U1 ∩ U2.

16.2 Locally free sheaves

Reading 16.2. [Vak14, Section 13.1]

def:locally-free-sheaf Definition 16.3 (Locally free sheaf). Let S be a scheme. A sheaf of OS-modules is a sheaf
E , along with the structure of a OS(U)-module on E (U) for each open U ⊂ S, such that
the restriction maps are equivariant in the sense illustrated below:

OS(U) // OS(V )

E (U) //
��

E (V )
��

A locally free sheaf over S is a sheaf of OS-modules E such that E is locally isomorphic to
O⊕nS for some n. If E is locally isomorphic to O⊕nS then E is said to be locally free of rank
n. Locally free sheaves of rank 1 are also called invertible sheaves.

In other words, E is locally free if there is a cover of S by open subsets U such that
E
∣∣
U
' O⊕nU as a sheaf of OU -modules. Note that the number n does not have to be the

same for every open subset in the cover.

Definition 16.4 (Vector bundle, version 2). A vector bundle over a locally ringed space S
is a locally free sheaf on S.

16.3 Vector space schemes

Exercise 16.5. Show that, for any locally ringed space X, the set HomLRS(X,A1) has the
structure of a commutative ring, and for any morphism of schemes X → Y , the induced
map

HomSch(Y,A1)→ HomSch(X,A1)

is a ring homomorphism. Interpret this by saying A1 is a commutative ring scheme. (Hint:
Hom(X,A1) = Γ(X,OX).)

Definition 16.6. An scheme of A1-modules3 over a scheme S is an S-scheme E and the
structure of a HomSch/S(T,A1)-module on HomSch/S(T,E) for every S-scheme T , such
that for every morphism of S-schemes f : U → T , the function

HomSch/S(T,E)→ HomSch/S(U,E)

3There doesn’t seem to be standard terminology for this object.
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is a homomorphism, in the sense that for all x ∈ HomSch/S(T,E) and all λ ∈ Hom(T,A1),
we have

f∗(λx) = f∗(λ)f∗(x).

A morphism of schemes of A1-modules over S is a morphism of S-schemes E → F such
that for any S-scheme T , the map

E(T )→ F (T )

is an A1(T )-module homomorphism.

Exercise 16.7.This exercise is a
special case of the next

one. Do you see how?

Show that there is a natural structure of a scheme of A1-modules over S
on S ×An for any n. (Hint: Show that HomSch/S(T, S ×An) = Γ(T,OnT ).) We write An

S

for this scheme of A1-modules.

Exercise 16.8. Suppose that E is a A1-module over S and T → S is a morphism of
schemes. Put an A1-module structure on T ×S E in a natural way.

When T ⊂ S is an open subscheme, we write E
∣∣
T

for the construction from the previous
exercise.

Definition 16.9 (Vector bundle, version 3). A vector bundle over S is a A1-module E such
that there is an open cover of S by schemes T with E

∣∣
T
' T ×An for some n. A morphism

of vector bundles is a morphism of schemes of A1-modules.

16.4 Comparing the definitions

All of the definitions we have given so far are equivalent. It is easiest to see that the definition
in terms of local charts is equivalent to the definition in terms of A1-modules.

Exercise 16.10. Show that a vector bundle in the sense of the first definition can be
equipped with a unique A1-module structure that restricts to the standard A1-module
structure on each chart. Conversely, show that each A1-vector space scheme has local
charts by A1-modules.

The symmetric algebra

Exercise 16.11. (i) Let A be a commutative ring. Show that the forgetful functor from
A-algebras to A-modules has a left adjoint. In other words, suppose that M is an
A-module and let F : A-Alg → Sets be the functor sending an A-algebra B to
HomA-Mod(M,B). You have to show that this functor is representable. We denote
this A-algebra A[M ] or SymM .

(ii) Now promote the previous part to sheaves. Let OX be a sheaf of rings on a topological
space X and show that the forgetful functor from sheaves of OX -algebras to sheaves
of OX -modules has a left adjoint. (Hint: construct the adjoint on presheaves first and
then sheafify.)

(iii) Finally, suppose that X is a scheme and that M is a quasicoherent OX -module. Prove
that OX [M ] is a quasicoherent OX -algebra. (In fact, X only needs to be a locally
ringed space for this problem.)



17. GROUP SCHEMES 95

Suppose that E is a sheaf of OS-modules on a locally ringed space S. For any S-scheme
f : T → S, write E

∣∣
T

= f∗E , where

f∗E = f−1E ⊗f−1OS OT .

We obtain a functor on S-schemes:

E(T ) = HomOT -Mod(ET ,OT )

Exercise 16.12. Show that the functor E defined above is representable by SpecS Sym E .

Exercise 16.13. Show that, for every S-scheme T , the set E(T ) is naturally equipped
with the structure of a Γ(T,OT )-module, and that this makes SpecS Sym E into a scheme
of A1-modules.

The space of sections

Suppose again that E is a locally free sheaf on a locally ringed space S. Define a functor on
S-schemes:

F (T ) = Γ(T,ET )

Exercise 16.14. Show that the functor F is representable by a locally ringed space, and
that this locally ringed space is a scheme if S is a scheme. (Hint: Apply the construction
from the previous section to the dual locally free sheaf.)

17 Group schemes

Definition 17.1. A group scheme is a scheme G, equipped with the structure of a group
on G(S) for every scheme S, such that G(S) → G(T ) is a group homomorphism whenever
T → S is a morphism of schemes.

Exercise 17.2. Show that, if π : G→ S is a group scheme over S, then G is equipped with
a multiplication law, m : G ×S G → G over S, an inversion map i : G → G over S, and a
identity section e : S → S satisfying the following properties:

(i) m ◦ (idG, eπ) = m ◦ (eπ, idG) = idG : G→ G;

(ii) m ◦ (idG, i) = eπ and m ◦ (i, idG) = eπ : G→ G;

(iii) m ◦ (idG ×m) = m ◦ (m× idG) : G×G×G→ G.

Exercise 17.3. Define Gm(S) = Γ(S,O∗S). Show that Gm is representable by the scheme
A1 r {0} = Spec Z[t, t−1]. This is called the multiplicative group.

Exercise 17.4. Define Ga(S) = Γ(S,OS), viewed as a group under addition. Show that
Ga is representable by the scheme A1. This is called the additive group.

Exercise 17.5. Define GLn(S) = GL
(
n,Γ(S,OS)

)
. Prove that GLn is representable by

an affine scheme.

Exercise 17.6. Let u : G→ H be a homomorphism of group schemes. Show that there is
a group scheme ker(u) such that keru(S) = ker(G(S)→ H(S)).
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17.1 Affine group schemes and Hopf algebras

Exercise 17.7. (i) Show that the structure of a group scheme on SpecA induces a ho-
momorphisms of commutative rings:

(a) (comultiplication) ∆ : A→ A⊗A
(b) (antipode) ι : A→ A

(c) (counit) ε : A→ Z

corresponding to multiplication, inversion, and the identity element. (Note that ε can
also be viewed as a map from A into every commutative ring B.)

(ii) Translate the axioms of a group into identities satisfies by these maps. This structure
is called a Hopf algebra.

Exercise 17.8. Describe the Hopf algebra structure on Z[t, t−1] corresponding to the group
structure on Gm.

Exercise 17.9. Describe the Hopf algebra structure on Z[t] corresponding to Ga.

Exercise 17.10. Describe the Hopf algebra structure corresponding to GLn.

17.2 Representations of the multiplicative group

Reading 17.11. [Vak14, §6.6]

Definition 17.12. An action of a group scheme G on a scheme X is a morphism G×X → X
such that G(S)×X(S)→ X(S) is an action of G(S) on X(S) for all schemes S.

Exercise 17.13. Show that an action of Gm on an affine scheme X = SpecA corresponds
to a grading of A by Z.

Solution. On the level of rings, we get a map µ∗ : A→ A[t, t−1]. Define An to be the set of
all f ∈ A such that µ∗(f) = ftn. For any f ∈ A, we can write

µ∗(f) =
∑

fnt
n.

Because µ is a group action, we have

(µ∗ ⊗ id) ◦ µ∗(f) = (µ∗ ⊗ id)
∑

fnt
n =

∑
µ∗(fn)tn

(id⊗ µ∗) ◦ µ∗(f) = (id⊗ µ∗)
∑

fnt
n =

∑
fnµ

∗(t)n.

Now, µ∗(t) = st so we deduce that each component fn is homogeneous of degree n (i.e.,
µ∗(fn) = fnt

n). Furthermore A =
∑
An and the sum is direct. To see that multiplication

respects the grading, suppose that f has degree n and g has degree m. Then

µ∗(fg) = µ∗(f)µ∗(g) = ftngtm = fgtn+m

so fg has graded degree n+m.
Conversely, if A is graded, define µ∗(f) =

∑
fnt

n where fn are the graded pieces of f .
This immediately yields an action.
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18 Projective space

18.1 The projective line

We will define two functors P 1 and Q1 and show that they are isomrphic to one another,
and that they are represented by the scheme P1.

For any scheme S, let P 1(S) be the set of triples (L, s, t) where L is a rank 1 vector
bundle on S and s, t : L→ A1

S are linear maps such that

(s, t) : L→ A2
S

is injective. Injectivity here means that L(T )→ A2
S(T ) is injective for all S-schemes T .

Let Q1(S) be the set of isomorphism classes of triples (L , x, y) where L is an invertible
sheaf on S (Definition 16.3) and x, y ∈ Γ(S,L ) are generators of L . This means that if
z ∈ Γ(U,L ) then there is a cover of U by open subsets V such that z

∣∣
V

= ax
∣∣
V

+ by
∣∣
V

for some a, b ∈ Γ(V,OS). In other words, L is the smallest OS-submodule of itself that
contains both x and y. We say that (L , x, y) is isomorphic to (L ′, x′, y′) if there is an
isomorphism of OS-modules ϕ : L ' L ′ such that ϕ(x) = x′ and ϕ(y) = y′.

Exercise 18.1. Describe restriction maps making P 1 and Q1 into functors.

ex:p1-isom-q1 Exercise 18.2. Prove that P 1 and Q1 are isomorphic functors. (Hint: show that a map
of vector bundles E → F is injective if and only if the corresponding map of locally free
sheaves F → E is surjective.)

Solution. First we prove the claim suggested in the hint. Suppose that s ∈ S. The map
E(s)→ F (s) is injective by hypothesis. This map may be identified with the map

Hom(Es,k(s))→ Hom(Fs,k(s))

which is therefore an injective homomorphism of k(s)-vector spaces. Therefore the dual
map

k(s)⊗Os Fs → k(s)⊗Os Es

is a surjection of k(s)-vector spaces. As Es is a finitely generated OS,s-module, Nakayama’s
lemma implies that

Fs → Es

is surjective. But now pick an open U containing S where E
∣∣
U
' O⊕nU . The n generators of

O⊕nU each lift to F in some open neighborhood of s, so, by taking the intersection of these
neighborhoods, we find an open neighborhood V of s such that F

∣∣
V
→ E

∣∣
V

is surjective.
This is valid in a neighborhood of every point, so F → E is surjective as required.

Conversely, if F → E is surjective then, for any u : T → S, the map

E(T ) = HomOS-Mod(E , u∗OT )→ HomOS-Mod(F , u∗OT ) = F (T )

is injective.
Now, we can identify Q1(T ) with the set of all pairs (L , p) where L is an invertible sheaf

on T and p : O⊕2
T → L is a surjective homomorphism. Then, by the hint, this corresponds

to an injection of locally free sheaves L→ A2
T , as required.

Exercise 18.3. Prove that P 1 and Q1 are Zariski sheaves. (Hint: In view of Exercise 18.2,
you only have to show one is a Zariski sheaf.)
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Exercise 18.4. Let U ⊂ Q1 be the subfunctor consisting of all triples (L , x, y) such that
x generates L .

(i) Show that the corresponding subfunctor V ⊂ P 1 consists of all triples (L, s, t) such
that s : L→ A1 is an isomorphism.

(ii) Prove that U ' A1. (Hint: On U , multiplication by x gives an isomorphism O → L .)

Solution. Since x generates L , the map OU → L is an isomorphism. Then yx−1

is an OU -module map OU → OU , hence is multiplication by some global section of
OU . This gives a map U(S) → Γ(S,OS) = A1(S). The inverse sends t ∈ A1(S) =
HomOS-Mod(OS ,OS) to (OS , 1, t) ∈ U(S).

(iii) Show that U is an open subfunctor of Q1.

Solution. To prove that U is open in Q1, we need to show that for any ϕ : S → Q1,
the sufunctor ϕ−1U ⊂ S is representable by an open subscheme. In fact, since U is a
Zariski sheaf, it is sufficient to replace S with an open cover. We can therefore assume
S = SpecA. The map ϕ : SpecA→ Q1 corresponds to an invertible A-module L and
A-module generators x and y.

Choose f1, . . . , fn ∈ A, generating A as an ideal, such that Lfi ' Afi for all i. We
argue that ϕ−1U ∩ D(fi) ⊂ D(fi) is representable by an open subset. Choose an
isomorphism ui : Lfi ' Afi . Then (ϕ−1U ∩ D(fi))(B) is the set of homomorphisms
g : A → B such that g(fi) ∈ B∗ and Bx = B ⊗A L. But B ⊗A ui is an isomorphism
B⊗AL ' B⊗AA = B so this is the same as g(fi) ∈ B∗ and Bg(ui(x)) = B. In other
words, the condition is that g(fi) ∈ B∗ and g(ui(x)) ∈ B∗. Thus

ϕ−1U ∩D(fi) = DD(fi)(ui(x)),

which is open in D(fi).

(iv) Prove that Q1 is a scheme. (Hint: Let U0 be the set of triples (L , x, y) such that x
generates L and let U1 be the set of triples (L , x, y) such that y generates L .)

Solution. We have to show U0 and U1 cover Q1. Suppose we have (L , x, y) ∈ Q1(k)

for some field k. Then L = L̃ for some 1-dimensional k-vector space L. Choose an
isomorphism u : L ' k. Then u(x) and u(y) generate k as a vector space. Thus
either u(x) 6= 0 or u(y) 6= 0. In the former case, we have ϕ ∈ U0(k) and in the latter
ϕ ∈ U1(k).

Exercise 18.5. Prove that Q1 ' P1. (Hint: What is the intersection of U0 and U1?
Suggestion: Use symbols U0 and U1 for the standard charts of P1 from Section 1.1.)

18.2 Projective space

For any scheme T , define Pn(T ) to be the set of injections of vector bundles L → An+1
T ,

where L is a line bundle over T .
Define Qn(T ) to be the set of surjections of OT -modules On+1

T → L where L is locally
free of rank 1.
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Exercise 18.6. Prove that Pn is isomorphic to Qn for all n. (Hint: What you need to show
here is that if L→ An+1

T corresponds to On+1
T → L then the former is a closed embedding

if and only if the latter is a surjection. It’s enough to prove this locally in T , so you can
assume L = A1

T and L = OT .)

Solution. We have a contravariant equivalence between vector bundles (viewed as A1-
modules) and locally free OS-modules under which On+1

T corresponds to An+1
T . Therefore

a map of vector bundles
L→ An+1

T

in which L has rank 1 corresponds to a morphism of locally free modules

On+1
T → L

in which L has rank 1. What we need to check is that L→ An+1
T is a closed embedding if

and only if On+1
T → L is surjective.

We can verify that a morphism of schemes is a closed embedding locally. Therefore we can
assume T = SpecA is affine L = A1

T = SpecA[t] and L = OT . The map L = A1
T → An+1

T

corresponds to a linear map A-algebras ϕ : A[u0, . . . , un] → A[t] sending each ui to a
multiple of t. In other words, it is a vector (ξ0, . . . , ξn) ∈ A. This vector is precisely the
matrix of the map p : On+1

T → OT = L . Note that ϕ is surjective if and only if p is and ϕ
is surjective if and only if L→ An+1

T is a closed embedding.

Do one of the following two exercises. They are two perspectives on the same thing:

Exercise 18.7. Show that Pn is a scheme:

(i) Show that Pn is a Zariski sheaf.

(ii) For each i = 0, . . . , n, let Ui be the subfunctor of Qn consisting of those linear closed
embeddings f : L→ An+1

T such that if pi : An+1
T → A1

T is the i-th projection the map
f ◦ i is an isomorphism. Show that Ui ' An.

Solution. If pi ◦f is an isomorphism then f ◦(pif)−1 : A1
T → An+1

T can be represented
as (x0, . . . , xn) ∈ Γ(T,OT )n+1 with xj = pjf(fpi)

−1(1). But then xi = 1 so by
omitting xi we have (x0, . . . , x̂i, . . . , xn) ∈ Γ(T,OT )n ' Hom(T,An). This gives a
map Ui → An.

To reverse it, suppose (x0, . . . , x̂i, . . . , xn) ∈ An(T ). Then set xi = 1 define A1
T →

An+1
T by f(λ) = (λx0, . . . , λxn). This is an element of Ui(T ). (Note that pif(λ) = λ

is obviously invertible.)

(iii) Show that each Ui is representable by An.

(iv) Show that the Ui cover Qn.

Solution. We have to show that if On+1
T → L is a schematic point of Pn then it lies

in Ui for some i. But to be a schematic point means that T = Spec k for a field k.
We can therefore identify On+1

T = kn+1 and L ' k (since all locally free sheaves on a
point are free). The map is represented by (x0, . . . , xn) ∈ kn+1 and to be surjective,
at least one xi must be nonzero, which means that the point lies in Ui(T ).
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Exercise 18.8. Show that Qn is a scheme:

(i) Show that Qn is a Zariski sheaf.

(ii) For each i = 0, . . . , n, let Ui be the subfunctor of Qn consisting of those surjections
On+1
T → L such that OT ei surjects onto L . Show that Ui is an open subfunctor of

Qn.

Solution. We get to fix T and the map On+1
T → L . The preimage of Ui is the set Vi

consisting of all points ξ ∈ T where OT ei → L is surjective. To prove that Vi is open,
it is sufficient to show Vi ∩W ⊂ W is open for all W in an open cover of T . We can
therefore assume that L ' OT .

Under this isomorphism, the mapOT ei → L ' OT corresponds to an element f ∈ OT .
Then Vi = D(f) is open.

(iii) Show that each Ui is representable by An.

(iv) Show that the Ui cover Qn.

Solution. We have to show that if On+1
T → L is a schematic point of Pn then it lies

in Ui for some i. But to be a schematic point means that T = Spec k for a field k.
We can therefore identify On+1

T = kn+1 and L ' k (since all locally free sheaves on a
point are free). The map is represented by (x0, . . . , xn) ∈ kn+1 and to be surjective,
at least one xi must be nonzero, which means that the point lies in Ui(T ).

Exercise 18.9. Prove that Pn ' Pn or Pn ' Qn.

18.3 The tautological line bundle

If S is a scheme then a map S → Pn corresponds to a linear embedding of a line bundle
L ⊂ An+1

S or to a surjection On+1
S → L onto an invertible sheaf. In particlar, the identity

map Pn → Pn gives

L ⊂ An+1
Pn

On+1
Pn → L .

The quotient L is usually denoted OPn(1) and is called the tautological (quotient) sheaf.
The subbundle L is called the tautological line (sub)bundle and is sometimes denoted
OPn(−1) by people who are sloppy about the distinction between quasicoherent sheaves
and schemes of modules.

Exercise 18.10. Suppose that f : S → Pn corresponds to (L , ξ0, . . . , ξn). Show that
f∗OPn(1) = L in a canonical way.

Exercise 18.11. Show that OPn(1) is not isomorphic to OPn . (Hint: Let A be a commuta-
tive ring, like Z[

√
−5], that is not a principal ideal domain and let I be a nonprincipal ideal

with 2 generators. Use these to construct a map f : SpecA→ Pn and show that f∗OPn(1)
is not isomorphic to OSpecA.)
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18.4 The Grassmannian

Fix a non-negative integer r and regard Ar as a vector space. That is, remember that we
can use functions in Γ(S,OS) = HomSch(S,A1) to act on HomSch(S,Ar). Define a functor

G : Sch◦ → Sets

by taking G(S) to be the set of closed vector bundle subschemes W ⊂ Ar × S.

Exercise 18.12. Show that G is the disjoint union of open subfunctors
∐r
k=0Gk where Gk

parameterizes closed vector bundle subschemes W ⊂ Ar × S of rank k.

Exercise 18.13.Correction: O⊕kS was

supposed to be O⊕rS .
Thanks to John Willis.

Show that Gk is isomorphic to the functor Qk : Sch◦ → Sets where

Qk(S) is the set of isomorphism classes of surjections O⊕rS → W , with W being a locally
free sheaf of OS-modules of rank k.

Exercise 18.14. Show that the functors Qk are representable by schemes. (Hint: Use the
fact that you can glue vector bundles and homomorphisms of vector bundles to prove that
Qk is a Zariski sheaf. To get an open cover observe that at each point of Qk there is some
k-element subset I ⊂ {1, . . . , r} such that O⊕IS → W is surjective. Let UI ⊂ Gk be the
subfunctor parameterizing surjections O⊕rS → W such that O⊕IS → W is surjective. Show
that UI is an open subfunctor of Gk and that UI is representable by Ak×(r−k).)

The scheme representing Gk is denoted Grass(k, r) and called the Grassmannian.

Exercise 18.15. Define a functor on S-schemes parameterizing closed linear subschemes of a vector bundle
V over S. Show that this is representable by an S-scheme. (Hint: After defining the functor and showing
it is a sheaf, reduce to the case considered above by passing to an cover of S by open subsets U such that
V
∣∣
U
' U ×Ar.)

19 The homogeneous spectrum and projective schemes

Reading 19.1. [Vak14, §4.5], [Har77, §I.2; §II.2, pp. 76–77]

19.1 Some geometric intuition

The exercises in this section are not required (and may not even be well-posed). The idea
here is to get an idea of where the construction in the next section comes from. We will see
how to make all of these ideas precise later when we talk about algebraic groups.

We limit attention to schemes over C. Recall that CPn is the quotient of Cn+1 r {0}
by C∗.

Note that C∗ acts on Cn+1 by scaling the coordinates. How does this translate geo-
metrically? If f is a function on Cn+1 and λ ∈ C∗ then we get a (right) action of C∗ on
f by defining f.λ(x) = f(λx). Note that this definition is a bit sloppy because a function
on a scheme is not always determined by its values. In this case this turns out to be okay,
since functions are determined by their values on Spec C[x0, . . . , xn], but we will have to
wait until later to see how to make this construction make sense more generally.

In other words, C∗ acts on the ring C[x0, . . . , xn]. Now, the actions of C∗ are well-
understood. Any time C∗ acts algebraically on a complex vector space V , we can decompose
that vector space as a direct sum

V =
∑
d∈Z

Vd
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where λ ∈ C∗ acts on v ∈ Vd by λ.v = λdv.

Exercise 19.2.Correction! Thanks to
Jon Lamar for noticing

that the previous
version of this exercise

was incorrect.

Prove that every algebraic representation of C∗ can be written as a direct
sum as above. (Hint: Use the fact that commuting diagonalizable endomorphisms of a
vector space can be diagonalized simultaneously and that C∗ contains lots of roots of unity.
Then show the only linear algebraic actions of C∗ on C are by λ.x = λdx for some d ∈ Z.)

Thus there is a grading on C[x0, . . . , xn].

Exercise 19.3. Verify that this is the usual grading by degree.

Thus, at least morally speaking, graded C-algebras correspond to affine schemes over C
with an action of C∗.

We want to take the quotient of Cn+1 by this action. However, this has no hope of being
a reasonable geometric space because it wants to have a dense point with residue field C
corresponding to the orbit {0}. We only have a chance of getting something reasonable if
we delete the fixed point.

So we hope that P = (Cn+1 r {0})/C∗ will turn out to be a scheme. Let’s try to find a
reasonable open cover. The open subsets of P correspond to C∗-invariant open subsets of
Cn+1 r {0}.

Exercise 19.4. Show that D(f) ⊂ Cn+1 is C∗-invariant if and only if f is a homogeneous
polynomial or zero.

We write D+(f) ⊂ P for the open subset corresponding to D(f) ⊂ Cn+1 r {0}.
Now we figure out what OP (D+(f)) should be. A function on D+(f) should be a

function on D(f) that is invariant under the action of C∗. That is, we should have f.λ = f ,
which means precisely that f has graded degree zero. (Recall that f has graded degree d if
f.λ = λdf .) The functions of with this property are exactly the ones of graded degree zero.
Thus we get

OP (D+(f)) = C[x0, . . . , xn, f
−1]0.

How much of this can be generalized? What if we had any affine C-scheme at all with an
action of C∗. This corresponds to a graded ring S. We could imitate the above procedure,
but we have to delete the locus in SpecS that is fixed by C∗.

Exercise 19.5. Show that the fixed locus of C∗ acting on SpecS is V (S6=0).

Solution. Suppose that ξ ∈ SpecS is fixed and f is homogeneous of degree d 6= 0. Then
f(λ.ξ) = f(ξ) and f.λ(ξ) = λdf(ξ). The only way this is possible for all λ is if f(ξ) = 0.

Conversely, suppose that ξ ∈ V (S6=0). By the (prime) Nullstellensatz, to show that
λ.ξ = ξ it is equivalent to show that f(λ.ξ) = 0 if and only if f(ξ) = 0 for all f ∈ S.
Suppose that f(ξ) = 0. We can write f = g + h where g ∈ S0 and h ∈ S6=0. We get
f(λ.ξ) = f.λ(ξ) = g.λ(ξ) + h.λ(ξ). But g.λ(ξ) = g since deg g = 0 and h.λ(ξ) = 0 because
h.λ ∈ S6=0.

This shows that if f(ξ) = 0 then f(λ.ξ) = 0. For the reverse, replace ξ with λ.ξ and λ
with λ−1.

So the first step is to delete V (S6=0). We then attempt to take a quotient of D(S6=0) by
C∗. Again, the C∗-invariant open subsets are of the form D(f) where f is homogeneous,
and these correspond to open subsets D+(f) ⊂ P = D(S6=0)/C∗. We define OP (D+(f)) =
OSpecS(D(f))0.
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19.2 The homogeneous spectrum of a graded ring

Definition 19.6. A graded ring is a commutative ring S and a decomposition of the un-
derlying abelian group of S into a direct sum: S =

∑
n∈Z Sn such that SnSm ⊂ Sn+m for

all n,m ∈ Z. We write S<0 =
∑
n<0 Sn, S>0 =

∑
n>0 Sn, and S6=0 =

∑
n 6=0 Sn.4

An element of S is called homogeneous if it is contained in some Sn, in which case it is
said to have degree n. An ideal of S is called homogeneous if it is generated by homogeneous
elements. A homomorphism of Z-graded rings f : S → T is a homomorphism of rings such
that f(Sn) ⊂ Tn for all n ∈ Z.

The radical ideal generated by S6=0 is called the irrelevant ideal and is denoted S+.

Exercise 19.7. Show that if S contains a unit of non-zero degree then the irrelevant ideal
is S itself.

Solution. Say f is a unit of degree 6= 0. Then f ∈ S+ so 1 = f−1f ∈ S+.

Exercise 19.8. (i) Show that an ideal I ⊂ S is homogeneous if and only if I =
∑

(I∩Sn).

Solution.
∑

(I ∩ Sn) is precisely the submodule of I generated by the homogeneous
elements of I.

(ii) [Vak14, Exercise 4.5.C (a)] Show that I ⊂ S is a graded ideal if and only if it is the
kernel of a homomorphism of graded rings.

Solution. Consider the map S → S/I. If I is graded, define (S/I)n = Sn/In. Then

(S/I)n(S/I)m = SnSm/(InSm+SnIm) = SnSm/(In+m∩SnSm) ⊂ Sn+m/In+m = (S/I)n+m

so S/I is a graded ring.

Conversely, suppose f : S → T is a homomorphism of graded rings and let I be the
kernel. If f(

∑
d∈Z ad) = 0 (with deg ad = d) then

∑
f(ad) = 0 so f(ad) = 0 for all d

so every element of I is a sum of homogeneous elements.

(iii) [Vak14, Exercise 4.5.C (b)] Show that sums, products, intersections, and radicals of
homogeneous ideals are homogeneous ideals.

Solution.
∑

(I ∩ Sd) +
∑

(J ∩ Sd) is generated by the I ∩ Sd and J ∩ Sd.
The product of homogeneous elements is homogeneous.

The intersection of I and J is the kernel of S → (S/I)× (S/J).

The radical of I is the preimage of the nilradical ideal of S/I. Suppse a =
∑
ad and

an = 0. If d0 is the smallest value of d for which ad 6= 0 then and0 = 0. Thus ad0
is nilpotent. Reduce modulo ad0 . Then ad0+1 is nilpotent modulo ad0 by the same
argument. Thus akd0+1 = bad0 for some k, so ankd0+1 = 0. Proceed by induction.

(iv) [Vak14, Exercise 4.5.C (c)] Show that a homogeneous ideal is prime if and only if
ab ∈ I implies a ∈ I or b ∈ I for homogeneous elements of S.

4In most treatments, S is assumed to be non-negatively graded, i.e., S<0 = 0.
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Solution. Equivalent to S/I being an integral domain. Can assume that I = 0. If
ab = 0 then ad0be0 = 0. The condition implies ad0 = 0 or be0 = 0. Assume the former
and induct.

Definition 19.9 (The homogeneous spectrum). Let S be a graded ring. Define ProjS to
be the set of homogeneous prime ideals in S that do not contain the irrelevant ideal. This
is called the homogeneous spectrum of S. For any homogeneous ideal J ⊂ S we define
V+(J) ⊂ ProjS to be the set of homogeneous primes of S containing J and not containing
the irrelevant ideal. We define D+(J) to be the complement of V+(J) in ProjS.

Exercise 19.10 (The universal property of an open subset of the homogeneous spectrum). (i)
Suppose ϕ : S → T is a homomorphism of graded rings such that

√
ϕ(S+)T = T+.

Correction! Thanks to
Jon Lamar for noticing

two errors here: the
condition ϕ−1T+ = S+

in the first part and
the condition√

ϕ(J)T = T+ in the
second part were

incorrect.

Show that ϕ induces a continuous function ProjT → ProjS sending a homogeneous
ideal p of T to ϕ−1p.

(ii) Suppose that u : ProjT → ProjS is induced from a graded homomorphism ϕ : S → T
as in the first part. Show that u factors through D+(J) if and only if

√
ϕ(J)T ⊃ T+.

Solution. If p is a homogeneous prime of T then ϕ−1p contains J if and only if p ⊃
ϕ(J)T . This holds for all homogeneous primes p not containing T+ if and only if√
ϕ(J)T ⊃ T+. Thus u(ProjT ) ⊂ D+(J) if and only if

√
ϕ(J)T ⊃ T+.

Exercise 19.11. Suppose that S+ = S. Show that ProjS = SpecS0 as a topological
space. (Hint: If this is difficult, use the additional assumption that S contains an invertible
element of non-zero degree; this is the only case that we will use. It is possible to reduce the
general case to this one. The special case is essentially [Vak14, Exercise 4.5.E] or [Sta15,
Tag 00JO].)

Solution. (Adapted from [Sta15, Tag 00JO].)
First we construct a map. If P ⊂ S is a homogeneous prime then P ∩ S0 is a prime of

S0. We construct an inverse. Suppose that p ∈ SpecS0. Then we argue
√
pS is prime. Note

that
√
pS ∩ S0 =

√
pS ∩ S0 =

√
p = p since p is prime in S0, so once we show

√
pS is prime

it will follow that we have a one-sided inverse to ProjS → SpecS0.
It is equivalent to show that T = S/

√
pS is a domain.

First we reduce to the case where T contains an invertible element of nonzero degree.
Suppose x ∈ T and let J be the annihilator ideal of x. Let K be the annihilator of J .
Note that x ∈ K. Note that J is the annihilator of K: we have JK = 0 by definition (so
J ⊂ Ann(K)) and if zK = 0 then zx = 0 so Ann(K) ⊂ Ann(x) = J . We want to show that
either K = T or J = T . If J = T then x = 0 and if K = T then J = 0 so x is not a zero
divisor.

First suppose that K and J are comaximal. Then there is some y ∈ J and z ∈ K and
a, b ∈ T such that ay + bz = 1. Let e = ay and f = bz. Then e + f = 1 and ef = 0.
Thus e = e(e+ f) = e2 and f = f(e+ f) = f2 are idempotents. They must be elements of
T0 = S/p, which is a domain because p is prime. Thus we have either e = 0 or f = 0, which
implies f = 1 or e = 1. As e ∈ J and f ∈ K, this implies J = T or K = T .

Now we can assume J and K are not comaximal. We will arrive at a contradiction.
Since J and K are not comaximal, there is some maximal ideal m of T containing J + K.
Then m does not contain T+ since T+ = T so there is some f ∈ T r m of nonzero degree.
Consider T [f−1]. As JT [f−1] and KT [f−1] annihilate each other, the reduction implies
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we must have JT [f−1] = 0 or KT [f−1] = 0. Thus either f ∈
√

Ann(J) =
√
K ⊂ m or

f ∈
√

Ann(K) =
√
J ⊂ m. This contradicts the choice of f as an element of T rm.

It remains to prove the statement under the assumption that S contains an invertible
element of nonzero degree.

We assume S contains an invertible element f of nonzero degree. Suppose that ab = 0
in T . Then (ad/fdeg a)(bd/fdeg b) = 0. But both of these are elements of T0 = S0/p, so at
least one must be zero because p is prime. Say it is ad/fdeg a. Then a is nilpotent (since f
is a unit), so a = 0 because T is reduced (

√
pS is a radical ideal).

Thus
√
pS is prime and we have a well-defined map SpecS0 → ProjS. We have

√
pS ∩

S0 = p so the composition

SpecS0 → ProjS → SpecS0

is the identity. To see that the composition the other way is the identity, consider a homo-
geneous prime P ⊂ S. We want P =

√
(P ∩ S0)S.

We again reduce to the case where S contains an invertible element of nonzero degree
f . By assumption S+ = S so there are elements fi of nonzero degree such that we can
write 1 =

∑
aifi. Pick y ∈ P. By the reduction assumption y ∈

√
(P ∩ S0)SS[f−1

i ] for all

i. Therefore we can choose n such that fni y ∈
√

(P ∩ S0)S for all i. Choose ai such that∑
aif

n
i = 1. Then y =

∑
aif

n
i y ∈

√
(P ∩ S0)S, as desired.

It again sufficient to assume that S contains an invertible element f of non-zero degree
d. Let a ∈ P. Then ad/fdeg a ∈ P ∩ S0 so ad ∈ (P ∩ S0)S so a ∈

√
(P ∩ S0)S, as desired.

Finally, we check the continuity. Suppose g ∈ S0. Then the preimage of D(g) in ProjS
is D+(g). If g ∈ S then the preimage of D+(g) is the set of all primes p ⊂ S0 such that
g 6∈
√
pS.

Choose homogeneous elements fi generating S+ = S. We can write
∑
aifi = 1 for some

ai with deg ai = −deg fi. To show SpecS0 → ProjS is continuous, it is sufficient to show
that the maps

D(aifi)→ SpecS0 → ProjS

are continuous. But the latter factor through D+(fi) ⊂ ProjS. Identifying D+(fi) with
ProjS[f−1

i ] and D(aifi) with an open subset of SpecS[f−1
i ]0, this reduces the problem to

the case where S contains an invertible element of nonzero degree.
We can assume there is an invertible element f ∈ S of nonzero degree. Then g ∈

√
pS

if and only if gdeg f/fdeg g ∈
√
pS ∩ S0 = p so that the preimage of D+(g) is exactly

D(gdeg f/fdeg g).

We give ProjS the sheaf of rings defined on the basis of open sets of the form D+(f)
where f has nonzero degree byCorrection: We only

make the definition for
f of nonzero degree to

make the following
exercise easier.

OProjS(D+(f)) = S[f−1]0.

Exercise 19.12. (i) Show that the open sets D+(f), for f ∈ S+, form a basis for the
topology of ProjS.

Solution. For any prime p ∈ ProjS, choose D+(g) such that p ∈ D+(g). Then choose
f ∈ S+ r p (which exists by definition of ProjS) and then p ∈ D+(fg).

(ii) Verify that OProjS is a presheaf.
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Solution. Suppose that D+(g) ⊂ D+(f). Then the map ProjS[g−1] → ProjS has
image in D+(f). Thus f generates S[g−1]+ as a radical ideal. Since g has nonzero
degree, fS[g−1] = S[g−1]+ = S[g−1] so f is a unit in S[g−1] so we get a (uniquely
determined) map S[f−1]→ S[g−1] inducing a map

OProjS(D+(f)) = S[f−1]0 → S[g−1]0 = OProjS(D+(g)).

The uniqueness of the map provides the compatibility with D+(h) ⊂ D+(g) ⊂ D+(f).

(iii) Verify that OProjS is a sheaf on the basis U = {D+(f)}. (Hint: Save yourself work
and reduce to Exercise 5.4.)

Solution. It is sufficient to assume that S contains an invertible element of nonzero
degree, since every element of U is of that form. We can then identify ProjS = SpecS0

and ProjD+(g) = SpecD(g). The exercise therefore reduces to the case of an affine
scheme (Exercise 5.4).

(iv) ExtendOProjS to a sheaf on ProjS in the only possible way. Show that (ProjS,OProjS)
is a scheme.

Solution. On the open set D+(f), it coincides with SpecS[f−1]0.

20 Quasicoherent sheaves and schemes in modules

20.1 Quasicoherent sheaves

Exercise 20.1.This is important but
should feel like

repetition of
Exercise 5.4. Reuse as
much of that exercise

as you can.

Let S = SpecA be an affine scheme. If M is an A-module, define

M̃(D(f)) = Mf where Mf denotes the A[f−1]-module A[f−1]⊗AM .

(i) Construct restriction morphisms making M̃ into a presheaf of OS-modules on the basis
of principal open affine subsets of S.

(ii) Show that M̃ is a sheaf on the basis of principal open affine subsets of S. (Hint: The
proof is exactly the same as the proof in Exercise 5.4.)

(iii) Extend M̃ to a sheaf on SpecA.

def:quasicoherent Definition 20.2 (Quasicoherent sheaf). A sheaf F of OS-modules on a scheme S is said

to be quasicoherent if there is a basis of affines U = SpecA such that F
∣∣
U
' M̃ for some

A-module M .

Exercise 20.3. Show that a sheaf of OS-modules is quasicoherent if and only if it may
be presented locally as the cokernel of a homomorphism of free modules (not necessarily of
finite rank).

Exercise 20.4.Note the correction!
The word

quasicoherent was
previously missing.

Show that a quasicoherent sheaf of OS-modules on an affine scheme SpecA

is always of the form M̃ for some A-module M .
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20.2 Morphisms of vector bundles

Charts

If p : E → S is a vector bundle with charts p−1Ui ' Ar
Ui

and q : F → S is a vector bundle
with charts over the same open sets q−1Ui ' As

Ui
then a morphism of vector bundles E → F

is a morphism of S-schemes such that the induced maps

Ar
Ui ' p

−1Ui → q−1Ui ' As
Ui

are linear maps.

Exercise 20.5.Not recommended!
The point is that this
isn’t a pleasant thing

to do.

Define a morphism of vector bundles E and F whose charts are given on
different open covers {Ui} and {Vj}.

Locally free sheaves

Definition 20.6. If F and G are sheaves of OS-modules then a homomorphism F → G
is a homomorphism of sheaves such that for each open U ⊂ S the map F (U)→ G (U) is a
homomorphism of OS(U)-modules.

Schemes of modules

Definition 20.7. Suppose E and F are schemes of A1-modules over S. A morphism
E → F is a morphism of S-schemes ϕ : E → F such that for every S-scheme T , the map
E(T )→ F (T ) is A1(T )-linear.

20.3 Pullback of vector bundles and sheaves

Charts

Suppose p : E → S is a vector bundle with charts p−1Ui ' Ar
Ui

. Let f : T → S be a
morphism of schemes. Then q : f−1E → T can be given charts q−1(f−1Ui) ' Ar

f−1Ui
.

Exercise 20.8. Verify that the charts for f−1E are compatible and yield a vector bundle
on T .

Schemes of modules

Suppose p : E → S is a scheme of A1-modules over S and f : T → S is a morphism of
schemes. For any T -scheme g : U → T , define

f−1E(U, g) = E(U, fg).

Exercise 20.9.Should be a matter of
bookkeeping. Probably

not worth writing up.

Show that f−1E is naturally equipped with the structure of a sheaf of
A1-modules over T .
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Locally free sheaves

ex:pushforward-sheaves-of-modules Exercise 20.10 (Pushforward of sheaves of modules). Suppose that f : X → Y is a mor-
phism of sheaves and F is a OX -module. Show that f∗F is naturally equipped with the
structure of a OY -module. Show that this gives a functor

f∗ : OX -Mod→ OY -Mod

called pushforward of OX -modules to Y .

def:pullback-sheaves-of-modules Definition 20.11 (Pullback of sheaves of modules). Let f : X → Y be a morphism of
schemes. The pullback of an OY -module G is an OX -module f∗G with the following uni-
versal property: for all OX -modules F ,

HomOX -Mod(f∗G ,F ) ' HomOY -Mod(G , f∗F )

naturally in F .

The pullback exists for all sheaves of modules and all morphisms of ringed spaces, but
we’ll just construct it for quasicoherent sheaves and morphisms of schemes.

Exercise 20.12. (i) Suppose that f : X → Y is a morphism of affine schemes. Construct
f∗F for any quasicoherent sheaf on Y . (Hint: Assume X = SpecA, Y = SpecB,

F = M̃ and take f∗F = (B ⊗AM)∼.)

(ii) Suppose that f : X → Y is an arbitrary morphism of schemes and F is a sheaf of
modules on Y . Suppose that you know (f

∣∣
U

)∗F exists for all U in an open cover of
X. Glue these together to construct f∗F .

(iii) Conclude that f∗F exists whenever f : X → Y is a morphism of schemes and F is
quasicoherent.

If you already know about the tensor product of sheaves of modules, the following definition of f∗ is
more efficient than the one above:

Definition 20.13. Suppose that F is a sheaf of OY -modules on Y and f : X → Y is a morphism of ringed
spaces. Define f∗F = OX ⊗f−1OY f−1F .

Exercise 20.14. Show that f∗F as defined above satisfies the required universal property.

Exercise 20.15.Should just be a line or
two.

Suppose that F is a locally free sheaf on Y and f : X → Y is a morphism
of schemes. Show that f∗F is locally free.

Interpretation of sheaf pullback in terms of charts

Fix a map f : X → Y and a locally free sheaf F on Y . Choose an open cover of Y by Ui
and isomorphisms αi : F

∣∣
Ui
' OriUi . We construct a sheaf of OX -modules on X by gluing.

Take Gf−1Ui = Orif−1Ui
. On f−1Ui ∩ f−1Uj , choose the isomorphism

Gf−1Ui

∣∣
f−1Ui∩f−1Uj

' Orif−1Ui∩f−1Uj
→ Orjf−1Ui∩f−1Uj

' Gf−1Uj

∣∣
f−1Ui∩f−1Uj

to be given by f∗ϕij , where ϕij is the transition function

ϕij : OriUi∩Uj
αi←− F

∣∣
Ui

∣∣
Ui∩Uj

= F
∣∣
Uj

∣∣
Ui∩Uj

αj−→ OrjUi∩Uj .
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Exercise 20.16. Show that the Gf−1Ui glue together to give f∗F (via a canonical isomor-
phism).

Thus the transition functions of f∗F are pulled back from the transition functions of
F . This is one reason it is reasonable to use the notation f∗F for this construction.
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Chapter 6

Some moduli problems

21 Basic examples

21.1 The scheme in modules associated to a quasicoherent sheaf

Reading 21.1. [GD71, §9.4]

Let F be a quasicoherent sheaf of OS-modules on S.1 For each S-scheme T , let

F (T ) = HomOT -Mod(F
∣∣
T
,OT ).

We give F (T ) the structure of a A1(T )-module. Suppose that λ ∈ A1(T ) = Γ(T,OT ) and
x ∈ F (T ). Then multiplication by λ gives a morphism OT → OT and composition with this
homomorphism induces a map F (T )→ F (T ). We declare that λ.x is the image of x under
this map.

We write F = V(F ) for this construction.

ex:O-mod-to-A-mod Exercise 21.2. Show that F = V(F ) has the structure of a scheme of modules over S:

(i) Prove that F is a Zariski sheaf on Sch/S.

Solution. Suppose that f : T → S is in Sch/S and T =
⋃
Ui and ξ, η ∈ F (T )

and ξ
∣∣
Ui

= η
∣∣
Ui

for all i. Then ξ and η are morphisms of sheaves of OT -modules

f∗F → OT . Morphisms of sheaves that agree locally are identical so ξ and η are the
same morphism.

Now suppose f : T → S is in Sch/S, that T =
⋃
Ui, and ξi ∈ F (Ui) are such that

ξi
∣∣
Ui∩Uj

= ξj
∣∣
Ui∩Uj

for all i and j. Then the ξi determine morphisms of sheaves

f∗F
∣∣
Ui
→ OT

∣∣
Ui

, hence glue to a global morphism of sheaves.

(ii) Prove that F is representable by an affine scheme when F is quasicoherent and S is

affine. (Hint: When S = SpecA and F = M̃ , represent it by Spec SymM .)

(iii) Conclude that F is representable by a scheme over S.

1In fact, the definition works for any sheaf of OS-modules.
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Theorem 21.3. The functor V : QCoh(S)◦ → A1-Mod/S constructed above is fully
faithful. It induces an equivalence between the categories of locally free OS-modules and of
vector bundles.

What we need to show is that the natural map

HomOS-Mod(E ,F )→ HomA1-Mod/S(V(F ),V(E )) (∗) eqn:16

is a bijection for any two quasicoherent sheaves E and F on S.

Exercise 21.4. Show that (24.2) may be regarded as the map of global sections between
two sheaves on S. Conclude that to prove (24.2) is a bijection it is sufficient to assume S is
affine.

The exercise tells us we may assume that S = SpecA. Then E = M̃ and F = Ñ for two
A-modules M and N . The the underlying schemes of V(M̃) and V(Ñ) are Spec SymAM
and Spec SymAN , respectively.

Exercise 21.5. Prove that every A1-linear map V(Ñ) → V(M̃) arises from a homomor-
phism of A-modules M → N .

Solution. A map V(Ñ)→ V(M̃) over S induces in particular maps

HomA-Mod(N,B)→ HomA-Mod(M,B)

for anyA-algebraB. The linearity condition says that this is a homomorphism ofB-modules.
Apply this in particular when B = SymN and we get a map ϕ : M → SymN associated to
the inclusion N → SymN . We argue that ϕ factors uniquely through N ⊂ SymN .

Suppose that ϕ(x) =
∑
yk with yk ∈ SymkN . Then the linearity of V(M̃) → V(Ñ)

implies that the diagram below commutes:

SymM //

��

SymN

��

A[t]⊗A SymM // A[t]⊗A SymN

Following x ∈M ⊂ SymM both ways around the diagram gives

x 7→
∑

yk 7→
∑

tk ⊗ yk

x 7→ t⊗ x 7→
∑

t⊗ yk.

The only way this can commute is if yk = 0 for k 6= 0, which means that SymM → SymN
is induced from a map M → SymM .

22 Coherent schemes

22.1 The diagonal

Exercise 22.1. The equalizer of a pair of morphisms of schemes is locally closed in the
domain.
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Solution. Let f, g : X → Y be a pair of morphisms of schemes and let Z be their equalizer.
We have to show that every point of Z has an affine open neighborhood U in X in which
Z ∩ U is closed. Let V ⊂ Y be an affine open subset. Then the open sets f−1V ∩ g−1V
form an open cover of Z. Let U be an open affine neighborhood of z ∈ f−1V ∩ g−1V . Then
Z ∩ U is the equalizer of U ⇒ V . Suppose U = SpecB and V = SpecA. Then this is
representable by the coequalizer of B ⇒ A, which is a quotient of A.

Exercise 22.2. Show that the equalizer of a pair of maps X ⇒ Y can be interpreted as
the fiber product X ×Y×Y ∆Y .

22.2 Quasicompact and quasiseparated morphisms

Reading 22.3. [Har77, Exercises 2.13, 3.2], [Vak14, §§3.6.5, 5.1, 10.1.9–12]

Recall that a scheme X is quasicompact if every open subcover of X has a finite subcover.

def:quasicompact-morphism Definition 22.4. A morphism of schemes f : X → Y is said to be quasicompact if for,
for any morphism of schemes Z → Y with Z quasicompact, the fiber product Z ×Y X is
quasicompact.

It is said to be quasiseparated if for every pair of maps g, h : Z → X with Z quasicompact
such that fg = fh, the equalizer W ⊂ Z of g and h in Z is quasicompact.

Morphisms that are both quasicompact and quasiseparated are sometimes called coher-
ent.

Exercise 22.5. Show that a morphism of schemes f : X → Y is quasiseparated if and only
if the diagonal map X → X ×Y X is quasicompact.

Exercise 22.6. Suppose that f : X → Y is a morphism of schemes such that for any
quasicompact open subset U ⊂ Y the preimage f−1U is also quasicompact. Show that f is
quasicompact. (Hint: In the notation of Definition 22.4, reduce to the case where Z and Y
are affine.)

Solution. Let W = X×Y Z. It’s sufficient to show that there is a cover of Z by affine opens
U ⊂ Z whose preimages in W is quasicompact. Choose a cover by affine opens U such
that U → Y factors through a cover of Y by open affines V . Then we want to show that
U ×V X is quasicompact. By assumption, X must be quasicompact, so choose a finite cover
by affines. Their preimages in W cover it. On the other hand, a fiber product of affines is
affine, hence quasicompact. Thus W has a finite cover by affines, hence is quasicompact.

22.3 Pushforward of quasicoherent sheaves

Exercise 22.7. Show that a sheaf F of OX -modules on X = SpecA is quasicoherent if
and only if Γ(D(f),F ) = Γ(X,F )f for all f ∈ A.

Solution. Certainly this holds for quasicoherent sheaves. To see the converse, suppose the
condition holds and let M = Γ(X,F ). Then Mf = Γ(D(f),F ) for all f ∈ A. Therefore M̃
and F agree on a basis of open subsets of X, so they must be isomorphic sheaves.

Exercise 22.8. Show that the kernel and cokernel of a homomorphism of quasicoherent
sheaves are quasicoherent sheaves.
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Solution. It is sufficient to treat the case of an affine scheme. Suppose that

0→ K → F → G → L → 0

is exact and F = M̃ and G = Ñ . Let K and L be the cokernel and kernel of M → N ,
respectively. Then the sequence

0→ Kf →Mf → Nf → Lf → 0

is exact for all f ∈ A. Therefore the kernel of F (D(f)) → G (D(f)) is K (D(f)). Thus

K = K̃.
Furthermore, we see that the presheaf cokernel of F → G is L̃ by the same reasoning,

which gives a map L̃ → L by the universal property of the presheaf cokernel. But L̃ is a
sheaf, so this map is an isomorphism L = L̃.

thm:qcoh-pushforward Theorem 22.9. Suppose that π : X → Y is a quasicompact and quasiseparated morphism
of schemes and F is a quasicoherent sheaf on X. Prove that π∗F is a quasicoherent sheaf
on Y .

Proof. We begin with two observations:

(i) Since π∗F
∣∣
U

= (π
∣∣
π−1U

)∗F
∣∣
π−1U

, it is sufficient to assume that Y = SpecA is affine.

(ii) If X = SpecB is also affine then F = M̃ for some B module M . Then π∗F =

M̃A where MA denotes M , equipped with the A-module structure inherited via the
homomorphism A→ B.

Choose an open cover of X by affine open subsets Ui. For each indices i and j, choose
an open cover Ui ∩ Uj =

⋃
k Uijk with Uijk also affine. Because X is quasicompact and

quasiseparated over Y , these collections can all be chosen finite. Abusively, write i, etc. for
the inclusions Ui → X. Then we have an exact sequence:

0→ F →
∏
i

i∗i
∗F →

∏
ijk

k∗k
∗F

Indeed, if we evaluate this sequence on an open subset V ⊂ X we get the sequence

0→ F (V )→
∏
i

F (V ∩ Ui)→
∏
ijk

F (V ∩ Uijk)

and this is exact by the sheaf conditions. By the left exactness of π∗, we now get a sequence

0→ π∗F → π∗
∏
i

i∗i
∗F → π∗

∏
ijk

k∗k
∗F .

Now, we can identify π∗i∗i
∗F with (πi)∗i

∗F , which is quasicoherent because Ui is affine
and i∗F is quasicoherent. (Note: π∗ commutes with products.) Likewise, π∗k∗k

∗F is
quasicoherent. Therefore π∗F is the kernel of a homomorphism between quasicoherent
OY -modules, hence is quasicoherent.

Exercise 22.10. (i) Show by example that an infinite product of quasicoherent sheaves
is not necessarily quasicoherent. (Hint: Use the failure of localization to commute
with infinite products.)
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Solution. On A1
C, let F =

∏∞
i=1O. Then F (D(f)) =

∏∞
i=1 C[x, f−1] but the element

(f−1, f−2, f−3, . . .) is not contained in
(∏∞

i=1 C[x]
)
f
.

(ii) Show by example that an infinite intersection of a quasicoherent subsheaves of a qua-
sicoherent sheaf is not necessarily quasicoherent.

Exercise 22.11. Use the previous exercise to show that both the hypothesis of quasicom-
pactness and quasiseparation are necessary in Theorem 22.9.
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Chapter 7

Essential properties of schemes

23 Finite presentation

23.1 Filtered diagrams

def:filtered Definition 23.1. A category P is said to be filtered if every finite diagram in P has an
upper bound.

In practical terms, the definition means the following:

(i) for any pair of objects x, y ∈ P there is an object z ∈ P and morphisms x → z and
y → z;

(ii) for any pair of morphisms x⇒ y in P there is a morphism y → z in P that coequalizes
them.

Note that the second condition holds vacuously for a partially ordered set.1

23.2 Remarks on compactness

Exercise 23.2. (i) Suppose that X is a quasicompact topological space and Y =
⋃
Yi

is a filtered union of open subsets. Show that any morphism X → Y factors through
one of the Yi.

Solution. Let f : X → Y be a map. Then the f−1Yi are an open cover of X, hence
there is a finite subcover. Choose i to be an upper bound for the indices in this finite
collection.

(ii) Suppose that X is a quasicompact and quasiseparated topological space with a basis
of quasicompact open subsets and Y = lim−→Yi is a filtered colimit of a diagram of
topological spaces where the transition maps are open embeddings and the Yi are all
étale over Y . Show that any morphism X → Y factors through one of the Yi.

1The conditions above are usually taken as the definition of a filtered diagram (and the first as the
condition of a filtered partially ordered set). However, just as the first condition does not extend trivially,
these two conditions do not extend trivially to higher categories. Definition 23.1 does.

117
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Solution. The maps pi : Yi → Y are all local isomorphisms. Their images are therefore
an open cover of Y and the f−1pi(Yi) cover X. A finite number suffice. Choose an
upper bound for these. Then f(X) lies in pi(Yi). Choose a finite cover of X by
quasicompact open subsets Vj such that Vj → Y factors through Yi. On Vj ∩ Vk we
have two maps Vj∩Vk ⇒ Yi, which may not agree. However, for each point x ∈ Vj∩Vk,
the two maps Vj ∩ Vk ⇒ Yi′ agree in a neighborhood of x, for some index i′ ≥ i. But
Vj ∩Vk is quasicompact, so we can choose one i′ to work for all j and k and all points
of Vj ∩ Vk. Replace i by this i′. Then the two maps Vj ∩ Vk ⇒ Yi agree, hence we can
glue to get X → Yi, as desired.

23.3 Finite type and finite presentation

Reading 23.3. [GD67, IV.8.14]

Definition 23.4. A morphism of schemes f : X → Y is said, respectively, to be locally
of finite type or locally of finite presentation if there is an open cover of Y by open affine
subsets V = SpecA such that f−1V is covered by open affines U = SpecB where B is
a finite type or finitely presented A-algebra. The morphism is of finite type if it is quasi-
compact and locally of finite type. It is finitely presented if it is locally of finite presentation
and quasicompact and quasiseparated.

Exercise 23.5. Suppose that B is an A-algebra and C = lim−→Ci is a filtered direct limit of
A-algebras. Consider the map

Φ : lim−→HomA-Alg(B,Ci)→ HomA-Alg(B,C).

(i) Prove that Φ is an injection for all C = lim−→Ci if B is of finite type over A.

Solution. Choose A[x1, . . . , xn] surjecting onto B. Then we have a commutative dia-
gram

lim−→HomA-Alg(B,Ci) //

��

HomA-Alg(B,C)

��

lim−→HomA-Alg(A[x1, . . . , xn]) // HomA-Alg(A[x1, . . . , xn], C)

lim−→Cni
// Cn

The vertical arrows are injective and the lower horizontal arrow is injective (since
filtered colimits commute with finite products).

(ii) Prove that Φ is a bijection for all filtered unions C =
⋃
Ci if and only if B is of finite

type over A.

Solution. We already know Φ is an injection. Say we have a map B → C. Since B is
finitely generated, all of a finite set of generators must appear in some Ci, so we get
surjectivity as well.

Conversely, recognize B =
⋃
Bi, with each Bi finitely generated over A. Then idB

factors through some Bi, so B is finitely generated.
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(iii) Prove that Φ is a bijection for all C = lim−→Ci if and only if B is of finite presentation
over A.

Solution. We have injectivity from the previous part. To get surjectivity, present
B as the quotient of A[x1, . . . , xn] by a finitely generated ideal J = (f1, . . . , fm).
Given a map B → C, lift it to a map A[x1, . . . , xn] → Ci for some i. For each fj
there is some i(j) > i such that fj 7→ 0 in Ci(j). Choose i′ > i(j) for all of the
finitely many j. Then all fj map to 0 in Ci′ . We therefore get a factorization of
B = A[x1, . . . , xn]/(f1, . . . , fm)→ C through Ci′ , as desired.

Conversely, recognize B = lim−→Bi where each Bi is a subalgebra of finite type. The
identity map B → B must factor through some Bi and Bi ⊂ B so Bi = B. Therefore
B is of finite type. Let x1, . . . , xn generate B. Let J be the ideal of B in A[x1, . . . , xn].
Let Ji run over the finitely generated submodules of J . Then B = lim−→A[x1, . . . , xn]/Ji.
Therefore the identity map B → B factors through some A[x1, . . . , xn]/Ji. Therefore
J ⊂ Ji. Likewise Ji ⊂ J , so J = Ji and B = A[x1, . . . , xn]/Ji.

Exercise 23.6.Should be easy Show that a morphism of locally noetherian schemes is of locally finite type
if and only if it is of locally finite presentation.

lem:lfp Lemma 23.7. Let X be an A-scheme and let C = lim−→Ci be a colimit of A-algebras. Con-
sider the map

Φ : lim−→X(Ci)→ X(C)

(i) If C is the filtered colimit of the Ci and X is of finite type the Φ is an injection.

(ii) If C is the filtered union of the Ci and C is an integral domain and X is of finite type
then Φ is a bijection.

(iii) If C is the filtered colimit of the Ci and X is of finite presentation then Φ is a bijection.

Proof. Let fo, go : SpecCo → X induce the same map on SpecC. Write ρo : SpecC →
SpecCo. Choose a finite cover of X by open affine subschemes Uj . Then SpecCo is covered
by ρ−1

o (f−1Uj ∩ g−1Uj). Choose xk ∈ Co such that each D(xk) is contained in some
f−1Uj ∩g−1Uj and the D(xk) cover

⋃
(f−1Uj ∩g−1Uj). Then the ρ−1

o (D(xk)) cover SpecC,
so we can write

∑
akxk = 1 with coefficients ak ∈ C. All of these coefficients appear in

some Ci, so we can replace o with i and assume that the f−1Uj ∩ g−1Uj cover SpecCo.
Now let Vk = D(xk) be any affine open subset of f−1Uj∩g−1Uj ⊂ SpecCo. We get a pair

of maps f, g : Vk → Uj corresponding to a pair of ring homomorphisms ϕo, ψo : B → Do.
Put Dk = Do ⊗Co Ci and D = Do ⊗Co C. Since ϕ,ψ : D → B agree and D is of finite type,
there is some index i such that ϕi = ψi. Replacing o by i, we can assume that the two maps
f, g : Vk → Uj agree.

There are only finitely many Vk in all, so we can repeat the above procedure finitely
many times to ensure that f = g on all open subsets in a cover of SpecCo, which gives the
desired injectivity.

Now we prove the surjectivity under the assumption that X is of finite presentation.
Assume given a map f : SpecC → X. Choose a finite open cover of X by affines Uj and a
finite open cover of SpecC by affines Vk = D(xk) subordinate to the f−1Uj . Each xk lies
in some Ci, and since there are only finitely many of them, we can assume they are in the
same Co. Then DC(xk) is the preimage of DCo(xk).
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Fix one value of k. Then C[x−1
k ] is the filtered colimit of the Ci[x

−1
k ]. By assumption

we have given a map Bj → C[x−1
k ], and since Bj is of finite presentation, this comes from

a map Bj → Ci[x
−1
k ] for some i. We can choose one i to work for all k, and replace o with

this i.
We now have to check that the maps SpecCo[x

−1
k ] → Uj ⊂ X agree on intersections.

For each j, j′ choose an open cover of Uj ∩ Uj′ by open affines W . Cover the preimage
f−1W ⊂ SpecC by open affines D(xk). Enlarging o again, we can assume that all xk comes
from Co. We get two maps SpecCo[x

−1
k ] ⇒W = SpecB. These maps agree on SpecC[x−1

k ],
so by finite presentation, we get agreement on SpecCi[x

−1
k ] if i is sufficiently large. There

are only finitely many values of k to contend with, so a single enlargement of o suffices to
guarantee that all the maps SpecCo[x

−1
k ] ⇒ X agree. This implies that they glue to a single

map SpecCo → X inducing f : SpecC → X, as desired.
(In the case where C is an integral domain and we have a filtered union, the compatibility

is automatic becuase Ci ⊂ C and the maps to C are compatible.)

Theorem 23.8. For any scheme X, the following conditions are equivalent:

(i) X is locally of finite presentation;

(ii) for any filtered system of commutative rings Ai with lim−→Ai = A, the map lim−→X(Ai)→
X(A).

Proof. We’ve already seen in Lemma 23.7 that the first condition implies the second. We
prove the second implies the first.

Assume that lim−→X(Ai) → X(A) is a bijection. Let U = SpecB be an open affine of
X. We argue that lim−→Hom(B,Ai) → Hom(B,A) is a bijection. Indeed, we certainly have
Hom(B,A) = U(A) ⊂ X(A) and lim−→Hom(B,Ai) = lim−→U(Ai) ⊂ lim−→X(Ai) = X(A) so the
map is an injection. To show it is surjective, suppose that f ∈ U(A). Certainly f is induced
from some g ∈ X(Ai). Consider g−1(U) ⊂ SpecAi. This is an open subset, so there is some
ideal J such that g−1(U) = D(J). The projection SpecA→ SpecAi factors through D(J)
so JA = A. That is, we can find xj ∈ J and aj ∈ A such that

∑
ajxj = 1. Enlarging i

as necessary, we can assume that aj ∈ Ai and
∑
ajxj = 1 holds in Ai. Then D(J) = Ai.

That is g ∈ U(Ai), as desired.

24 Separated and proper morphisms I

Reading 24.1. [Vak14, §§10.1, 10.3, 12.7] [Har77, §II.4]

In this section and the next we will investigate the algebro-geometric analogues of com-
pact and Hausdorff topological spaces. Recall that a topological space X is called Hausdorff
if, for any pair of points x and y, there are open neighborhoods x ∈ U and y ∈ V with
U ∩ V = ∅. Equivalently, U × V is an open neighborhood of (x, y) in X ×X that does not
meet the diagonal X ⊂ X ×X. In other words, the diagonal is closed.

Exercise 24.2. Show that the following conditions are equivalent for a topological space
X:

(i) X is Hausdorff;

(ii) the diagonal X → X ×X is a closed embedding;
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(iii) for any pair of maps Z ⇒ X, their equalizer is closed in Z.

The product of two schemes does not have the product topology, so these conditions are
not equivalent for schemes. We know that essentially no scheme is Hausdorff in the literal
sense, but the latter two conditions still make sense. We will use these as the definition of
a separated scheme.

A second interpretation of the Hausdorff condition is that a sequence should have at
most one limit. Again, it is hard to make sense of this literally for schemes, but we can
reinterpret it in a way that does make sense. Instead of sequences, we look at maps from
open curves into X and stipulate that such a map can be completed in at most one way.

A first candidate for such a definition is that any map A1
k r {0} → X can be completed

in at most one way to A1
k → X. Indeed, if X is separated, this must be true. However, there

are a few problems owing to the rigidity of algebraic geometry. There are many different
kinds of open arcs, of which the above is just one. In order to get a sufficiently large list,
we look at valuation rings.

24.1 A criterion for closed subsets

ex:specialization-again Exercise 24.3 (Repeat of Exercise 7.27). Show that a closed subset of a scheme is closed
under specialization but that a subset closed under specialization is not necessarily closed.

The following theorem says that, Exercise 24.3 notwithstanding, being closed under
specialization is equivalent to being closed in most situations that arise in practice:

thm:closure-criterion Theorem 24.4 ([Sta15, Tags 00HY and 01K9], [GD67, Proposition (II.7.2.1)]). The image
of a quasicompact morphism is closed if and only if it is stable under specialization.

Proof. Suppose f : Y → X is quasi-compact and its image is stable under specialization.
We would like to show it is closed. It is sufficient to pass to a cover of X by open subsets
U and show that each f(Y ) ∩ U is closed in U . We can therefore assume X is affine, say
X = SpecA, and that Y is quasi-compact. Choose a surjection Z → Y with Z affine (we
can do this because Y is quasicompact). Replacing Y by Z we can now assume that both
X = SpecA and Y = SpecB are affine.

Let p be a point of X (i.e., a prime ideal of SpecA) in the closure of f(Y ). We argue
that p is the specilization of a point of f(Y ).

Since p lies in the closure of f(Y ), every open neighborhood of p meets f(Y ). In partic-
ular, if g ∈ A r p then DX(g) is an open neighborhood of p so DX(g) ∩ f(Y ) 6= ∅. Thus
DY (g) 6= ∅ so the image of Ar p in B does not contain any nilpotent elements. Therefore
Bp is not the zero ring so it has at least one prime ideal. Call it q. Then f(q) is a prime ideal
of Ap so it specializes to p and lies in the image of f . But f(Y ) is closed under specialization,
so p lies in f(Y ), as desired.

Exercise 24.4.1.Repeat of
Exercise 7.12.

Let X be a scheme and Z a closed subset. Let i : Z → X be the
inclusion. Define A (U) to be the quotient of OX(U) by the relation f ∼ g if f(p) = g(p)
for all p ∈ U ∩ Z. Set OZ = i−1A . Show that (Z,OZ) is a reduced scheme. This is called
the reduced scheme structure on Z.

Solution. (Direct argument, sketch) Suppose that U ⊂ X is affine, say U = SpecB. Then
A (U) = B/I(Z∩U), by definition. Moreover, if f ∈ B then A (D(f)) = Bf/I(Z∩D(f)) so
we get a map A (U)→ A (D(f)). Thus A is a presheaf of rings on the basis of affines under
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principal inclusions. Moreover, we have Z = V (J) for some ideal J , so I(Z ∩ U) =
√
J .

Likewise, Z ∩D(f) = V (JB[f−1]) so I(Z ∩D(f)) =
√
JB[f−1]. Thus I(Z ∩D(f)) = I(Z ∩

U)Bf , from which it follows that A
∣∣
U

agrees with the structure sheaf of SpecB/I(Z ∩ U).

Therefore A extends to a sheaf on X and A = i∗i
−1A . (Warning: There is a very subtle

point lurking here concerning the extension to a sheaf. Not every inclusion of an open affine
in another open affine is a principal inclusion. This doesn’t actually cause a problem, but
it requires some thought to see why.) Thus Z has an open cover by affine schemes.

Solution. (Using a sheaf of ideals) Define a sheaf I ⊂ OX consisting of all f ∈ OX such
that f(z) = 0 for all schematic points z ∈ Z. Let A = OX/I and let OZ = i−1A . Then
(Z,OZ) is a ringed space, so we just need to find an open cover by affine schemes. If U ⊂ X
is affine—say U = SpecB—then Z ∩U = V (J) for some ideal J ⊂ B. Then A = (B/

√
J)∼

so Z = Spec(B/
√
J).

cor:specialization-lifting-criterion Corollary 24.4.2. A quasicompact morphism of schemes f : X → Y is closed if and only
if specializations lift along f .

Proof. Assume first that specializations lift. It is sufficient to prove that the maps f−1U →
U are closed for all U in an open cover of Y . We can therefore assume Y is quasicompact
(even affine). Then X is also quasicompact. Let Z ⊂ X be a closed subset. Then we may
give Z a scheme structure (for example, the reduced scheme structure). Since Z is closed in
X, specializations lift along Z → Y . Therefore the image of Z is closed under specialization,
so by Theorem 24.4, the image of Z is closed.

Conversely, suppose that f is closed and y ; y′ in Y and y = f(x). Let Z be the closure
of {x} in X. Then f(Z) is a closed subset of Y so y′ ∈ f(Z). Therefore there is some x′ in
the closure of {x} (i.e., some x; x′) with f(x′) = y′.

24.2 Valuation rings

Reading 24.5. [AM69, pp. 65–67], [GD67, §II.7.1]

Definition 24.6. A valuation ring is an integral domain A such that for all nonzero x in
the field of fractions of A, either x ∈ A or x−1 ∈ A.

Exercise 24.7. (i) Show that Z(p) is a valuation ring.

(ii) Show that k[t]p is a valuation ring when k is a field and p is any ideal other than the
zero ideal.

(iii) Show that k[[t]] is a valuation ring when k is a field.

(iv) Let k be a field and let A =
⋃
n→∞ k[[t1/n]] be the ring of Puiseux series. Show that

A is a valuation ring.

(v) Give an example of a local ring that is not a valuation ring.

Exercise 24.8.These are a few basic
facts about valuation

rings. They aren’t
essential but they may

help build intuition.

(i) If A is a valuation ring then the fractional ideals of A are totally ordered under
inclusion.
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Solution. Let I and J be fractional ideals of A. Assume x ∈ IrJ . Choose any y ∈ J .
Then xy−1 ∈ A or x−1y ∈ A. But the former cannot happen because x 6∈ J . Therefore
x−1y ∈ A so y = x−1yx ∈ AI = I. Thus J ⊂ I.

(ii) A valuation ring is a local ring.

Solution. The proper ideals of A form an ascending chain. The union is therefore an
ideal.

(iii) If A is a valuation ring then all finitely generated ideals of A are principal. (Note that
this does not mean A is a principal ideal domain!)

Solution. Suppose I has n generators x1, . . . , xn. Then either xnx
−1
n−1 or xn−1x

−1
n

is in A so either xn or xn−1 is redundant. By induction, we can get down to one
generator.

(iv) If A is a valuation ring then the nonzero fractional ideals2 of A form a group under
multiplication.

Solution. Every fractional ideal is principal so the group is K∗/A∗ where K is the
field of fractions.

(v) [AM69, Chapter 5, Exercise 30] Let K be the field of fractions of a valuation ring A.
Let v(x) = Ax for any x ∈ K∗. This gives a homomorphism from K∗ into the group
of nonzero fractional ideals of K. Show that v(x + y) ≥ min{v(x), v(y)} where the
nonzero fractional ideals are ordered by inclusion. Thus v is a valuation.

thm:specializations-valuation-rings Theorem 24.9. Let x ∈ X(K) be a K-point of X and suppose that x ; y.3 Then there
is a valuation ring R with field of fractions K and a map SpecR → X sending the closed
point of SpecR to y and restricting to x on the generic point.

Proof. Let A be the quotient of OX,y by the prime ideal corresponding to x. This is a local
ring with closed point y and generic point x. We are given a map OX,y → A → K by
x ∈ X(K). To get a valuation ring, choose R to be maximal among local rings dominating
A (which exists by Zorn’s lemma). (An ascending union of such local rings is still a local
ring dominating A, because an ascending union of fields is a field.)

I claim R is a valuation ring. Indeed, suppose that t ∈ K. We show that either t or t−1

is in R. Assume that t 6∈ R. Consider B = R[t] ⊂ K. If mB 6= B then choose a maximal
ideal of B containing mB and localize, contradicting the maximality. Thus we must have
mB = B. But then there is some expression

∑n
i=0 ait

i = 1 with ai ∈ m. Rewrite this as∑n
i=1 ait

−n+i = (1−a0)t−n. Note that 1−a0 is a unit, so that t−1 is integral over R. Thus
SpecR[t−1] → SpecR is surjective, so in particular, R[t−1] is not a field. By the going up
theorem, m lifts to a maximal ideal m′ of R[t−1] and R[t−1]m′ is a local ring dominating R.
By the maximality of A, we get t−1 ∈ R.

Thus the inclusion of a valuation ring in its field of fractions is the ‘universal specializa-
tion’.

2A fractional ideal is a finitely generated submodule of the field of fractions.
3Properly speaking, it is the image of SpecK under x that specializes to y.



124 CHAPTER 7. ESSENTIAL PROPERTIES OF SCHEMES

24.3 Separatedness

Definition 24.10 (Separatedness). A morphism of schemes π : X → Y is separated if, for
any f, g : Z → X such that πf = πg, the equalizer of f and g is a closed subscheme of Z.

Exercise 24.11. Let k be a field and let X = A1
k ∪A1

kr{0} A1
k be the affine line with its

origin doubled. Show that X → Spec k is not separated.

Solution. The equalizer of the two inclusions of A1 is A1 r {0}, which is not closed in
A1.

Exercise 24.12.Important and easy;
correction: ‘closed’

corrected to
‘separated’ (thanks to

Shawn)

Show that π : X → Y is separated if and only if δ = (idX , idX) : X →
X ×Y X is a closed embedding. This is how separatedness is usually defined.

Exercise 24.13. Prove that a topological space is Hausdorff if and only if its diagonal is a
closed embedding.

Exercise 24.14.Important and easy Prove that every affine scheme is separated.

Solution. This translates into the fact that for any homomorphism of commutative rings
A → B, the map B ⊗A B → B sending b1 ⊗ b2 to b1b2 is a surjection. This is obvious
because it has a section b 7→ b⊗ 1.

ex:closed-locally-closed Exercise 24.15.Not directly related to
this section but useful

in the next exercise.

A locally closed embedding of schemes with closed image is closed. (Hint:
Use the fact that an embedding can be shown to be a closed embedding on an open cover
of the codomain.)

Solution. Let f : X → Y be a locally closed embedding with closed image. Then there is
some open U ⊂ Y such that f factors through U as a closed embedding. But V = Y rf(X)
is an open subset of X such that f−1V = ∅. Therefore U and V give an open cover of Y
such that f−1U → U and f−1V → V are closed embeddings. It follows that f is a closed
embedding.

ex:quasiseparated-separated-criterion Exercise 24.16. A morphism π : X → Y is separated if and only if it is quasiseparated
and its diagonal is closed under specialization. (Hint: Make use of Exercise 24.15.)

Solution. Suppose π is separated. If Z ⇒ X is a pair of morphisms with Z quasicompact
then the equalizer is closed in Z. In particular it is quasicompact, since a closed subscheme
of a quasicompact scheme is quasicompact.

Suppose π is quasiseparated and its diagonal is closed under specialization. Separat-
edness gives that the diagonal is quasicompact, so by Theorem 24.4, the diagonal of π is
closed. Therefore the diagonal is a locally closed embedding with closed image.

This gives an intuitive picture of specialization. A specialization in X ×Y X of a point
x in the diagonal yields a pair of specializations x ; x′1 and x ; x′2 in X, with both
projecting to the same specialization y ; y′ of Y . If this specialization lifts then x′1 = x′2.

thm:valuative-separated Theorem 24.17 (Valuative criterion for separatedness). A quasiseparated morphism of schemes
f : X → Y is separated if and only if whenever R is a valuation ring with field of fractions
K, a diagram (24.1) admits at most one lift.

SpecK //

��

X

f

��

SpecR //

;;

Y

(24.1) eqn:15
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Proof. Suppose we had two lifts and take the equalizer. This is a closed subscheme of SpecR
containing SpecK. But SpecK is dense in SpecR and SpecR is reduced (R is an integral
domain) so the equalizer must be SpecR.

Conversely, suppose that the lifting criterion holds. Then every diagram

SpecK //

��

X

δ

��

SpecR //

99

X ×Y X

admits a (unique) lift. In particular, if we choose x ∈ δ(X) and y a specialization of x in
X ×Y X then we can choose a valuation ring SpecR → X ×Y X with its generic point
mapping to x and its special point mapping to y. The lifting criterion then guarantees that
the specialization lifts. Combined with quasiseparatedness, this means that f is separated
(Exercise 24.16).

24.4 Properness

Definition 24.18. A morphism of schemes f : X → Y is said to be universally closed if,
for every Y -scheme Y ′ the morphism f ′ : X ′ → Y ′ induced by base change is closed.

Exercise 24.19. Let k be a field. Show that A1
k → Spec k is closed but not universally

closed.

Definition 24.20 (Properness). A morphism of schemes f : X → Y is proper if it is
separated, of finite type, and universally closed.

Exercise 24.21. Suppose that f : X → Y and g : Y → Z are morphisms of schemes. Show
the following:

(i) Show that all closed embeddings are proper.

Solution. The diagonal of an embedding is an isomorphism, so closed embeddings are
separated. Closed embeddings are of finite type since a quotient of a commutative ring
is always an algebraic of finite type. Surjections are preserved under tensor product, so
pullback of a closed embedding is a closed embedding. In particular, closed embeddings
are universally closed.

(ii) If f and g are both proper the gf is proper.

(iii) [Har77, Exercise II.4.8] If g is separated and gf is proper then f is proper.

Solution. We have two maps X ×Z Y → Y : one is the second projection p2 and the
other is fp1. We have gp2 = gfp1 by definition of X ×Z Y . Therefore the equalizer
of fp1 and p2 is closed in X ×Z Y . On the other hand, the equalizer is simply X
(it is the collection of pairs (x, y) such that f(x) = y). As g : Y → Z is separated,
γ = (idX , f) : X → X ×Z Y is a closed embedding, hence is proper. Likewise,
p2 : X ×Z Y → Y is proper because it is the base change of gf . Therefore f = p2 ◦ γ
is proper because it is the composition of two proper maps.
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Exercise 24.22. Show that X → Y is separated if and only if X → X ×Y X is proper.

thm:valuative-universally-closed Theorem 24.23. Suppose that f : X → Y is quasicompact and quasiseparated. Then f is
separated and universally closed if and only if every diagram (24.2) admits a unique lift.

SpecK //

��

X

f

��

SpecR //

;;

Y

(24.2) eqn:16

Proof. This paragraph follows [GD67, Proposition (II.7.3.1)]. Suppose first that f is sepa-
rated and universally closed. Make a base change via SpecR→ Y . We can assume without
loss of generality that Y = SpecR. We can also replace X by the closure of the image of
SpecK. Specializations lift via f , and every point of Y is a specialization of the generic point
y, so f−1y consists of a single point x ∈ X. Moreover, we have K = k(y) → k(x) → K,
which implies that k(y) = k(x) = K. Now, if x′ ∈ X is any point then x′ is a specialization
of x. Suppose that x′ is such a point and f(x′) = y′. Then we get OY,y′ ⊂ OX,x′ ( K with
mx′ ∩OY,y′ = my′ . That is, OX,x′ dominates OY,y′ . But OY,y′ is a localization of R, hence is
maximal with respect to domination, so OX,x′ = OY,y′ . It follows that f∗ : f−1OY → OX
is an isomorphism.

Finally, we check that f is a bijection. Suppose that x′ and x′′ were points of f−1y′.
Then, as OX,x′ = OX,x′′ = OY,y we would get two lifts of SpecOY,y → Y agreeing at the
generic point. But by the valuative criterion for separatedness, they must be the same. Now
f is a closed bijection, hence a homemorphism, and f∗ : f−1OY → OX is an isomorphism.
Hence f is an isomorphism.

Now suppose that the lifting criterion holds. By the valuative criterion for separatedness
(Theorem 24.17) we know that f is separated. Now we show f is closed. (It will follow that
f is universally closed because the lifting criterion is stable under base change.) We use
Corollary 24.4.2. Suppose x ∈ X and f(x) ; y is a specialization in Y . By Theorem 24.9
there is a valuation ring R with field of fractions K and a map SpecR → Y such that

the induced map SpecK → Y coincides with the composition SpecK
x−→ X

f−→ Y . The
lifting criterion guarantees that there is an x′ ∈ X with x ; x′ and f(x′) = y, exactly as
required.

Corollary 24.23.1. Suppose that f : X → Y is of finite type and is quasiseparated. Then f
is proper if and only if f satisfies the right lifting property with respect to SpecK ⊂ SpecR
for every valuation ring R with field of fractions K.

24.5 Projective schemes

Definition 24.24. A projective scheme is a scheme that can be embedded inside PN , for
some integer N , as a closed subscheme.

thm:projective-proper Theorem 24.25. Projective schemes are proper.

ex:nakayama Exercise 24.26 (Nakayama’s lemma). Let M be a finitely generated module over a local
ring A with maximal ideal p. Show that pM = M if and only if M = 0.
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Solution. We show by induction that M can be generated by 0 elements. If M can be
generated by x1, . . . , xn then we can write

xn =

n∑
i=1

aixi

which yields

(1− an)xn = −
n−1∑
i=1

aixi

and 1−an is a unit so xn is redundant. By induction, all the generators are redundant.

ex:closed-support Exercise 24.27 (Support of a finitely generated module is closed). Show that the support
of a finitely generated module M over an affine scheme A is closed in SpecA. (Hint: Let I
be the annihilator ideal of M and show that M ⊗A k(p) = 0 if and only if p ∈ D(I).)

Solution. Suppose that p ∈ D(I). Then Ik(p) = k(p) so that I(M ⊗A k(p)) = (IM) ⊗A
k(p) = 0 and I(M ⊗A k(p)) = M ⊗A Ik(p) = M ⊗A I.

Conversely, suppose that M ⊗A k(p) = 0. Then Mp/pMp = 0 so Mp = pMp so Mp = 0
by Nakayama’s lemma. Then there is some f ∈ Ar p such that fM = 0. Then p does not
contain I so p ∈ D(I).

Elimination theory proof [Vak14, Theorem 7.4.7] of Theorem 24.25. Let S be the homoge-
neous coordinate ring of a projective scheme Z with S0 = k a field. Let m be the irrelevant
ideal of S. Then Z is empty if and only if m is nilpotent.

More generally, if S is a homogeneous coordinate ring with S0 = A and p is a point of
SpecA corresponding to a homomorphism A→ k then π−1p = ∅ if and only if m(S⊗A k) ⊂
S ⊗A k is nilpotent.

Now, set Mn = mn/mn+1. This is a finitely generated A-module and π(Z) ⊂ SpecA is

∞⋃
n=1

{p ∈ SpecA
∣∣Mn ⊗A k = 0} =

∞⋃
n=1

D(AnnMn)

and this is open.

Valuative criterion proof [GD67, Remarque (II.7.3.9) (ii)] of Theorem 24.25. It is sufficient
to show that PN is proper since a composition of proper morphisms is proper.

Suppose that R is a valuation ring with field of fractions K and (x0, . . . , xN ) ∈ PN (K).
Choose an index i such that v(xi) is minimal. Then (x−1

i x0, . . . , x
−1
i xN ) = (x0, . . . , xN ) in

PN (K). On the other hand, v(x−1
i xj) ≥ 0 for all j so x−1

i xj ∈ R. That is (x−1
i x0, . . . , x

−1
i xN ) ∈

PN (R).
To see that this is unique, suppose we had two elements (y0, . . . , yN ) and (z0, . . . , zN )

in PN (R) representing the same element of PN (K). Then there is some λ ∈ K∗ such that
(y0, . . . , yN ) = (λz0, . . . , λzN ). By definition of PN (R), there is at least one index i such
that v(yi) = 0. Then if v(λ) < 0 we have v(zi) < 0, and if v(λ) > 0 we have v(zj) > 0 for
all j. Both are impossible so we have v(λ) = 0 so λ ∈ R∗ and (y0, . . . , yN ) and (z0, . . . , zN )
represent the same point of PN (R).

Exercise 24.28. Let E be a vector bundle over a scheme Y . Let P(E) : (Sch/Y )◦ → Sets be functor
sending an Y -scheme X to the set of closed embeddings L → E

∣∣
X

in which L is a line bundle over X.

Verify that P(E) is representable by a scheme. (Hint: Cover X by open sets U where E
∣∣
U

is trivial and use

PN × U .)
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Definition 24.29 ([GD67, Proposition (II.5.5.1) and Définition (II.5.5.2)]). A morphism of schemes f :
X → Y is said to be projective if there is a closed embedding X → P(E) over Y , for some vector bundle E
over Y .

Exercise 24.30. Prove that projective morphisms are proper.

25 Separated and proper morphisms II
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Étale morphisms

26 Separated and proper morphisms III

27 Étale morphisms I

Recall that a morphism of topological spaces X → Y is said to be étale if it is a local
homeomorphism. This definition does not work well for schemes, where the Zariski topology
is too coarse to detect maps that should be considered local homeomorphisms.

Exercise 27.1.If you have studied
differential geometry,

this exercise should be
essentially immediate.

If you have not studied
differential geometry,
there is no reason to

do this exercise.

Show that a morphism of differentiable manifolds f : X → Y is a local
diffeomorphism near a point x if and only if the map df : TxX → Tf(x)Y is an isomorphism.
(Hint: Inverse function theorem.)

Solution. Suppose f is a local diffeomorphism. We can assume without loss of generality
that f is a diffeomorphism by replacing X and Y with open neighborhoods of x and f(x),
respectively. Then df certainly induces an isomorphism at x.

Conversely, suppose df is an isomorphism at x. We can assume that X and Y are both
open subsets of Rn for some n (necessarily the same since their tangent spaces have the same
dimension). Then by the inverse function theorem f possesses an inverse in a neighborhood
of f(x).

Exercise 27.2. (i) Show that the map C∗ → C∗ sending z to zn is a local homeomor-
phism for all nonzero n ∈ Z.

(ii) Show that the map Spec C[t, t−1] → Spec C[s, s−1] sending s to tn is not a local
homeomorphism for any n except ±1. (Hint: Consider the map on generic points.)

28 Étale morphisms II

Instead of a topological characterization of étale maps, we will use a geometric one. In a
sense, a map of topological spaces is a local homeomorphism if its source and target are
locally indistinguishable. Taking this as our cue, we call a map of schemes étale if its source
and target are infinitesimally indistinguishable.

129
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Exercise 28.1. Let i : Z → Z ′ be a closed embedding. Let I be the kernel of OZ′ → i∗OZ
(as a homomorphism of OZ′ -modules). Show that I is a quasicoherent sheaf.

Definition 28.2. A morphism of schemes Z → Z ′ is said to be an infinitesimal extension
or a nilpotent thickening or a nilpotent extension if it is a closed embedding and the sheaf
of ideals IZ/Z′ is nilpotent.

If I2
Z/Z′ = 0 then Z ⊂ Z ′ is said to be a square-zero extension or square-zero thickening.

Exercise 28.3. Show that a closed embedding Z → Z ′ is an infinitesimal extension if and
only if there is a positive integer n and local charts SpecA→ SpecA′ for Z → Z ′ such that,
when I is defined to be ker(A′ → A), we have In = 0.

Exercise 28.4. Show that every nilpotent thickening can be factored into a sequence of
square-zero thickenings. (Hint: Take the closed subschemes defined by InZ/Z′ .)

Exercise 28.5. Show that if Z ⊂ Z ′ is an infintesimal thickening then the inclusion of
topological spaces |Z| ⊂ |Z ′| is a bijection.

def:etale Definition 28.6. A morphism of schemes f : X → Y is said to be formally étale if,
whenever Z ⊂ Z ′ is an infinitesimal thickening, any diagram of solid arrows (28.1) can be
completed by a dashed arrow in a unique way.

Z //

��

X

f

��

Z ′

>>

// Y

(28.1) eqn:2

If f is also locally of finite presentation then we say f is étale.

Exercise 28.7. Show that all open embeddings are étale. In a sense this shows that ‘locally
indistinguishable’ implies ‘infintiesimally indistinguishable’. (It is possible to do this directly,
but you might find this exercise easier using the results from the next one.)

Exercise 28.8.Correction: “open
cover” in the first part

changed to “basis of
open subsets”. Thanks

to Paul.

(i) Show that to prove a diagram (28.1) has a unique lift, it is sufficient produce unique
lifts over a basis of open subsets of Z ′. (Hint: Use the fact that X and Y are Zariski
sheaves.)

(ii) Show that we would have arrived at an equivalent definition of étale morphisms if we
had only required liftings with respect to infinitesimal extensions of affine schemes.

(iii) Show that we would have arrived at an equivalent definition of étale morphisms if we
had only required liftings with respect to square-zero extensions of affine schemes.

Exercise 28.9. (i) Show that the map

Spec C[t, t−1]→ Spec C[s, s−1]

sending s to tn is étale for all n 6= 0.
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Solution. Let A′ → A be a square-zero extension with ideal J . Suppose that τ ∈ A
is an A-point of Spec C[t, t−1]. This means that τ ∈ A∗. And suppose that σ′ ∈ A′∗
lifts τn. Choose any α ∈ A′ that maps to τ ∈ A. Then αn − σ′ ∈ J . Set δ =
1
nα
−(n−1)(αn − σ′) ∈ J . Let τ ′ = α− δ. We get

τ ′
n

= αn − nαn−1δ = σ′

so τ ′ gives the lift.

(ii) Suppose k is a field of characteristic p. For which values of n is the map

Spec k[t, t−1]→ Spec k[s, s−1]

étale?

Solution. The same argument as above works when p does not divide n. We show
the map is not étale when p|n. Suppose pk divides n exactly. Let K be an algebraic

closure of k(x), let Z = SpecK[ε]/(εp
k

), and let Z ′ = SpecK[ε]/(εp
k+1

). We have a

map C[t, t−1]→ K[ε]/(εp
k

) sending x to x+ ε. Then

s 7→ (x+ ε)n =
(
(x+ ε)p

k)n/pk
= (xp

k

+ εp
k

)n/p
k

= xn.

Therefore we have a lift by s 7→ xn ∈ K[ε]/(εp
k+1

). But if we try to find a lift of t

here, it must have the form t 7→ x+ ε+ λεp
k

, from which we get

tn 7→
(
(x+ ε+ λεp

k

)p
k)n/pk

= (xp
k

+ εp
k

+ εp
2k

)n/k

Now k ≥ 1 so 2k ≥ k + 1 so εp
2k

= 0 in K[ε]/(εp
k+1

). Therefore,

tn 7→ (xp + εp
k

)n/k = xn + (n/k)xp(n/k−1)εp
k

+ · · ·

which does not coincide with xn. (No choice of λ can make it work.)
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Smooth morphisms

29 Étale morphisms III

29.1 The module of relative differentials

Definition 29.1. Let A be a commutative ring, let B be a commutative A-algebra, and let
J be a B-module. An A-derivation from B into J is a function δ : B → J such that

Der1 δ(A) = 0 and

Der2 δ(xy) = xδ(y) + yδ(x) for all x, y ∈ B.

The set of A-derivations from B into J is denoted DerA(B, J).

Exercise 29.2. Show that DerA(B, J) is naturally equipped with the structure of an A-
module via (aδ)(x) = aδ(x).

Exercise 29.3. Let B + εJ be the commutative ring whose elements are symbols x + εy
with x ∈ B and y ∈ J with the addition rules

(x+ εy) + (x′ + εy′) = (x+ x′) + ε(y + y′)

(x+ εy)(x′ + εy′) = xx′ + ε(xy′ + x′y).

(i) Show that there is a homomorphism p : B + εJ → B defined by p(x+ εy) = x.

(ii) Show that there is a homomorphism i : B → B + εJ defined by i(x) = x+ ε0.

(iii) Suppose that f : B → B + εJ is an A-algebra homomorphism such that pf = idB .
Show that f − i factors through εJ ⊂ B + εJ and that regarded as a map B → J it
is a derivation.

(iv) Suppose that δ : B → J is a derivation. Show that idB + εδ : B → B + εJ is a
homomorphism of A-algebras.

(v) Conclude that DerA(B, J) = HomB
A(B,B+ εJ) (where it’s your job to figure out what

the notation HomB
A means).

133
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ex:omega Exercise 29.4. Show that there is a universal B-module ΩB/A and A-derivation d : B →
ΩB/A. (In other words, show that the functor J 7→ DerA(B, J) is representable by a B-
module ΩB/A.)

def:relative-differentials Definition 29.5. The universal A-derivation B → ΩB/A constructed in Exercise 29.4 is
called the module of relative differentials of B over A or the module of relative Kähler
differentials.

Exercise 29.6. Compute ΩB/A when B = A[x1, . . . , xn] is a polynomial ring.

ex:omega-exact-sequence Exercise 29.7 ([Har77, Proposition II.8.1], [Vak14, Theorem 21.2.9]). Suppose A → B →
C are homomorphisms of commutative rings.

(i) Show that for any C-module J there is a natural exact sequence of C-modules:

0→ DerB(C, J)→ DerA(C, J)→ DerA(B, J)

(ii) Deduce an exact sequenceTypo corrected in the
exact sequence. Tensor

product is over B not
over A. Thanks Ryan. C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

(iii) Find an example to show that the sequence can’t be completed with a 0→ C⊗AΩB/A
on the left. (Hint: Consider A = k a field, B = k[x]/(x2), and C = B/xB ' k.)

Exercise 29.8. Suppose that B → C is an epimorphism of A-algebras.1

(i) Show that ΩC/B = 0. (This isn’t used in the rest of the exercise.)

(ii) Let I be the kernel of B → C. For any C-module J , construct an exact sequence:

0→ DerA(C, J)→ DerA(B, J)→ HomB-Mod(I, J)

(iii) Conclude that there is an exact sequence of C-modules:

I/I2 → C ⊗B ΩB/A → ΩC/A → 0

(Hint: I/I2 ' C ⊗B I. Why?)

(iv) Show by example that the sequence can’t be completed by 0 → I/I2 on the left and
remain exact. (Hint: Consider A = k a field, B = k[x], and C = B/x2B = k[x]/(x2).)

Solution. Follow the hint: x3 ∈ I/I2 and d(x3) = 3x2dx = 0.

1This means that HomA-Alg(C,D) → HomA-Alg(B,D) is injective for any A-algebra D. This includes
surjections and localizations.
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30 Étale morphisms IV

30.1 Extensions of algebras

Definition 30.1.Extensions of algebras
mean square-zero

extensions. Thanks
Ryan.

Let A be a commutative ring, B a A-algebra, and J a B-module. An
A-algebra extension of B by J is a surjective homomorphism with square-zero kernel of A-
algebras B′ → B and an identification of the kernel of this surjection with J . A morphism
from an extension B′ to an extension B′′ is a homomorphism of A-algebras that induces
the identity on J and induces the identity modulo J . In other words, it is a commutative
diagram:

0 // J // B′

��

// B // 0

0 // J // B′′ // B // 0

The isomorphism classes of A-algebra extensions of B by J are denoted ExalA(B, J).

Exercise 30.2. (i) Show that the automorphism group of B + εJ as an A-algebra ex-
tension of B is DerA(B, J). Conclude that A-algebra extensions can have nonzero
automorphisms.

(ii) Show that every morphism of A-algebra extensions is an isomorphism.

(iii) Construct a bijection between the isomorphisms B′ ' B + εJ and the A-algebra
sections of B′ → B.

Exercise 30.3. Let q : Ã→ B be a surjection.

(i) Find an identification between ExalÃ(B, J) and

HomÃ-Alg(IB/Ã, J) = HomB-Mod(B ⊗Ã IB/Ã, J).

Solution. Given ϕ : Ã → B′ over Ã → B we must have ϕ(IB/Ã) ⊂ J . This gives a
map IB/Ã → J .

Conversely, given a map ψ : IB/Ã → J , we can push out the exact sequence

0→ IB/Ã → Ã→ B → 0

to get
0→ J → B′ → B → 0.

An explicit construction here is to take Ã + εJ modulo the ideal generated by all
x− εψ(x) for x ∈ IB/Ã. This shows in particular that B′ is a ring.

(ii) Show that under this identification, the zero element corresponds to B′ = B+ εJ with

the Ã-algebra structure coming from the homomorphism q + 0ε. Show that, up to
isomorphism, this is the only Ã-algebra extension B′ → B that has a section by a
Ã-algebra homomorphism.

Solution. From the explicit construction of B′ above, the zero homomorphism corre-
sponds to Ã+ εJ/IB/Ã + 0ε) = B+ εJ . (Thanks to Matt Grimes for pointing out this

simple proof.)



136 CHAPTER 9. SMOOTH MORPHISMS

30.2 An algebraic characterization of étale morphisms

Definition 30.4. Suppose that B is an A-algebra. Let Ã→ B be a surjection of A-algebras,
where Ã is a polynomial ring over A. The (truncated) cotangent complex of B over A is the
2-term complex (with respect to this presentation) is the complex

B ⊗Ã IB/Ã
d−→ B ⊗Ã ΩÃ/A.

The map sends b⊗ f to b⊗ df . The truncated cotangent complex is denoted τ≥−1LB/A.

Exercise 30.5. Show that, up to quasi-isomorphism, τ≥−1LB/A is independent of Ã.

Theorem 30.6. A map of affine schemes SpecB → SpecA is étale if and only if

d : B ⊗Ã IB/Ã → B ⊗Ã ΩÃ/A

is an isomorphism.

Consider an extension problem in which C ′ is a square-zero extension of C by the ideal
J :

C Boo

~~

C ′

OO

Aoo

OO

(30.1) eqn:4

Exercise 30.7. Show that solving the lifting problem (30.1) is equivalent to solving the
lifting problem below, in which B′ = C ′ ×C B:

B B

~~

B′

OO

Aoo

OO

(30.2) eqn:3

Exercise 30.8. Show thatB is formally étale overA if and only if DerA(B, J) = ExalA(B, J) =
0.

Solution. We can identify DerA(B, J) with lifts of this diagram:

B B

{{

B + εJ

OO

A

OO

oo

(30.3) eqn:19

If B is étale over A there is a unique lift, corresponding to the zero derivation.
If B′ is an A-algebra extension of B by J , form the diagram

B B

~~

B′

OO

A

OO

oo

(30.4) eqn:18

A lift exists so the extension B′ → B is split. Thus it is the zero element of ExalA(B, J).
Conversely, if DerA(B, J) = ExalA(B, J) = 0, consider a lifting problem (30.4). Since

ExalA(B, J) = 0, we know B′ = B + εJ , so this is really a lifting problem (30.3). But then
lifts are in bijection with DerA(B, J).
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Exercise 30.9.Two typos corrected
here. The target of the

map is Exal
Ã

(B, J)
and the ideal is I

B/Ã
.

Thanks to Ryan for
catching them.

Let Ã→ B be any surjection. Construct a map

DerA(Ã, J)→ ExalÃ(B, J)

and identify it with the map

HomB-Mod(B ⊗Ã ΩÃ/A, J)→ HomB-Mod(B ⊗Ã IB/Ã, J). (30.5) eqn:6

Exercise 30.10. (i) Suppose that Ã → B is a surjection of A-algebras. Construct a
commutative diagram in which the long row is exact and the morphism in the second
row is induced by d : B ⊗Ã IB/Ã → B ⊗Ã ΩÃ/A:

0 // DerA(B, J) // DerA(Ã, J)

o
��

// ExalÃ(B, J) //

o
��

ExalA(B, J)

Hom(B ⊗Ã ΩÃ/A, J) // Hom(B ⊗Ã IB/Ã, J)

Solution. We write p for the homomorphism Ã → B, which is fixed throughout this
discussion.

The map
DerA(B, J)→ DerA(Ã, J)

is by composition with p. It is injective because p is surjective.

The map DerA(Ã, J)→ ExalÃ(B, J) sends a derivation δ to the homomrphism p+εδ :

Ã → B + εJ , which makes B + εJ into a Ã-algebra extension B′ of B by J . To see
the exactness at this spot, suppose that B ' B + εJ as a Ã-algebra. Then there is a
Ã-algebra section of the projection B′ → B. That is p + εδ factors through B, so δ
factors through a derivation B → J .

The map ExalÃ(B, J) → ExalA(B, J) sends an extension B′ to itself, viewed as an

A-algebra instead of a Ã-algebra. If B′ lies in the kernel then there is an A-algebra
splitting of B′ → B. Thus B′ ' B + εJ as an A-algebra. Choosing such an iso-
morphism, the Ã-algebra structure gives an A-algebra map Ã → B + εJ , i.e., an
A-derivation Ã→ J .

(ii) Show that if Ã is a free A-algebra then the map

ExalÃ(B, J)→ ExalA(B, J)

is surjective.

Solution. Suppose B′ ∈ ExalA(B, J). Since Ã is free and Ã→ B is surjective, we can

lift the map Ã→ B to a map Ã→ B′.

(iii) Prove that
d : B ⊗Ã ΩÃ/A → B ⊗Ã IÃ/A

is an isomorphism if and only if B is formally étale over A.

Solution. We have seen that B is formally étale over A if and only if DerA(B, J) =
ExalA(B, J). But by commutativity of the diagram and exactness of the sequence
(including the surjectivity on the right), this is the same as d being an isomorphism.
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30.3 A differential characterization of étale morphisms

Exercise 30.11. Let Ã = A[x1, . . . , xn] and let I = (f1, . . . , fm).

(i) Show that B ⊗Ã ΩÃ/A =
∑
Bdxi.

(ii) Show that B ⊗Ã I is generated by f1, . . . , fm.

(iii) Show that the map ∑
Bfi → B ⊗Ã I → B ⊗Ã ΩÃ/A =

∑
Bdxi

is given by the following n×m matrix:

J =


∂f1
∂x1

· · · ∂fm
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fm
∂xn


(iv) Under the assumption m = n, conclude that d : B ⊗Ã I → B ⊗Ã ΩÃ/A is an isomor-

phism if and only if detJ ∈ B∗.

Exercise 30.12. Prove that Spec k[t, t−1]→ k[s, s−1], given by s 7→ tn, is étale if and only
if the characteristic of k does not divide n. (Hint: Identify k[t, t−1] = k[s, s−1, t]/(tn − s)
and use the differential criterion.)

A Bézout’s theorem
sec:bezout

Theorem A.1. If C and D are algebraic curves in A2
k that meet transversally and do not

meet at infinity then |(C ∩D)(k)| = deg(C) deg(D) for any algebraically closed field k.

Consider the moduli space of all such polynomials, AN = SpecA where N =
(
d+2
d

)
+(

e+2
e

)
. Let X ⊂ AN×A2 be the locus of (f, g, p) such that f(p) = g(p) = 0. Let π : X → AN

be the projection.
Note that C = V (f) and D = V (g) meet transversally if and only if the fiber of X over

the map (f, g) : Spec k → AN is étale over Spec k.

ex:trivial-bezout Exercise A.2. If

f = (x− α1)(x− α2) · · · (x− αd)
g = (y − β1)(y − β2) · · · (y − βe)

then V (f, g) consists of de reduced points.

Exercise A.3. There is a non-empty open subset U of AN such that π−1U is étale over U .

Solution. By definition, X is a closed subset of Y = Spec Ã = AN × A2, defined by two
equations:

X = {(f, g, p)
∣∣ f(p) = g(p) = 0}.
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We have Ω = ΩÃ/A = Ãdx + Ãdy ' Ã2. The ideal I = IB/Ã is defined by f and g. We

therefore obtain a map

B2 → Bf +Bg = B ⊗Ã I → B ⊗Ã Ω ' B2.

The matrix of this map is the Jacobian matrix:

J =

(∂f
∂x

∂g
∂x

∂f
∂y

∂g
∂y

)
This map is an isomorphism if and only if the Jacobian determinant is invertible. Therefore
D(det J) ⊂ AN is the largest open subset over which this map is an isomorphism. On the
other hand, X is étale over AN if and only if detJ is an isomorphism by the differential
criterion, so this shows there is a largest open subset of AN over which X is étale.

The previous exercise shows that this open subset is non-empty.

Exercise A.4. Show that there is a non-empty open subset of AN over which X contains
no points at infinity. Show that X is proper over this open subset.

Solution. Let Y ⊂ AN × P2 be the projective closure of X and let q : Y → AN be the
projection. Note that q is proper because it is projective.2 Let Z ⊂ AN × P2 be the line

2→

at infinity (the complement of AN ×A2). Then Z ∩ Y is closed in AN × P2 so it is also
proper over AN . Let U ⊂ AN be the complement of the image of Z ∩ Y .

Then q−1U is proper over U by stability of properness under base change.3 On the other
3→

hand, q−1U ∩ (Z ∩ Y ) = U ∩ q(Z ∩ Y ) = ∅ so q−1U ⊂ X = Y r Z. Thus q−1U = p−1U
and in particular p−1U is proper over U .

The first exercise shows that this subset is nonempty. Indeed, the intersection of the two
curves at infinity is the intersection of xd = ye = 0 in P1, which is empty.

Exercise A.5. Conclude that there is an open subset U ⊂ AN containing the example
from Exercise A.2 such that p−1U is proper and étale over U .

Exercise A.6. Show that all geometric fibers of X over U have the same number of points.
(Hint: Let k be an algebraically closed field and consider a map h : Spec k[[t]] → U .
Construct a bijection between the closed fiber of h−1X and the set of points of the general
fiber with residue field k((t)) using the valuative criterion for properness and the formal
criterion for étale morphisms.)

31 Smooth and unramified morphisms

Definition 31.1. A morphism of schemes f : X → Y is said to be formally unramified if
any infinitesimal lifting problem

S //

��

X

f

��

S′ //

>>

Y

has at most one solution. A morphsim that is formally unramified and locally of finite type
is said to be unramified.

2todo: reference
3todo: reference
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def:smooth Definition 31.2.This definition has
been changed! The

infinitesimal extension
is now required to be
affine. This definition

is equivalent to the one
given earlier, but to

prove the equivalence
requries cohomology.

A morphism of schemes f : X → Y is said to be formally smooth if any
infinitesimal lifting problem

S //

��

X

f

��

S′ // Y

has at least one solution when S′ is affine. A morphism that is both formally smooth and
locally of finite presentation is said to be smooth.

Exercise 31.3. Show that formally étale is the conjunction of formally smooth and formally
unramified. (Note: This is not completely trivial! You will have to glue some morphisms.)

Exercise 31.4. (i) Suppose that f : X → Y induces an injection between functors of
points. Show that f is unramified.

(ii) Conclude that locally closed embeddings are unramified.

(iii) Give an example of an unramified morphism that is not an injection on functors of
points. (Hint: Consider the map f : A1 → A2 given by f(x) = (t2 − 1, (t2 − 1)t).
Show that this is a closed embedding away from either of the points t = ±1.)

Exercise 31.5. (i) Show that An is smooth for all n ≥ 0.

(ii) Show that the base change of a smooth morphism is smooth.



Deformation theory

Suppose we have a sequence of homomorphisms of commutative rings A
f−→ B

g−→ C. We
saw earlier that there is an exact sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0.

One might be tempted to ask how this sequence can be extended on the left. It turns out
that it is easier to consider all C-modules J and the dual sequences

0 // Hom(ΩC/B , J) // Hom(ΩC/A, J) // Hom(C ⊗B ΩB/A, J)

0 // DerB(C, J) // DerA(C, J) // DerA(B, J)

Exercise 31.6. Show that this sequence can be continued to a 6-term sequence:

0→ DerB(C, J)→ DerA(C, J)→ DerA(B, J)→ ExalB(C, J)→ ExalA(C, J)→ ExalA(B, J)

Solution. The map DerB(C, J)→ DerA(C, J) sends a B-derivation δ : C → J to itself, now
viewed as an A-derivation.

The map DerA(C, J)→ DerA(B, J) sends δ to δ ◦ g.
The map DerA(B, J) → ExalB(C, J) sends a derivation δ : B → J to the extension

C + εJ → J with the B-algebra structure coming from g + εδ : B → C + εJ .
The map ExalB(C, J) → ExalA(C, J) sends a B-algebra extension C ′ to itself, now

viewed as an A-algebra extension.
The map ExalA(C, J)→ ExalA(B, J) sends a A-algebra extension C ′ → C to g−1C ′ →

C.
We have exactness at DerB(C, J): If δ ∈ DerB(C, J) then its image in DerA(C, J) is the

same map.
We have exactness at DerA(C, J): Suppose δ ∈ DerB(C, J). Then δ(g(B)) = 0 by

definition so δ maps to zero in DerA(B, J). If δ ∈ DerA(C, J) maps to zero in DerA(B, J)
then δ(g(B)) = 0 so δ is a B-derivation.

We have exactness at ExalB(C, J). Suppose δ ∈ DerA(B, J). Then the image of δ
in ExalB(C, J) is the extension C + εJ with B-algebra structure g + εδ. Its image in
ExalA(B, J) is C + εJ with A-algebra structure (g+ εδ) ◦ f = gf since δ is an A-derivation.
We therefore get the zero element of ExalA(C, J). If C ′ → C is a B-algebra extension (fix
the map g′ : B → C ′) by J whose image in ExalA(C, J) is zero then choose an A-algebra
isomorphism ϕ : C + εJ → C ′. Then ε−1(ϕ−1g′ − g) : B → J is a derivation ϕ witnesses
that C ′ is in the image of DerA(B, J).

141
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We have exactness at ExalA(C, J). Suppose that C ′ is a B-algebra extension of C by J
(structure map g′). Then g−1C ′ has a splitting by g′. Suppose that g−1C ′ has a splitting
over B. Then by composition with g−1C ′ → C ′ this gives a B-algebra structure to the
extension C ′ → C.

Exercise 31.7. (i) Show that f is formally smooth if and only if ExalA(B, J) = 0 for all
J .

Solution. An A-algebra extension B′ of B by J is a lifting problem:

B B

~~

B′

OO

A

OO

oo

(ii) Show that g is formally unramified if and only if DerB(C, J) = 0 for all J .

Solution. The difference between two lifts of

C C

~~

C ′

OO

B

OO

oo

is a B-derviation C → J .

(iii) Assume f is formally smooth and g is formally unramified. Show that gf is formally
étale if and only if

DerA(B, J)→ ExalB(C, J)

is an isomorphism.

Solution. Use the exact sequence:

0→ DerA(C, J)→ DerA(B, J)→ ExalB(C, J)→ ExalA(C, J)→ 0

We get ExalA(C, J) = DerA(C, J) = 0 if and only if DerA(B, J)→ ExalB(C, J) is an
isomorphism.



Part II

General properties of schemes
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Chapter 10

Dimension

32 Dimension of smooth schemes

32.1 The tangent bundle

Exercise 32.1. Suppose that A is a commutative ring and B is an A-algebra. Show that
the natural map

B[f−1]⊗B ΩB/A → ΩB[f−1]/A

is an isomorphism. (Hint: Consider the functors they represent.)

Solution. It is the same to show that for any B[f−1]-module J , the map

DerA(B[f−1], J)→ DerA(B, J)

is a bijection. Certainly it is injective because B → B[f−1] is an epimorphism. Suppose
δ : B → J is an A-derivation. Define δ(f−nx) = f−nδ(x) − nf−n−1xδ(f). To verify this
is well-defined note that if fky = 0 in B then fkδ(y) + kfk−1yδ(f) = 0 so fk+1δ(y) = 0,
whence δ(y) = 0 in J .

Exercise 32.2. Suppose A→ B is a homomorphism of commutative rings and let X → Y
be the associated morphism of affine schemes. For each principal open affine D(f) ⊂ SpecB,
define ΩX/Y (D(f)) = ΩB[f−1]/A. Show that ΩX/Y is a quasicoherent sheaf on X.

Exercise 32.3. Let f : X → Y be a morphism of schemes. Construct a quasicoherent
sheaf ΩX/Y on X such that if U ⊂ X and V ⊂ Y are open affines with U ⊂ f−1V we

have ΩX/Y
∣∣
U

= ΩU/V . (Hint: One strategy here is to glue together the constructions from

the previous exercise. Another is to construct d : OX → ΩX/Y as the universal f−1OY -
derivation. Still another is to take ΩX/Y = ∆−1(I /I 2) where ∆ : X → X ×Y X is the
inclusion of the diagonal.)

Exercise 32.4. Let S be a scheme and let J be a quasicoherent sheaf on S. Define
OS[J ](U) = OS(U) + εJ (U) for all open U ⊂ S.

(i) Show that OS[J ] is the structure sheaf of a scheme S[J ] whose underlying topological
space is the same as that of S.

145
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(ii) Construct a closed embedding S → S[J ] and a canonical retraction S[J ]→ S.

When J = OS we also write S[ε].

Exercise 32.5. Let f : X → Y be a morphism of schemes. Define TX/Y (S) to be the set
of commutative diagrams

S[ε] //

��

X

f

��

S // Y

where S[ε] → S is the retraction constructed in the last exercise. Show that TX/Y is
representable by V(ΩX/Y ).

The scheme TX/Y constructed in the last exercise is known as the relative tangent bundle
of X over Y .

32.2 Relative dimension

thm:smooth-tangent-bundle Theorem 32.6. Suppose that f : X → Y is smooth. Then TX/Y is a vector bundle.

Exercise 32.7. Suppose that B is a formally smooth A-algebra. Show that ΩB/A is pro-
jective as a B-module.

Solution. We need to show HomB-Mod(ΩB/A,M) is a right exct functor of M . Consider
a surjection M → M ′ of B-modules and a map ΩB/A → M ′. This corresponds to an A-
derivation B →M ′ and therefore to an A-algebra homomorphism B → B + εM ′ lifting the
identity. Consider the lifting problem

B + εM ′ Boo

zz

B + εM

OO

Aoo

OO

Note that B + εM → B + εM ′ is a surjection. Therefore a lift exists. Thus the derivation
B →M ′ lifts to a derivation valued in M and the map ΩB/A →M ′ lifts to M . Thus ΩB/A
is projective.

Definition 32.8. A sheaf F of OX -modules on a scheme X is said to be locally of finite
presentation if there is a cover of X by open subschemes U such that there is a presentation

O⊕nU → O⊕mU → F
∣∣
U
→ 0

with both m and n finite.

Exercise 32.9. Suppose that f : X → Y is locally of finite presentation. Show that ΩX/Y
is locally of finite presentation.

The following exercises will now complete the proof of Theorem 32.6.

Exercise 32.10 (Nakayama’s Lemma).Imperative if you
haven’t done it before.

Skip it if you have.

Suppose A is a local ring with residue field k and
maximal ideal m and M is a finitely generated A-module. Prove that the following conditions
are equivalent:
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(i) M = 0

(ii) M = mM

(iii) M/mM = 0

(iv) M ⊗A k = 0

Solution. Let x1, . . . , xn be generators. If mM = M then xn =
∑
aixi with ai ∈ m. Then

(1− ai)xn ∈
∑n−1
i=1 Axi and 1− ai is a unit because A is local. The remaining implications

are easier.

Exercise 32.11. (i) Prove that a finitely presented A-module M is locally free if and
only if Mp is free as an Ap-module for every prime p of A.

Solution. If M is locally free then Mp is locally free and Ap has no nontrivial open
covers so Mp must be free.

Conversely, if Mp is free then choose elements x1, . . . , xn of M that form a basis of
Mp. Recall M is finitely generated, so any of the finitely many generators yj lies in∑
Apxi. Only finitely many denominators are necessary to write such an expression

for yj , so we can write yj ∈ A[f−1]xi for some f ∈ A. We can make a single f work
for all j. Similarly, if zj is one of the finitely many relations among the xj in Mf then
zj = 0 in Ap so gzj = 0 for some g 6∈ p. There are only finitely many relations, so we
can kill all of them by inverting a single g. Then D(fg) is an open neighborhood of p
on which M is free. Repeat for all primes p to get a cover on which M is free.

(ii) Prove that a finitely presented A-module M is projective if and only if Mp is projective
for every prime p of A. (Hint: Show that HomAp-Mod(Mp, Np) = HomA-Mod(M,N)p.
You will need the finite presentation for this.)

Solution. Choose a presentation of M :

An → Am →M → 0.

This induces
0→ Hom(M,N)→ Nm → Nn.

By exactness of localization, we get a diagram of exact sequences

0 // Hom(M,N)p //

��

(Nm)p //

��

(Nn)p

��

0 // Hom(Mp, Np) // (Np)m // (Np)n

By the commutation of localization with finite products the vertical arrows on the
right are isomorphisms. Therefore the vertical arrow on the left is too.

To show that HomA-Mod(M,N) is an exact functor of N for all primes p. It is sufficient
to show that HomA-Mod(M,N)p = HomA-Mod(Mp, Np) is an exact functor of N . But
Np is an exact functor of N and Mp is projective, so we are done.

Conversely, Mp is projective if M is because the inclusion of Ap-modules in A-modules
is an exact right adjoint to localization.
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(iii) Prove that a finitely presented projective module over a local ring is free. (Hint:
Choose generators of M ⊗A k where k is the residue field. Lift these to M and use
Nakayama’s lemma to conclude that these generate M . Obtain a surjection An →M
that induces an isomorphism upon passage to the residue field. Let N ⊂ An be
the kernel. Use the fact that M is projective to get an isomorphism An ' N ×M .
Conclude that N ⊗A k = 0 and apply Nakayama’s lemma again.)

Solution. Suppose M is a finitely presented projective A-module and A is local.
Choose a basis for M module mM . These elements generate M and give a surjec-
tion An → M inducing an isomorphism modulo m. Let N be the kernel. Since M is
projective, we can find an identification An ' N ×M . Then kn ' N/mN ×M/mM .
But M/mM ' kn so N/mN = 0. But N is finitely generated because M is finitely
presented, so this implies N = 0 by Nakayama’s lemma.

(iv) Prove that an A-module M of finite presentation is locally free if and only if it is
projective.

Solution. We have seen that M is locally free if and only if Mp is free for all p if and
only if Mp is projective for all p if and only if M is projective.

Definition 32.12. Suppose that f : X → Y is a smooth morphism of schemes. If TX/Y
has rank n then we say f is smooth of relative dimension n.

32.3 The structure of smooth morphisms

Theorem 32.13. Suppose that π : X → Y is smooth of relative dimension n. Then there
is an cover of X by open subsets U such that U → Y factors as an étale map U → An

Y .

Proof. Choose U such that ΩU/Y ' O⊕nU . Choose f1, . . . , fn such that the dfi form a basis
for ΩU/Y . These give a map U → An

Y . We argue that this is étale. Consider a lifting
problem in which S′ is a square-zero extension of S = SpecB by J :

S //

��

U

��

S′ //

==

An
Y .

(32.1) eqn:22

Note that the lower horizontal arrow is a lift of

S //

��

An
Y

��

S′ //

>>

Y

(32.2) eqn:20

The lifts of this diagram may be identified (in fact, form a torsor under)

HomB-Mod(B ⊗OAn
Y

ΩAn
Y /Y

, J).
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Lifts of the diagram

S //

��

U

��

S′ //

>>

Y

(32.3) eqn:21

form a torsor under
HomB-Mod(B ⊗OU ΩU/Y , J).

But OU ⊗OAn
Y

ΩAn
Y /Y

' ΩU/Y so lifts of diagram (32.2) are in bijection with lifts of (32.3).

In other words, diagram (32.1) has a unique lift.

33 Dimension I

Reading 33.1. [AM69, Chapter 11], [Vak14, Chapter 11], [GD67, IV.0.16]

We introduce several approaches to the dimension of a commutative ring. The theory
works best in the case of a noetherian local ring, and we eventually define the dimension of
a non-local noetherian ring to be the maximum of the dimensions of its local rings.

33.1 Chevalley dimension
sec:Chevalley

Definition 33.2. If A is a noetherian local ring, an ideal of definition of A is an ideal q
whose radical is the maximal ideal of A.

The Chevalley dimension of A is the minimal number of generators of an ideal of defi-
nition of A.

Exercise 33.3.Should be immediate. Show that the Chevalley dimension of a noetherian local ring A with
maximal ideal m is the minimal number of elements f1, . . . , fn of A such that V (f1, . . . , fn) =
{m}.

33.2 Artin–Rees lemma

This section follows [AM69, Chapter 11].

Definition 33.4. Let A be a commutative ring, I ⊂ A an ideal, and M an A-module. A
decreasing filtration of

M = F 0M ⊃ F 1M ⊃ F 2M ⊃ · · ·

is called an I-filtration if IFnM ⊂ Fn+1M for all n. It is called a stable I-filtration if
IFnM = Fn+1M for all n� 0.

We are really only interested in the filtration FnM = InM , but we run into an unfortu-
nate difficulty. If M ′ ⊂ M then InM ′ 6= M ′ ∩ InM . That is, we get a second filtration on
M ′ by setting FnM ′ = M ′ ∩ InM . The Artin–Rees lemma says that when A is noetherian
and M is finitely generated, these two filtrations aren’t that different.

Theorem 33.5 (Artin–Rees lemma). If A is noetherian and M is finitely generated, every
I-filtration F of M is stable.

Exercise 33.6. We will prove the Artin–Rees lemma using the Rees algebra B = A[tI] =∑∞
n=0 t

nIn and the modules N =
∑∞
n=0 t

nInM and N ′ =
∑∞
n=0 t

nFnM .
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(i) Prove that the Rees algebra is noetherian if A is noetherian.

(ii) Prove that N ′ is a B-submodule of N and that N is a finitely generated B-module.
Conclude that N ′ is finitely generated.

(iii) Prove the Artin–Rees lemma. (Hint: Choose n such that all generators of N ′ have
degrees ≤ n.)

Solution. Choose n as in the hint. Then INm = Nm+1 for all m ≥ n. That is,
IFmM = Fm+1M .

33.3 Hilbert–Samuel dimension

Definition 33.7. Let A be a noetherian local ring and let M be an A-module. If

M = F 0M ) F 1M ) · · · ) FnM = 0.

is a maximal filtration of M , the number n is called the length of M and is denoted
length(M).

Exercise 33.8. Show that the length of M is the dimension (over the residue field) of the
graded module

gr(M) =

∞∑
k=0

mkM/mk+1M

where m is the maximal ideal of A. Conclude that the definition of the length does not
depend on the choice of filtration F .

Exercise 33.9. Show that the length is additive in short exact sequences: if

0→M ′ →M →M ′′ → 0

is exact then length(M) = length(M ′) + length(M ′′).

Definition 33.10 (Hilbert–Samuel function). Let A be a noetherian local ring and M an
A-module with a descending filtration F . The Hilbert–Samuel function associated to F is
h(M,F, n) = length(M/FnM). When F is the filtration associated to an ideal I, we write
h(M, I, n).

The Hilbert function turns out to be a polynomial:

ex:hilbert-func-poly Exercise 33.11. Let A be a noetherian local ring, m its maximal ideal, M a finitely gen-
erated A-module, and F a descending m-filtration on M .

(i) Show that h(M,F, n) = h(grM,n) where grM =
∑
n≥0 F

nM/Fn+1M is the associ-
ated graded ring of M , filtered by degree.

Solution. We have

length(M/FnM) =

n∑
m=0

length(Fm−1M/FmM) = length(grM/Fn grM).
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(ii) Show that h(M,F, n) agrees with a polynomial for n� 0.

Solution. By the previous part, we can assume A is graded and M is a graded module.
Now proceed by induction on the minimal number of generators for m. If the number is
0 then h(M) is constant. Otherwise, let x be a generator of m. Consider the sequence

0→ AnnM(−1)(x)→M(−1)
x−→M →M/xM → 0

where M(−1) is the same module as M with its grading shifted by 1. Then

h(M,n)− h(M(−1), n) = h(M/xM,n)− h(AnnM(−1)(x), n).

Since the maximal ideal of A/xA is generated by fewer elements than is m, the right
side of the equality above is a polynomial for n � 0. On the other hand, the left
side is h(M,n)− h(M,n− 1), at least when n > 0. Thus h(M,n) is a polynomial for
n� 0.1

Definition 33.12. In view of Exercise 33.11, the Hilbert–Samuel function h(M,F, n) agrees
with a polynomial for large n. We call this polynomial the Hilbert–Samuel polynomial and
notate it P (M,F, n).

Exercise 33.13. Show that if q and p are ideals of definition of A then P (M, p) and P (M, q)
have the same degree.

Solution. Choose m such that qm ⊂ p. Then qnmM ⊂ pnM , so there is a surjection
M/qnmM →M/pnM so length(M/pnM) ≤ length(M/qnmM). In particular,

P (M, q, nm) = P (M, qm, n) ≥ P (M, p, n).

But both P (M, q) and P (M, p) are polynomials, so this bounds the degree of P (M, p) by
the degree of P (M, q). The same argument gives the reverse bound.

Exercise 33.14. Let A be a noetherian local ring, q an ideal of definition, F a descending
q-stable filtration on a finitely generated A-module M . Show that P (M,F ) and P (M, q)
have the same degree and leading coefficient.

Solution. We have FnM ⊂ qnM for all n. Therefore limn→∞ P (M,F, n)/P (M, q, n) ≤ 1.
On the other hand, there is some m such that Fm+nM = qnFmM for all n ≥ 0. Therefore

lim
n→∞

P (M,F, n)

P (M, q, n)
= lim
n→∞

P (M,F, n)

P (M,F,m+ n)

P (FmM,F, n)

P (FmM, q, n)

P (M, q, n)

P (FmM, q, n)

(Note that P (FmM,F, n) = P (M,F,m+n).) The first ratio approaches 1 since P (M,F,m+
n) and P (M,F, n) have the same leading coefficient and degree. The second ratio is identi-
cally 1. Finally qnFmM ⊂ qnM so length(M/qnFmM) ≥ length(M/qnM). Therefore the
last ratio is ≥ 1. The limit is therefore ≥ 1 as well.

Definition 33.15. The Hilbert–Samuel dimension of A is the degree of P (A,m).
1If h is a function of the integers such that h(n) − h(n − 1) is a polynomial for n � 0 then h is a

polynomial. Indeed, suppose `(n) = h(n) − h(n − 1) agrees with a degree d polynomial for all n � 0. Let
H(n) be the unique polynomial that agrees with h at d + 2 specified values n0, n0 + 1, . . . , n0 + d + 1 in
the range where ` is a polynomial. Let L(n) = H(n) −H(n − 1). Then L and ` are both polynomials for
large n, of the same degree d, agreeing at d+ 1 values. Hence they are equal. Now, H(n0) = h(n0) and by
induction H(n+ 1) = H(n) + L(n+ 1) = h(n) + `(n+ 1) = h(n+ 1), hence h(n) = H(n) for all n� 0 is a
polynomial.
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33.4 Krull dimension

Definition 33.16. The Krull dimension of A is the length of the longest chain of nontrivial
specializations in SpecA. Equivalently, it is the length of a maximal chain of prime ideals
in A.

34 Dimension II

34.1 Equivalence

thm:dimension Theorem 34.1 (Krull–Chevalley–Samuel [GD67, Théorème (0.16.2.3)], [AM69, Theorem 11.4]). If
A is a noetherian local ring, the Krull dimension, the Hilbert–Samuel dimension, and the
Chevalley dimension are all the same.

Let δ(A) denote the Chevalley dimension, d(A) the degree of the Hilbert–Samuel poly-
nomial, and dim(A) the Krull dimension.

Exercise 34.2.Not essential, as this
follows from the

theorem and is not
needed to prove it.

But it’s good practice.

Show that the following statements are all equivalent (without using The-
orem 34.1):

(i) δ(A) = 0;

(ii) d(A) = 0;

(iii) dim(A) = 0;

(iv) m is nilpotent.

Exercise 34.3. Show that dim(A) ≤ d(A).

Solution. Adapted from [GD67, (0.16.2.3.2)].
Choose a maximal chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn. Since d(A/p0) ≤ d(A) and

dimA = dimA/p0, it is sufficient to prove that dim(A/p0) ≤ d(A/p0). We can therefore
assume p0 = 0 and A is an integral domain. Pick a nonzero x ∈ p1. Thus dim(A/xA) =
dim(A) − 1: Indeed, we have a chain p1/xA ⊂ · · · pn/xA of length dim(A) − 1 and if we
could find a longer chain then taking the preimage in A and appending p0 would produce a
chain of length > n in A. Moreover,

P (A/xA,m, n) = P (A,m, n)− P (A,F, n− 1)

where xFnA = qnA ∩ xA, because of the exact sequence

0→ A
x−→ A→ A/xA→ 0.

Now, P (A,m) and P (A,F ) both have the same degree and leading coefficient (because F
is m-stable, by Artin–Rees) so d(A/xA) ≤ d(A) − 1. We can assume by induction that
dim(A/xA) ≤ d(A/xA) so

dim(A) ≤ dim(A/xA) + 1 ≤ d(A/xA) + 1 ≤ d(A)

as desired.

Exercise 34.4. Show that d(A) ≤ δ(A).
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Solution. This is a simplified version of [GD67, (0.16.2.3.3)], which deals with a more general
situation.

Suppose that q is an ideal of definition of A, generated by k elements. Then qn/qn+1 is
generated by

(
k+n−1
n−1

)
elements as a module under A/qn. Its length is therefore bounded by(

k+n−1
n−1

)
length(A/qn), so P (A, q) is bounded by a polynomial of degree k.

ex:prime-avoidance Exercise 34.5 ([Vak14, Proposition 11.2.13], [Eis91, Lemma I.3.3]). Let X = SpecA be
an affine scheme, let p1, . . . , pn points of X, and let I be an ideal of X with Z = V (I).
Assume that Z does not contain any of the pi. Then there is some f ∈ I such that f(pi) 6= 0
for all i.

Solution. We have Ik(pi) = k(pi) for all i. Therefore the image of I in
∏

k(pi) is not
contained in any maximal ideal. It follows that

p1 ∩ · · · ∩ pn + I = A.

But then there is an expression g + f = 1 with g ∈ p1 ∩ · · · ∩ pn and f ∈ I. Then f(pi) = 1
for all i.

Exercise 34.6. Prove δ(A) ≤ dim(A).

Solution. This is by induction on dim(A). If dim(A) = 0 then m is the nilradical. As m is
finitely generated, this means m is nilpotent and δ(A) = 0.

Now proceed by induction on dim(A). Assume dim(A) = n > 0. Then every prime p ⊂ A
such that dim(A/p) = n is a minimal prime. As A is noetherian, SpecA has finitely many
irreducible components, hence A has finitely many minimal primes. There are therefore
only finitely many p1, . . . , pk such that dim(A/p) = n. As dim(A) > 0, we know by prime
avoidance (Exercise 34.5) that m 6⊂

⋃
pi so there is at least one x ∈ m not in any of the pi.

Thus dim(A/xA) < dimA. Therefore

δ(A) ≤ δ(A/xA) + 1 ≤ d(A/xA) + 1 ≤ d(A).

Indeed, δ(A) ≤ δ(A/xA) + 1 because x may be adjoined to generators for m (as a radical
ideal) modulo xA to yield generators for m (as a radical ideal). The second inequality
is by induction on d(A), since d(A/xA) < d(A). The third inequality is again because
d(A/xA) < d(A).

34.2 Codimension

def:codimension Definition 34.7 ([Vak14, §11.1.4]). The codimension of an irreducible closed subset Z of
a notherian scheme X is the dimension of the local ring at the generic point of Z.

Exercise 34.8 ([Vak14, Theorems 11.3.3, 11.3.7, §11.5]). Prove Krull’s Hauptidealsatz:
Let A be a noetherian local ring and f1, . . . , fn ∈ A. Show that codimX V (f1, . . . , fn) ≤ n.
(Hint: Use Chevalley dimension.)

Solution. Let p be a minimal prime containing (f1, . . . , fn). Then (f1, . . . , fn)Ap is an ideal
of definition, so dimAp ≤ n.

Exercise 34.9. (i) Prove that for any noetherian local ring A and any prime ideal p ⊂ A
we have

dimA/p + dimAp ≤ dimA
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(ii) Give an example of a noetherian local ring A and a prime ideal p ⊂ A such that

dimA/p + dimAp 6= dimA

34.3 Examples

Exercise 34.10. Compute dim Spec Z.

Exercise 34.11. Let k be a field, let A = k[x1, . . . , xn], and let p ⊂ A be the ideal
(x1, . . . , xn)A. Compute dimAp. (Once we have proved the Nullstellensatz, this will be a
calculation of the dimension of An

k .)

Exercise 34.12. Compute dim An at a closed point.

Exercise 34.13. Suppose that X is a smooth scheme over a field k. Prove that dimX (at
any closed point) coincides with the rank of the tangent bundle TX/ Spec k.

34.4 Regularity

Definition 34.14. A noetherian local ring A with maximal ideal m is said to be regular if
dimm/m2 = dimA.

Exercise 34.15. Suppose that X is a smooth scheme over a field k. Show that the local
ring of X at any point is regular.

Exercise 34.16. Give an example of a regular scheme that is not smooth. (Hint: An
inseparable field extension.)

Exercise 34.17. Show that the rank of the tangent bundle of a smooth scheme over a field
coincides with the dimension of the scheme.



Chapter 11

Algebraic properties of schemes

35 Finite, quasi-finite, and integral morphisms

Definition 35.1. A morphism of schemes f : X → Y is said to be finite if there is a cover
of Y by open affine subschemes V = SpecA such that f−1V = SpecB with B finite as an
A-module.

Exercise 35.2.Reorganization of
definition. Should be

easy.

Show that f : X → Y is finite if and only if it is affine and f∗OX is a sheaf
of OY -modules of finite type.

Exercise 35.3.Trivial. Show that closed embeddings are finite morphisms.

Definition 35.4. A morphism of commutative rings A→ B is said to be a integral if every
element of B satisfies a monic polynomial with coefficients in A.1 A morphism of schemes
f : X → Y is said to be integral if there is a cover of Y by open subschemes V = SpecA
such that f−1V = SpecB where B is an integral extension of A.

Definition 35.5. A morphism of schemes is quasifinite if it is of finite type and has finite
fibers.

Exercise 35.6. (i) Show that finite morphisms are quasifinite.

(ii) Give an example of a quasifinite morphism that is not finite. (Hint: open embedding.)

Exercise 35.7 (Cayley–Hamilton theorem [Sta15, Tag 00DX]). Suppose A is a commutative
ring, M is a finitely generated A-module, and f is an endomorphism of M . Then f satisfies
an integral polynomial with coefficients in A. If M is free, this polynomial can be taken to
be the characteristic polynomial.

(i) Reduce to the case where M is free.

Solution. Choose a surjection p : An → M and lift f to a map g : An → M (i.e.,
so that f(px) = pg(x) for all x ∈ An. Then if Q(g)x = 0 for all x ∈ An we have
pQ(g)x = Q(f)px = 0 for all x ∈ An, so Q(f) = 0.

1Note that integral morphisms of commutative rings are not necessarily injective. This confused me for
a long time.

155
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(ii) Reduce to the case where A is an integral domain.

Solution. Choose a polymomial ring B over Z and a map ϕ : B → A containing all of
the coefficients of a matrix representative F of f . Then F = ϕ(G) for some matrix G
with coefficients in B and if Q(B) = 0 then ϕ(Q(B)) = Q(ϕ(B)) = Q(A) = 0.

(iii) Reduce to the case where A is a field and the characteristic polynomial splits into
linear factors.

Solution. The characteristic polynomial won’t change when applying an injection.
Embed A in its field of fractions. Enlarging the field doesn’t change the characteristic
polynomial either, so we can pass to a splitting field of the characteristic polynomial.

(iv) Show that M is a finite direct sum of generalized eigenspaces.2

Solution. Let N ⊂ M be the generalized ξ-eigenspace. Then N is the kernel of
(f − ξid)r for some r. Note that f − ξid acts invertibly on M/N , so let h be an
inverse on M/N . Note that (f − ξid)r descends to a map g : M/N →M . Then g ◦ hr
splits the projection M → M/N . Thus M = M/N ⊕ N and by induction M/N is a
sum of generalized eigenspaces.

(v) Show the theorem is true when f acts nilpotently on a vector space.

Solution. Assume fr = 0. Then the vector space has a descending filtration M ⊃
f(M) ⊃ · · · ⊃ fr(M) = 0. Choose a basis compatible with this filtration. Then
the matrix of f is upper triangular with zeroes on the diagonal so its characteristic
polynomial is Xn with n ≥ r.

(vi) Conclude that the theorem is true for all the generalized eigenspaces ofM and therefore
for M itself.

Solution. If Nξ is the generalized ξ-eigenspace then the characteristic polynomial of f
on Nξ is (X − ξ)r and subsituting f

∣∣
Nξ

yields zero. Then if x ∈M we write x =
∑
xξ

with xξ ∈ Nξ and PM (f)x =
∑
PNξ(f

∣∣
Nξ

)xξ = 0.

Exercise 35.8 ([Sta15, Tag 02JJ]). Show that a morphism is finite if and only if it is
integral and of finite type.

Solution. By the previous exercise, if B is a finite A-module then any element x ∈ B acts on
B as an endomorphism, hence satisfies an integral polynomial. Therefore finite morphisms
are integral.

Conversely, an extension B = A[x]/f(x) is clearly finite if f is monic. By induction, a
succession of such extensions is also finite. Any finitely generated integral extension may be
surjected upon by such an extension, so integral extensions are all finite.

2The generalized ξ-eigenspace of M is the submodule N ⊂M containing all x ∈M annihilated by some
power of (f − ξid).
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Exercise 35.9. Give an example of an integral extension that is not free. (Hint: Normalize
a nodal or cuspidal plane curve.)

Solution. Consider A = C[x, y]/(y2 − x3) ⊂ C[y/x] = B. Write t = y/x. Then y = t3 and
x = t2. Then t satisfies the monic polynomial t2 − x = 0 but B 6= A[T ]/(T 2 − x).

Alternately, A = C[x, y]/(y2 − x3 + x2) ⊂ C[y/x] = B with xt = y. Then t2 = x− 1 so
the extension is integral. But again, B 6= A[T ]/(T 2 − x+ 1).

36 Integral morphisms and dimension

36.1 Lifting inclusions of primes

Exercise 36.1. Suppose A ⊂ B is an integral extension. Show that SpecB → SpecA is
surjective.

Exercise 36.2 ([AM69, Proposition 5.7]).This exercise can be
used in Exercise 36.3,

but so can Exercise ??,
which might be easier.

Let A ⊂ B be an integral extension of commu-
tative rings. Then A is a field if and only if B is a field.

Solution. Suppose B is a field. Suppose that x ∈ A. Then x−1 ∈ B so x−1 satisfies a
monic polynomial f(x−1) = x−d − g(x−1) with deg g = d − 1. Then x−1 = xd−1g(x−1) so
x−1 ∈ A.

ex:going-up Exercise 36.3 ([Vak14, Theorem 7.2.5]). Prove that specializations lift along integral mor-
phisms.

Solution. Let f : X → Y be an integral morphism and suppose that f(x′) = y′ ; y. Replace
X by the closure of x′ (with its reduced structure). This is okay, because specializations lift
uniquely along closed embeddings. It is now sufficient to show that f−1x 6= ∅: any point in
f−1x is a specialization of x′ by definition. But f is integral, so every fiber is nonempty.

Exercise 36.4. Prove that integral morphisms are universally closed.

Solution. We can assume the target is affine by passing to an open cover. The source is
then affine as well. Any closed subset of the source is representable by an affine scheme, so
it is sufficient to show SpecB → SpecA is closed when B is integral over A.

Let A′ be the image of A in B. It is sufficient to show that SpecB → SpecA′ is closed
since SpecA′ is closed in SpecA. But A′ ⊂ B is an integral extension, so it is surjective.

This shows integral morphisms are closed. But the base change of an integral morphism
is integral, so integral morphisms are universally closed.

Exercise 36.5. Show that finite morphisms are proper.

Solution. As finite morphisms are affine, they are quasicompact and separated. They of
finite type by definition. They are integral so they are universally closed.

Exercise 36.6 ([Vak14, Exercise 11.1.E]). Suppose f : X → Y is an integral extension.
Prove that dimX = dimY .

Solution. A chain of specializations in Y lifts to a chain of specializations in X so dimX ≥
dimY . Conversely, a chain of specializations in X maps to a chain of specializations in Y ,
which must have the same length, by uniqueness of lifts, so dimY ≥ dimX.
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Exercise 36.7. Let k be a field. Prove that for any maximal ideal p of A = k[x1, . . . , xn],
we have dimAp = n. (Hint: Reduce to the case of an algebraically closed field k and use
the Nullstellenstaz.)

Theorem 36.8. (i) A morphism of schemes is integral if and only if it is both affine and
universally closed.

(ii) A morphism of schemes is finite if and only if it is both affine and proper.

Exercise 36.9 ([ano], [Sta15, Tag 01WM]). Prove the theorem using the following steps:

(i) Suppose ϕ : A → B is injective and the induced map SpecB → SpecA is closed and
f ∈ A is an element such that ϕ(f) ∈ B∗. Show that f ∈ A∗.

Solution. The assumptions that SpecB → SpecA be closed and ϕ : A → B be in-
jective combine to imply that SpecB → SpecA is surjective. (Proof: Let SpecC be
the image of SpecB in SpecA, with its reduced subscheme structure. Then A → B
factors through a surjection A → C. This must also be injective, hence an isomor-
phism.) Then for every p ∈ SpecA, choose some q ∈ SpecB whose image is p. We
have f(p) = ϕ(f)(q) 6= 0 so f does not vanish at any point of SpecA. Therefore f is
a unit in A.

(ii) Suppose ϕ : A → B is an injection such that the induced map SpecB[t] → SpecA[t]
is closed. Then ϕ is integral.

Solution. Choose f ∈ A and consider the closed subset V (tf − 1) ⊂ SpecB[t]. The
image of this map in SpecA[t] is closed by assumption. Let us write A[f−1] for the
image of A[t] → B[t]/(tf − 1) = B[f−1]. Then A[f−1] → B[f−1] is injective and
induces a closed map on SpecB[f−1] → SpecA[f−1], hence f−1 must be a unit in
A[f−1]. That is f ∈ A[f−1] also. Thus we can write f =

∑
aif
−i for some ai ∈ A. In

other words, f is integral over A.

(iii) Complete the proof of the theorem.

Solution. We have seen that an integral morphism is affine (by definition) and univer-
sally closed. Conversely, we have just seen above that a universally closed morphism
between affine schemes is integral. It follows that a universally closed affine morphism
is integral because being integral is a local property.

The second part follows by adding finite type to both sides of the equivalence.

36.2 Noether normalization

Theorem 36.10 (Noether normalization [Mum99, §I.1], [Vak14, 11.2.4]). Suppose k is a
field and B is an integral domain of finite type over k. Then there is a polynomial subring
A ⊂ B such that B is a finite extension of A (as a module).

Proof. Present B as k[x1, . . . , xn]/(f1, . . . , fm). By reordering, we can assume x1, . . . , xd are
transcendental over k. We induct on n − d. If d = n then B = k[x1, . . . , xn]. Otherwise,
let B0 ⊂ B be the subring generated by x1, . . . , xn−1. By induction, there is a polynomial
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subring A0 = k[y1, . . . , yd] ⊂ B0 such that B0 is finite over A0. Then xn satisfies some
polynomial relation f(xn) = 0 with coefficients in y1, . . . , yd.

Consider zi = yi − yri1 where the ri are to be determined later. Let a(y1, . . . , yd, xn) be
the monomial of f of highest total in the yi. Then, viewed as a polynomial in the zi, it
becomes

a(y1, z2 + yr21 , . . . , zd + yrd1 )

and this is monic when viewed as a polynomial in y1. Moreover, if the ri are chosen suitably
large, the polynomial f(y1, z2, . . . , zd, xn) will be monic as a polynomial in y1. Finally,
yrii − yi − zi = 0 for all i, so A0, and hence B0, is integral over A = k[z2, . . . , zd, xn]

Corollary 36.10.1. Suppose that B is an integral domain of finite type over a field k.
Let K be the field of fractions of B. For any maximal ideal p ⊂ B, the dimension dimBp

coincides with tr.degkK.

Proof. We can assume that B is a finite extension of a polynomial ring A. Then special-
izations lift along SpecB → SpecA so dimBp = dimAp∩A for all primes p of B. Likewise
tr.deg fracA = tr.deg fracB so we can assume A = B. But now we know that the dimension
of k[x1, . . . , xn] at a maximal ideal is n.

37 Chevalley’s theorem

Reading 37.1. [Vak14, §7.4],

thm:generic-freeness Theorem 37.2. Let A be a noetherian integral domain, B an A-algebra of finite type, and
M is a B-module of finite type. There is a non-zero f ∈ A such that A[f−1] ⊗AM is free
as a A[f−1]-module.

Proof. We do this by induction on the number of generators of B as an A-algebra. If
there are no generators then B is a quotient of A, so a finitely generated B-module can be
regarded as a finitely generated A-module. Let K be the field of fractions of A. Choose
a map p : An → M that induces an isomorphism Kn → K ⊗A M . Then let N be the
kernel of p and let N ′ be the cokernel. We get K ⊗A N = 0. Since N and N ′ are finitely
generated (A is noetherian and An and M are finitely generated) there is some f ∈ A such
that fN = fN ′ = 0. Then N ⊗A A[f−1] = N ′ ⊗A A[f−1] = 0 so A[f−1]⊗AM ' A[f−1]n.

In the induction step, we assume that the theorem is true when B has one fewer gener-
ator. Let t be one of a finite set of generators of B. Consider the maps

M/tM → tnM/tn+1M

x mod tM 7→ tnx mod tn+1M

with kernels Nn. Then the Nn are increasing submodules of M/tM , which is a finitely
generated B/tB-module, so they stabilize because B is noetherian, say to N . Therefore
the modules tnM/tn+1M run through only finitely many distinct isomorphism classes. By
induction, we can therefore find a f ∈ A such that tnM/tn+1M is a free A-module for all n.

Since tnM/tn+1M is a free A-module we can choose elements of tnM whose images in
tnM/tn+1M form a basis. Taking the collection of all of these, for varying n, we obtain a
basis for M over A. Indeed, suppose that there is a relation

∑
aixi = 0 with all ai 6= 0.

Let n be the smallest degree among the xi. Then reduce modulo tn+1M to get a relation
among basis elements of tnM/tn+1M . This is necessarily zero, so ai = 0 whenever xi has
minimal degree.
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Definition 37.3 ([GD71, Définition 0.2.3.1, 0.2.3.2, 0.2.3.10]). An open subset U of a
scheme X is said to be retrocompact if the inclusion U ⊂ X is quasicompact.

Let X be an affine scheme. A subset of X is called constructible if it can be constructed
using only the retrocompact open subsets of X and a finite process of intersections and
passages to complementary subsets.

A subset Z of a scheme X is said to be locally constructible if there is an cover of X by
affine open subschemes U such that the intersection Z ∩ U is a constructible subset of U .

Exercise 37.4. Show that an open subset of an affine scheme is retrocompact if and only
if it is the complement of a closed subscheme of finite presentation.

Exercise 37.5. Give an example of an open subset of an affine scheme that is not a
retrocompact open subset.

Exercise 37.6. Let f : X → Y be a morphism of schemes. Show that the pullback of a
constructible subset of Y to X is constructible.

Solution. The pullback of a retrocompact open subset is retrocompact, preimage stabilizes
intersections and complements.

Exercise 37.7. Show that a locally constructible subset of an affine scheme is constructible.

Solution. Suppose Z ∩ Ui is constructible for all i and
⋃
Ui = X. Shrinking the Ui if

necessary, we can assume they are affine and in particular retrocompact. Then Z =
⋃

(Z∩Ui)
is a constructible subset of X.

Exercise 37.8. Show that a subset of a noetherian scheme is constructible if and only if it
is a finite union of underlying subsets of locally closed subschemes.

Exercise 37.9. Let X be a scheme. For each open U ⊂ X, let S (U) be the collection of
all subsets of U and let C (U) be the set of all locally constructible subsets.

(i) Show that S is a sheaf and C is a subsheaf.

(ii) Show that C is the smallest subsheaf of S such that S (U) includes D(f) and V (f)
when U = SpecA and f ∈ A, and is stable under finite union and finite intersection.

Exercise 37.10. Show that a subset of an affine scheme X is constructible if and only if it
is a finite union of sets of the form U ∩V where U is a retrocompact open and V is a closed
subset of finite presentation.

Solution. Every locally closed subset is constructible, since closed subschemes of noetherian
schemes are always of finite presentation. We have (U ∩V )∩ (U ′∩V ′) = (U ∩U ′)∩ (V ∩V ′).
It follows that this class of sets is stable under finite intersection. To prove it is stable under
complementation, it is sufficient to show that the complement of U ∩ V is also of this form.
But the complement of U ∩ V is (X r U) ∪ (X r V ) which is clearly a finite union of the
closed subset of finite presentation X r U and the retrocompact open subset X r V .

Theorem 37.11. Let f : X → Y be a quasicompact morphism that is locally of finite
presentation and Z ⊂ X a constructible subset. Then f(Z) is a constructible subset of Y .
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Proof. Since constructibility is a local condition, we can assume Y is affine. Since X qua-
sicompact relative to Y , it is quasicompact, so it has a finite cover by affine schemes. We
can therefore find a surjection X ′ → X with X ′ affine. Let Z ′ be the preimage of Z. Then
Z ′ is a constructible subset of X ′ with the same image in Y as Z. We can therefore assume
X is affine.

As Z is constructible, it is a finite union of intersections U ∩ (X r V ) where U and V
are retrocompact opens. It is therefore sufficient to consider Z = U ∩ (X r V ). Since X is
quasicompact, U is quasicompact, in particular has a finite cover by principal open affine
subsets. We can therefore assume Z is a closed subset whose complement is quasicompact.
Therefore Z can be given the structure of an affine scheme of finite presentation over Y .

We are therefore reduced to the situation where X and Y are affine and Z = X. We can
find a cartesian diagram

X
f
//

��

X ′

f ′

��

Y
π // Y ′

where Y ′ is of finite type over Z, hence is noetherian. Then y ∈ f(X) if and only if
π(y) ∈ f ′(X ′). That is, π−1f ′(X ′) = f(X). We can therefore assume Y = Y ′ and X = X ′

and that Y is noetherian.

Now we argue by noetherian induction. Assume that f(X) is constructible when f(X)
is contained in a closed subset of Y other than Y itself. By the previous theorem there is
an open U ⊂ Y such that f−1U is free over U (i.e., U = SpecA and V = SpecB where
B is a free A-module). If f−1U = ∅ (it’s free of rank 0) then we are done by induction.
Otherwise, f(X) contains U and we replace X by X r f−1U (with its reduced subscheme
structure) and proceed by induction.

37.1 A criterion for openness

Exercise 37.12. Show that a subset of an affine scheme X is constructible if and only if it
is the image of a morphism of finite presentation.

Solution. Assume X = SpecA. If Z ⊂ X is constructible then Z is a finite union of subsets
of the form U ∩ (X r V ) where U and V are retrocompact open subsets of X. As U
is quasicompact we can assume U = D(g) for some g ∈ A. Write V =

⋃
D(fi). This

union can be taken finite because V is quasicompact. Therefore X rV = |V (f1, . . . , fn)| so
Z = D(g) ∩ V (f1, . . . , fn) is the support of A[g−1]/(f1, . . . , fn). In particular, it is of finite
presentation.

The reverse implication was proved in the last section.

Exercise 37.13. Show that a locally constructible subset of a scheme X is open if and only
if it is stable under generization.

Solution. Let Z ⊂ X be locally constructible and stable under generization. Then X r Z
is locally constructible and stable under specialization. Then it is the image of a morphism
of finite presentation and stable under specialization, hence closed, so Z must have been
open.
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37.2 Nullstellensatz

Exercise 37.14 ([Vak14, 7.4.3]). Suppose that K is a field extension of k that is finitely
generated as a k-algebra. Show that K is finitely generated as a k-module.

Solution. Let ξ be an element of K. Consider the map k[x] → K sending x to ξ. This
corresponds to a map SpecK → Spec k[x] = A1

k. The image of this map is a constructible
subset of A1

k consisting of a single point. Therefore it is not the generic point of A1
k. It is

therefore Spec k[x]/(f) for some nonzero f ∈ k[x]. That is, f(x) = 0 in K. Thus ξ satisfies
some polynomial equation and K is an algebraic extension of k.



Chapter 12

Flatness

38 Flatness I

Reading 38.1. [Vak14, Chapter 24], [Har77, §III.9]

Definition 38.2. Let A be a commutative ring. An A-module M is said to be flat if
N ⊗A M is an exact functor of N . An A-algebra B is said to be flat if it is flat as an
A-module.

Definition 38.3. A morphism of schemes f : X → Y is said to be flat if f∗ : QCoh(Y )→
QCoh(X) is an exact functor. More generally, a quasicoherent sheaf F on X is said to be
Y -flat if F ⊗OX f∗G is an exact functor of G ∈ QCoh(Y ).1

Exercise 38.4. Show that f : X → Y is flat if and only if there are open charts by maps
SpecB → SpecA where B is a flat A-algebra.

Exercise 38.5 ([Har77, Proposition 9.2], [Vak14, Exercises 24.2.A, 24.2.C, 24.2.D, 24.2.E]).

(i) Show that open embeddings are flat.

(ii) Let k be a field. Show that all maps X → Spec k are flat.

(iii) Show that the base change of a flat map is flat.

(iv) Show that An
Y → Y is flat.

(v) Show that a composition of flat maps is flat.

38.1 Openness

Exercise 38.6. (i) Let f : X → Y be a flat morphism. Show that the image of f is
stable under generization.

1These definitions can be made more generally for sheaves of OX -modules and OY -modules. The result
is equivalent for schemes.

163
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Solution. It is sufficient to assume Y = SpecA is the spectrum of a valuation ring
with closed point y and open point y′ where f−1y 6= ∅. Choose x ∈ f−1y. Replace X
with an affine open neighborhood SpecB of x. Let K be the field of fractions of A. If
f−1y′ = ∅ then K⊗AB = 0 so there is some nonzero t ∈ A where tB = 0. But A is a
domain so multiplication by t is an injection on A, and B is flat, so multiplication by
t is therefore also an injection on B. In particular, tB 6= 0 for all nonzero t ∈ A.

(ii) Flat morphisms of finite presentation are open.

Solution. The image of a morphism of finite presentation is locally constructible. Flat-
ness implies it is also stable under generization, hence open.

38.2 Generic flatness

Reading 38.7. [Vak14, §§24.5.8–24.5.13]

thm:generic-flatness Theorem 38.8. Suppose f : X → Y is a morphism of finite type between noetherian
schemes with Y integral. Then there is a dense open subset of Y over which X is flat.

Proof. In the case where X and Y are both affine, this follows from Theorem 37.2.
We can assume Y is affine, since any open subset of Y is dense. Choose a cover of X by

an affine scheme X ′ that is a local isomorphism in the Zariski topology. Then X is flat over
Y if and only if X ′ is flat over Y and we reduce to the previous case.

ex:flattening-stratification Exercise 38.9 (Flattening stratification). Under the assumption of the theorem, show that
there is a stratification of Y into locally closed subschemes Yi such that f−1Yi is flat over
Yi.

2

Exercise 38.10. Generalize the theorem to a quasicoherent sheaf of finite type on X.

38.3 Fiber dimension

Let f : X → Y be a morphism of schemes. The fiber of f over y ∈ Y is the scheme
f−1y = y ×Y X. We write dimxX = dimOX,x.

Theorem 38.11 ([Har77, Proposition 9.5]). Let f : X → Y be a flat morphism between
locally noetherian schemes. For any x ∈ X we have

dimxXy + dimf(x) Y = dimxX.

Exercise 38.12. (i) Give an example of a non-flat morphism of noetherian schemes
where the conclusion of the theorem fails.

Solution. Let Y = Spec C[x, y] and let X = Spec C[x, y/x]. Both are isomorphic
to A2

C, hence have dimension 2, but consider a point p with x-coordinate 0 in X.
Then f(p) = (0, 0) ∈ Y and the fiber over (0, 0) is Spec C[x, y/x]/(x, x(y/x)) =
Spec C[y/x] ' A1

C, which has dimension 1.

2This is weaker than the usual notion. Generally a flattening stratification is also required to be a
universal flattening [Sta15, Tag 052F].
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Exercise 38.13. Prove the theorem:

(i) Show it is sufficient to assume Y = SpecA and X = SpecB and both A and B are
local rings.

Solution. The localization of a noetherian ring is noetherian.

(ii) Pick t ∈ A not contained in any minimal prime. Show that dimA/t = dimA− 1.

Solution. We certainly have dimA/t ≤ dimA− 1 by interpreting dim as the maximal
length of a chain of prime ideals. We also have dimA/t ≥ dimA − 1 by interpreting
dim as the minimal number of generators of an ideal of definition.

(iii) With t as above, show that f∗t is not contained in any minimal prime of B. (Hint:
Use the fact that the image of f is stable under generization, hence contains all generic
points of SpecA.)

Solution. Suppose p is a minimal prime of B. Choose an open neighborhood SpecB′ ⊂
SpecB of p not containing any other minimal prime. Then f(p) is a minimal prime of
SpecA because the image of SpecB′ is stable under generization. Thus the vanishing
locus of t in SpecB does not include p.

(iv) Conclude that f−1V (t) ⊂ X has dimension dimX − 1.

(v) Use induction on dimY to deduce that dimX = dimY + dim f−1y.

Solution. The only thing left is the base case. But then y = Yred and dimX =
dim f−1(Yred) in general.

Theorem 38.14. Let f : X → Y be a morphism of finite type between locally noetherian
schemes. Then dimXf(x) is an upper semicontinuous function of x ∈ X.

Proof. First of all, fiber dimension is a constructible function on X. Indeed, by Exercise 38.9,
we can stratify Y into locally closed subschemes such that fiber dimension is constant over
each of the strata. These strata pull back to locally closed subschemes of X on which the
fiber dimension is constant.

To show fiber dimension is upper semicontinuous, we therefore only need to show that
when x′ ; x is a specialization in X then dimx′ Xf(x′) ≤ dimxXf(x). We can therefore
replace X with the local ring at x and replace Y with the local ring at f(x). We can
also reduce X by the prime ideal corresponding to x′ and we can reduce Y by the prime
ideal corresponding to f(x′). Then X = SpecB and Y = SpecA where both A and B are
noetherian local domains. Let K = fracA and L = fracB be the fields of fractions.

Choose a polynomial subring K[x1, . . . , xd] ⊂ K ⊗A B such that K ⊗A B is a finite
extension. Let A′ = A[x1, . . . , xd]. Then every element of B satisfies a polynomial over
K[x1, . . . , xd], not necessarily monic. Let X ′ = SpecA′. Then we have maps

X
g−→ X ′

h−→ Y

with f = hg. The dimensions of the fibers of h are constant. We have dimxXf(x) ≥
dimxXg(x) + dimg(x)X

′
f(x) ≥ d, as desired.
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Exercise 38.15. Let f : X → Y be a proper morphism of locally noetherian schemes.
Show that fiber dimXy is an upper semicontinuous function of y ∈ Y .

Solution. Let Z ⊂ X be the set of points x ∈ X such that dimxXf(x) ≥ n. Then f(Z) is
the set of points y ∈ Y such that dimXy ≥ n and this is closed because f is proper.

Exercise 38.16. Eliminate the noetherian hypotheses in the second theorem.

Solution. Work locally, so assume f is a morphism of finite presentation between affine
schemes. Then it is the base change of a morphism of finite type between noetherian
schemes. Apply the theorem in that case.

38.4 Criteria for flatness

Reading 38.17. [Sta15, Tag 00MD], [Vak14, §24.6]

The homological criterion

Exercise 38.18. Let M be an A-module.

(i) Show that M ⊗A N is a right exact functor of N but is not exact in general.

(ii) Suppose that
0→ N ′ → N → N ′′ → 0 (38.1) eqn:23

is an exact sequence. Show that

0→M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0

is exact if either M or N is projective.

(iii) Let N be any A-module and choose a surjection P0 → N where P is projective. Let
P1 be the kernel. Define TP1 to be the kernel of M ⊗A P1 →M ⊗A P0. Show that TP1
depends on P only up to canonical isomorphism.

(iv) Write Tor1(M,N) for the module constructed above. Show that there is an exact
sequence

Tor1(M,N ′)→ Tor1(M,N)→ Tor1(M,N ′′)→M⊗AN ′ →M⊗AN →M⊗AN ′′ → 0

associated to any exact sequence (38.1).

(v) Prove that Tor1(M,N) = 0 if either M or N is projective.

Solution. This is true by definition if N is projective. If M is projective, choose P0

and P1 as above, and form the sequence

0 = Tor1(M,P0)→ Tor1(M,N)→M ⊗A P1 →M ⊗A P0.

But M is projective, hence flat, so M ⊗A P1 injects into M ⊗A P0.

(vi) Prove that Tor1(M,N) = Tor1(N,M).



38. FLATNESS I 167

Solution. Choose Q0 → M surjective with Q0 projective and let Q1 be the kernel.
Choose P1 and P0 for N as before. Then we have a commutative diagram:

0

��

0

��

Tor1(N,M)

��

Q1 ⊗A P1
//

��

Q1 ⊗A P0
//

��

Q1 ⊗A N //

��

0

0 // Q0 ⊗A P1
//

��

Q0 ⊗A P0
//

��

Q0 ⊗A N //

��

0

0 // Tor1(M,N) // M ⊗A P1
//

��

M ⊗A P0
//

��

M ⊗A N //

��

0

0 0 0

Now apply the snake lemma.

(vii) Prove that M is flat if and only if Tor1(M,N) = 0 for all A-modules N if and only if
Tor1(N,M) = 0 for all A-modules N .

Exercise 38.19. (i) Show that an A-module M is flat if and only if for every injection
of A-modules N ′ → N , the induced map

M ⊗A N ′ →M ⊗A N

is injective.

Solution. Tensor product is always right exact.

(ii) Show that in the previous condition, it is sufficient to assume N ′ and N are finitely
generated.

Solution. First we show we can assume N ′ is finitely generated. Write N ′ =
⋃
N ′i

(filtered union) with the N ′i finitely generated. Then

ker(M ⊗ lim−→N ′i →M ⊗A N) = lim−→ ker(M ⊗N ′i →M ⊗A N) = 0.

Similarly, we can now consider a filtered union N =
⋃
Ni with N ′ ⊂ Ni for all i and

get
ker(M ⊗N ′ →M ⊗ lim−→Ni) = lim−→ ker(M ⊗N ′ →M ⊗Ni).

We can therefore assume N ′ and N are finitely generated.

Exercise 38.20. Let M be a finitely generated A-module. Show M is flat if and only if
I ⊗AM → IM is a bijection for all ideals I ⊂ A.
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Solution. Supposing the condition, let N be a finitely generated A-module. Let x be one of
the generators. Then we have an exact sequence

0→ I → A→ Ax→ 0

0→ Ax→ N → N/Ax→ 0

By the condition, Tor1(M,Ax) = 0. By induction on the number of generators, Tor1(M,N/Ax) =
0. Therefore Tor1(M,N) = 0 using the long exact sequence:

Tor1(M,Ax)→ Tor1(M,N)→ Tor1(M,N/Ax)

The local criterion

Exercise 38.21. Show that M is flat if and only if Mp is flat over Ap for all prime ideals
p of A.

Theorem 38.22 ([Vak14, Theorem 24.6.1]). Suppose that A→ B is a local homomorphism
of noetherian local rings and M is a finitely generated B-module. Let k be the residue field
of A. Then M is A-flat if and only if TorA1 (M,k) = 0.

It is clear that flatness of M implies TorA1 (M,k) = 0. We work on the converse. Assume
for the rest of the discussion that TorA1 (M,k) = 0.

Exercise 38.23. Show that TorA1 (M,N) = 0 if mnN = 0 for some positive integer n. (Hint:
Reduce to the case where mN = 0 using the long exact sequence, and then observe that
N ' k⊕r as an A-module in that case.)

Exercise 38.24. Use the Artin–Rees lemma to prove the following statements about mod-
ules over a noetherian local ring B with maximal ideal n:

(i) If P is a finitely generated B-module and Q is a submodule then Q ∩ nkP ⊂ nk−`Q
for some ` and all k � 0.

Solution. We have Q∩nkP = nk−`(Q∩n`P ) for some ` and all k � 0. But Q∩n` ⊂ Q
so Q ∩ nkP ⊂ nk−`Q.

(ii) If P is a finitely generated B-module then
⋂

nkQ = 0.

Solution. Let Q be the intersection
⋂
nkP . Then consider nnQ. By Artin–Rees, we

have Q = Q∩ nkP = n(Q∩ nk−1P ) = nQ for k � 0. Therefore Q = 0 by Nakayama’s
lemma.

Proof of Theorem ??. This proof is adapted from [Vak14, §24.6.3].
The idea is going to be to approximate an arbitrary finitely generated B-module N by

the quotients N/mnN . We choose a resolution

0→ Q→ P → N → 0
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where P and Q are both finitely generated, and P is free. Form a commutative diagram
with exact rows cand columns:

0

��

0

��

0

��

0 // Q ∩mnP //

��

mnP //

��

mnN //

��

0

0 // Q //

��

P //

��

N //

��

0

0 // Q/(Q ∩mnP ) //

��

P/mnP //

��

N/mnN //

��

0

0 0 0

Tensor this diagram with M , taking advantage of the fact that Tor1(M,L) = 0 whenever
mnL = 0, and only draw the important part:

0

��

M ⊗ (Q ∩mnP )

��

0 // Tor1(M,N) // M ⊗Q //

��

M ⊗ P

��

0 // M ⊗ (Q/(Q ∩mnP )) // M ⊗ (P/mnP )

Note that Tor1(M,N) ⊂M ⊗Q is contained in the image of M ⊗ (Q ∩mnP ) for all n. By
Artin–Rees, Q∩mnP ⊂ mnQ for n� 0. Therefore Tor1(M,N) is contained in the image of
M ⊗mnQ, which is just mn(M ⊗Q). If n denotes the maximal ideal of B then Tor1(M,N)
is also contained in nn(M ⊗ Q). But M ⊗ Q is a finitely generated B-module. Therefore,
again by Artin–Rees,

⋂
nn(M ⊗Q) = 0.

The slicing criterion

Theorem 38.25 ([Vak14, Theorem 24.6.5]). Suppose A → B is a local homomorphism of
local rings and t is not a zero divisor in A. Then B/tB is flat over A/tA if and only if B
is flat over A and t is not a zero divisor in B.

Exercise 38.26. Prove the theorem:

(i) Suppose B is flat over A. Prove that t is not a zero divisor in B if and only if
TorA1 (B,A/tA) = 0.
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Solution. Tensor the exact sequence

0→ A
t−→ A→ A/tA→ 0

by B.

(ii) Suppose B is flat over A. Show that B ⊗A A′ is flat over A′. Conclude that B/tA is
flat over A/tA.

(iii) Suppose that t is not a zero divisor in B. Show that TorA1 (k,B) = Tor
A/tA
1 (k,B/tB).

Solution. Choose a surjection P0 → B with P0 free and let P1 be the kernel. We have
an exact sequence:

0→ P1 → P0 → B → 0

Tensor with A/tA. Using that Tor1(B,A/tA) = 0 gives an exact sequence

0→ P1/tP1 → P0/tP0 → B/tB → 0

with P0/tP0 free over A/tA. Therefore we have a commutative diagram with exact
rows and columns:

0 // TorA1 (tB, k) //

��

tP1 ⊗A k //

��

tP0 ⊗A k //

��

tB ⊗A k //

��

0

0 // TorA1 (B, k)

��

// P1 ⊗A k //

��

P0 ⊗A k //

��

B ⊗A k //

��

0

0 // Tor
A/tA
1 (B/tB, k) //

��

P1/tP1 ⊗A/tA k //

��

P0/tP0 ⊗A/tA k //

��

B/tA⊗A/tA k //

��

0

0 0 0

But TorA1 (tB, k)→ TorA1 (B, k) is the zero map, since t maps to 0 in k.

(iv) Prove the theorem.

Solution. If B is flat over A then TorA1 (B,A/tA) = 0 so t is not a zero divisor in B,
and by a previous part B/tB is flat over A/tA.

Conversely, if t is not a zero divisor in B then TorA1 (B, k) = Tor
A/tA
1 (B/tB, k). But if

B/tB is flat over A/tA then Tor
A/tA
1 (B/tB, k) = 0 so B is flat over A.

The infinitesimal criterion

The equational criterion

38.5 Bézout’s theorem
sec:bezout-2

In our proof of Bézout’s theorem in Section A, we showed that there was an open subset
U ⊂ AN such that p−1U is proper over U . By construction, X is affine over AN so p−1U
is both proper and affine, hence finite over U .
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Exercise 38.27. Show that p−1U is flat over U .

Solution. Let A = Z[t1, . . . , tN ] and let B = A[x, y]/fA[x, y]. To see that this is flat over
A, it is sufficient to replace A by one of its local rings, say with maximal ideal m. As long
as f is injective modulo m—that is, f is not contained in m—we know B will be flat at m.
But if f were contained in m then the fiber of X over m would be A2, which is not proper.
Therefore B is flat over A.

Now consider B/gB. To show this is flat, it is again enough to show that g is not a
zero divisor modulo any maximal ideal in A. But if gh = 0 in B, with h 6= 0, then gh is
a multiple of f in A[x, y]. Now, A[x, y] is a unique factorization domain, so there must be
some irreducible q such that qn divides f but qn does not divide h. Then q must divide g.

Then p−1U = A2
U ∩ V (f, g) contains V (q) which is 1-dimensional, so p−1V is not finite

over U .

Exercise 38.28. Show that a flat module that is of finite presentation is locally free.

Solution. It is sufficient to show that a flat module of finite presentation over a local ring is
free. Let A be a local ring, M an A-module of finite presentation, and k the residue field of
A. Choose elements x1, . . . , xn of M forming a basis of M⊗Ak. Then by Nakayama’s lemma
we get a surjection An →M . Let N be the kernel. Then since M is flat, the sequence

0→ N ⊗A k → kn →M ⊗A k → 0

is exact. But the map kn → M ⊗A k is an isomorphism by assumption, so N ⊗A k = 0.
Now, M is of finite presentation, so N is finitely generated. Nakayama’s lemma (again)
implies N = 0.

Exercise 38.29. Conclude that dimk(q)Op−1(q) is independent of q ∈ U .

Solution. Then p∗Op−1U is a quasicoherent sheaf that is flat and finitely generated (hence
of finite presentation, because we are in a noetherian situation). In particular, it is locally
free.

39 Flatness II

40 Flatness III
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Chapter 13

Projective space

41 Group schemes and quotients

41.1 Graded rings and quotients

Let X = SpecA be an affine scheme with an action of Gm. This corresponds to a grading
of A by Z, as we saw in the last section.

def:fixed-locus Definition 41.1. Let G be an algebraic group acting on a scheme X. The fixed locus of
X is the functor XG ⊂ X consisting of all x ∈ X such that g.x = x for all g ∈ G. More
precisely, XG(S) is the set of all x ∈ X(S) such that for all S-schemes T and all g ∈ G(T )
we have g.x

∣∣
T

= x
∣∣
T

.

Exercise 41.2. Let Gm act on an affine scheme X = SpecA. Show that the fixed locus is
V (A+) where A+ is the ideal generated by elements of nonzero degree.

Solution. Suppose that f ∈ A+ is a homogeneous element. We argue that f is zero on XG.
Indeed, consider a map s : S → XG. Then f(ts) is a map S ×Gm → XG coincides with
f(t), by definition. That is f(ts) − f(s) = 0. On the other hand, f(ts) = tnf(s). We
conclude that (tn − 1)f = 0 as an element of the ring A[t, t−1]. But n 6= 0 by assumption
so tn − 1 is not a zero divisor, hence f = 0.

Conversely, we argue that Gm acts trivially on SpecA/A+. Indeed, suppose that s :
S → SpecA/A+ ⊂ X is a morphism of schemes. Then for any f ∈ A, we have

f(ts) =
∑

tnfn(s) =
∑

fn(s) = f(s).

Thus s is fixed by Gm.

Definition 41.3. Let X be a scheme with an action of an algebraic group G. If it exists,
the initial G-morphism from X to a scheme on which G acts trivially is called the quotient
of X by G. It is denoted X/G if it exists.

Exercise 41.4. Let Gm act on X = SpecA. Show that the D(f), as f ranges among
homogeneous elements of A, form a basis for the Gm-invariants open subsets of X.

Solution. Suppose U is invariant and p ∈ U . Then there is some g ∈ A such that g 6∈ p and
D(g) ⊂ U . If Z = X rU then g(Z) = 0. But Z is Gm-invariant, so all of the homogeneous

173
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components of g vanish on Z. But at least one of the homogeneous components—say gn—is
not contained in p. Therefore p ∈ D(gn) ⊂ U .

Exercise 41.5. Show that when an algebraic group G acts on X ×G by g.(x, h) = (x, gh),
the quotient (X ×G)/G is X.

Solution. Consider a G-invariant f : X × G → Y . Define f ′(x) = f(x, e). Then f(x, g) =
f(g.(x, e)) = f(x, e) = f ′(x) so f factors uniquely through the projection X ×G→ G.

thm:affine-quotient Theorem 41.6 ([MFK, Chapter 1, Theorem 1.1]). Suppose that Gm acts on an affine scheme
X = SpecA, corresponding to a grading A =

∑
An. Show that X/Gm exists and is equal

to SpecA0.1

Proof. The proof is adapted from [MFK, Chapter 1, Theorem 1.1] and [MFK, Chapter 0,
§2, Remark (6)].

Let Y = SpecA0. We certainly have a Gm-invariant map π : X → Y from the inclusion
A0 ⊂ A. First note that if W ⊂ SpecA is a Gm-invariant closed subscheme then π(W )
is closed. Indeed, suppose that y is in the closure of π(W ). Let p be the prime ideal
of A0 corresponding to y. Then π−1{y} = V (pA). We have (pA + I)0 = p + I0. Thus

π(W ∩ π−{y}) = π(W ) ∩ {y}. If y ∈ π(W ) then W ∩ π−1{y} 6= ∅ so y ∈ π(W ).
Furthermore, if Wj are closed subschemes of X then π(

⋂
Wj) =

⋂
π(Wj) by the same

argument: Let Ij be the ideals defining the Wj . Then π(V (
∑
Ij)) = V (A0 ∩

∑
Ij) =

V (
∑

(A0 ∩ Ij)) =
⋂
π(V (Ij)).

Now consider a map f : X → Z. If Z is affine then X → Z certainly factors through Y ,
by the universal property of A0 as the ring of invariants in A. If Z is not affine, choose an
open cover Z =

⋃
Zi with each Zi affine, and let Wi ⊂ Z be the complement of Zi. Then

f−1Wi is open in X so π(f−1Wi) is a closed subset of Y . Let Ui ⊂ Y be the complement
of π(f−1Wi). Then

⋂
π(f−1Wi) = π(f−1

⋂
Wi) = ∅, so the Ui are an open cover of

Y . Moreover, π(f−1Wi) ∩ Ui = ∅ so π−1(Ui) ∩ f−1(Wi) = ∅ so f(π−1Ui) ∩Wi = ∅ so
f(π−1Ui) ⊂ Zi.

We can therefore choose a basis of open subsets Vj for Y with Vj = D(fj) such that
π−1Vj ⊂ f−1Zi for some i. Now, π−1Vj = SpecA[f−1

j ]. As fj has degree zero, we have

A[f−1
j ]0 = A0[f−1

j ]. By the affine case of the theorem, mentioned above, the map π−1Vj →
Zi factors through SpecA0[f−1

j ] = Vj in a unique way. These maps therefore glue to give a
factorization of f : X → Z through Y , as desired.

Exercise 41.7. Let X = SpecA be an affine scheme with an action of Gm corresponding
to a grading A =

∑
An. Let X◦ ⊂ X be the complement of XG ⊂ X. Show that X◦/Gm

exists and is equal to ProjA:

(i) Show that Gm acts on X◦.

(ii) Show that D(f), for f ∈ A homogeneous of nonzero degree, form a basis for the
Gm-invariant open subsets of X◦.

(iii) Show that for each f ∈ A+, the quotientD(f)/Gm exists and is equal to SpecA[f−1]0 =
ProjA[f−1].

(iv) Construct a map X◦ → ProjA and show that it has the universal property of X/Gm.

1This holds more generally for an action of a reductive group scheme.
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Solution. We have already constructed the map on a basis of open subsets (using the
open inclusions D+(f) = ProjA[f−1] ⊂ ProjA). Local agreement comes from the
universality of the construction in Theorem 41.6 and yields the map.

To verify the universal property, imitate the proof of the unviersal property in Theo-
rem 41.6.

42 Quasicoherent sheaves and graded modules

Reading 42.1. [Har77, §II.5]

Definition 42.2. Let A be a graded ring. A graded A-module is an A-module M that is
decomposed as a direct sum M =

∑
Mn with AmMn ⊂Mm+n for all m,n ∈ Z.

Exercise 42.3.This is essentially
equivalent to

Exercise 42.5. You
might want to regard
this exercise as a hint

for or a step in the
solution of that one.

Let A be a graded ring, corresponding to a comultiplication map µ∗ : A→
A[t, t−1]. Show that to give a grading on an A-module M is the same as to give a map
µ∗ : M → M [t, t−1] such that µ∗(fx) = µ∗(f)µ∗(x) for any f ∈ A and x ∈ M . Interpret

this geometrically as an isomorphism µ∗M̃ ' p∗M̃ where p : Gm × SpecA → SpecA and
µ : Gm × SpecA→ SpecA are, respectively, the projection and the action.

Exercise 42.4 (Flat base change for global sections). Consider a cartesian diagram of
schemes:

X ′
f
//

p′

��

Y ′

p

��

X
g
// Y

Assume that p is coherent (quasicompact and quasiseparated). Show that g∗p∗F = p′∗f
∗F

for any quasicoherent sheaf F on Y ′.

ex:qcoh-to-graded Exercise 42.5. Let X = SpecA and let Y = ProjA. Write π : X◦ → Y for the projection
and let j : X◦ → X be the inclusion. Suppose that F is a quasicoherent sheaf on Y . Show
that π∗F .

(i) Show that j∗π
∗F is a quasicoherent sheaf on X. Conclude that j∗π

∗F = M̃ for some
A-module M .

(ii) Show that M is naturally equipped with the structure of a graded A-module. (Hint:
Pull back via the projection p : Gm ×X → X and µ : Gm ×X → X and compare.)

Solution. Consider the modules µ∗j∗π
∗F = (id × j)∗µ

∗π∗F = (id × j)∗p
∗π∗F =

p∗j∗π
∗F . Now, p∗M̃ = M [t, t−1] with the A[t, t−1]-module structure by t.(tnx) =

tn+1x. On the other hand, µ∗ : M → µ∗M̃ gives a map M → M [t, t−1]. Define Mn

to be the set of all x ∈M such that µ∗(x) = tnx.

In general µ∗(x) =
∑
tnxn and because µ is an action, we have xn ∈ Mn. If f ∈ Am

and x ∈ Mn then µ∗(fx) = µ∗(f)µ∗(x) = tmftnx = tm+nfx so fx ∈ Mm+n, as
desired.

Exercise 42.6. Suppose that A is a graded ring and M is a graded A-module. Let X =
SpecA, Y = ProjA, and let π : X◦ → Y be the projection. Let F be the sheaf on X
associated to M . Define G (U) = F (π−1U)0 for all open U ⊂ Y .
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(i) Show that G is a sheaf on Y .

(ii) Suppose that F = j∗π
∗F ′ for a quasicoherent sheaf on Y . Construct a canonical

isomorphism G ' F ′.

Exercise 42.7. Let X = SpecA and let Y = ProjA. Assume that A+ is generated by
elements of degrees 1 and −1.

(i) Show that the category QCoh(Y ) is equivalent to the category of graded quasicoherent
sheaves of OX◦ -modules.

Solution. We have functors in both directions; we just need to check that they are
inverse to one another. Consider a graded quasicoherent OX◦ -module F . The induced
sheaf on Y = ProjA has G (D+(f)) = F (D(f))0. Then

π∗G (D(f)) = G (D(f))⊗OY (D+(f)) OX(D(f)) = F (D(f))0 ⊗A[f−1]0 A[f−1].

On the other hand, F (D(f)) = M̃ for some graded A[f−1]-module M and if f has
degree ±1 (or is divisible by an element of degree ±1) then M =

∑
n∈Z f

nM0. Thus

F (D(f)) =
∑

fnF (D(f))0 = F (D(f))0 ⊗A[f−1]0 A[f−1].

Now, the open sets associated to homogeneous elements A+ divisible by an element
of degree ±1 form a class that is stable under intersection and covers X◦. We have
agreement of π∗G and F , in a compatible way, on these sets, so we have agreement
on all of X◦.

Conversely, we have

(π∗G )(D+(f)) = (π∗G (D(f)))0 = (G (D+(f))⊗A[f−1]0 A[f−1])

=
∑

G (D+(f))⊗A[f−1]0 A[f−1]n = G (D+(f)).

This is a natural identification for all homogeneous f ∈ A+, as required.

(ii) Show that the category QCoh(X◦) is equivalent to the category of objects F ∈
QCoh(X) such that F → j∗j

∗F is an isomorphism.

Solution. We have a functor in one direction by j∗. If F ∈ QCoh(X◦) then j∗j∗F →
F is an isomorphism. Thus j∗F ' j∗j

∗j∗F so that j∗ gives a functor in the other
direction. This also shows that j∗j∗ ' id

To go the other way, suppose that F → j∗j
∗F is an isomorphism. Then j∗j

∗F →
j∗j
∗j∗j

∗F . But we know j∗j∗j
∗ ' id (naturally) so we get

j∗j
∗F → j∗j

∗j∗j
∗F ' j∗j∗F

as required.
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43 Line bundles and divisors

Reading 43.1. [GD67, IV.21], [Har77, II.6], [Vak14, Chapter 14]

Invertible sheaves are examples of quasicoherent sheaves, so we can use the classification
of quasicoherent sheaves on projective space to classify line bundles.

Exercise 43.2. Suppose that L and L ′ are invertible sheaves. Show that L ⊗L ′ and
Hom(L ,L ′) are invertible sheaves as well.2 Show that isomorphism classes of invertible
sheaves on a scheme X form an abelian group where addition is ⊗, difference is Hom, and
the zero element is OX .

Exercise 43.3. Let A = Z[x0, . . . , xn] and X = SpecA and Y = ProjA. Construct an
equivalence of categories between the category of line bundles on Y and the category of
graded invertible sheaves on X◦.

We will have fully classified invertible sheaves on Pn when we show that

(1) a sheaf on X◦ is invertible if and only if j∗X
◦ is invertible, and

(2) all invertible sheaves on X = An+1 are trivial.

43.1 Cartier divisors

Definition 43.4 (Meromorphic functions). Let X be a scheme. Let MX be the sheaf
obtained by adjoining inverses to all nondivisors of zero in OX . This is known as the sheaf
of meromorphic functions on X. An invertible sheaf on X is called an invertible fractional
ideal if it can be embedded, as an OX -module, in MX .

ex:inclusion-of-regular-in-meromorphic Exercise 43.5. Show that there is an injection OX →M ∗
X .

Definition 43.6 (Cartier divisors). Let DivX = M ∗
X/O∗X . This is known as the sheaf

of Cartier divisors on X. If f is a section of MX , the associated divisor is denoted (f).
Divisors associated to meromorphic functions are called principal.

Exercise 43.7. Suppose that X = SpecA and A is a unique factorization domain. Show
that the map

Γ(X,M ∗
X)→ Γ(X,DivX)

is a surjection.

Exercise 43.8. Suppose that X is an integral scheme with generic point η. Show that
MX(U) = k(η) for all nonempty U ⊂ X.

Exercise 43.9. Let D be a divisor on X (an element of Γ(X,DivX)).

Exercise 43.10. Suppose that D and E are Cartier divisors. We say that D ≥ E if
D − E = (f) for some f ∈ OX . Show that this gives DivX the structure of a sheaf of
partially ordered groups. Let Div+

X be the subsheaf of divisors D ∈ DivX such that D ≥ 0.

Exercise 43.11. Let D be a divisor on X. Let OX(D) be the set of f ∈ MX such that
(f) ≥ −D.

2The notation Hom refers to the sheaf of homomorphisms.
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(i) Show that OX(D) is an invertible sheaf on X.

(ii) Show that this gives a map

Γ(X,DivX)→ Pic(X).

(iii) Show that the image of this map consists of all equivalence classes of invertible frac-
tional ideals of X.

Exercise 43.12. Suppose that X is an integral scheme. Show that every invertible sheaf
is isomorphic to an invertible fractional ideal. Conclude that there is an isomorphism:

Γ(X,DivX)/Γ(X,M ∗
X) ' Pic(X)

43.2 Weil divisors

Let X be a locally noetherian scheme and x ∈ X a point. We say that x has codimension
1 in X if dimOX,x = 1.

Definition 43.13 (Weil divisor). Suppose X is noetherian. A Weil divisor on X is a formal
sum of codimension 1 points of X. The abelian group of Weil divisors is denoted Z1(X).

Let D ≥ 0 be a Cartier divisor on X. Then OX(−D) ⊂ OX so it is an ideal. It therefore
defines a closed subscheme V (OX(−D)). Furthermore, it defines a Weil divisor: For each
codimension 1 point x ∈ X, set

cx(D) = lengthOX,x/OX,x(−D).

Exercise 43.14. Show that cx(D) = 0 for all but finitely many points x ∈ X. Conclude
that c(D) =

∑
cx(D)[x] is a Weil divisor of X.

Exercise 43.15. Show that cx(D + E) = cx(D) + cx(E). Conclude that cx extends to
homomorphisms defined on Div(X)→ Z and c extends to Div(X)→ Z1(X).

Exercise 43.16 ([GD67, Théorème (IV.21.6.9)]). An element of Z1(X) is called locally
principal if is locally c([f ]) for some f ∈MX . Show that Div(X)→ Z1(X) is injective and
its image consists of the locally principal cycles.

Solution. Fix a Weil divisor D. Let L be the subsheaf of MX consisting of all f such
that c([f ]) ≥ D. If D is locally principal then L is an invertible fractional ideal and
c(L ) = D.

43.3 The Picard group of projective space

Exercise 43.17. Let A be a graded ring and let X = SpecA and Y = ProjA. If M is an
A-module, define M(n)k = M(n+ k).

(i) Show that A(n) is an invertible sheaf on ProjA for all n ∈ Z. This sheaf is denoted
OY (n). We write F (n) = F ⊗OY OY (n).

(ii) Show that Γ(Y,F (n)) = Mn whenever M̃ = j∗π
∗F .
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Solution.

Γ(Y,F (n)) = Γ(X◦, π∗F (n))0 = Γ(X◦, π∗F )n = Γ(X, j∗π
∗F )n = Γ(X, M̃)n = Mn

ex:line-bundle-Pn-An-complement Exercise 43.18. Let A = Z[x0, . . . , xn] and letX = SpecA = An+1 and Y = ProjA = Pn.
Show that a quasicoherent sheaf L on Y is invertible if and only if π∗L is invertible if and
only if j∗π

∗L is invertible.3

Solution. First we show L is invertible if and only if π∗L is invertible. Certainly, if L is
invertible then so is π∗L . Conversely, suppose that π∗L is invertible. Then it is sufficient
to show L

∣∣
Ui

is invertible for each i = 0, . . . , n. But we have a section σi : Ui → X◦ of

π
∣∣
π−1Ui

so that L
∣∣
Ui

= σ∗i π
∗L , so L

∣∣
Ui

is a line bundle.

Now we show that a quasicoherent sheaf L on X◦ is invertible if and only if j∗L is. We
have Γ(U, j∗L ) = Γ(U ∩X◦,L ) so j∗j∗L = L . Thus if j∗L is invertible, so is L .

Now, suppose that L is invertible. We can represent L as OX◦(D) for some divisor D.
Let D be the closure of D in X. Since X is factorial, D is a Cartier divisor. Then OX(D)
is an invertible sheaf on X and j∗OX(D) = L . Now, note that

j∗L = j∗(OX◦ ⊗ j∗OX(D)) = (j∗OX◦)⊗OX(D).

Therefore it is sufficient to assume L = OX◦ . But in that case, we can easily calculate that
j∗OX◦ = OX .

Exercise 43.19. Prove that Pic An = 0.

Solution. The polynomial ring is a unique factorization domain.

Exercise 43.20. Prove directly that Pic(An r {0}) = 0. This gives another solution to
Exercise 43.18.

Solution. Let L be an invertible sheaf on X = An r {0}. Cover X by U1, . . . , Un with
Ui = SpecAi and Ai = Z[x1, . . . , xn, x

−1
i ]. Each Ai is a unique factorization domain, so

L
∣∣
Ui
' OUi for all i. Choose these isomorphisms arbitrarily and call them φi. Then

φji = φi
∣∣
Uij
◦ φ−1

j

∣∣
Uij
∈ O∗Ui . We can use the φji to recover L .

An isomorphism v : L ' L ′ induces maps αi = φ′i ◦ v
∣∣
Ui
◦ φ−1

i . Likewise αj =

φ′j ◦ v
∣∣
Uj
◦ φ−1

j so

φ′i
−1
αiφi = v

∣∣
Uij

= φ′j
−1
αjφj .

Thus φijφ
′
ij
−1

= αjα
−1
i .

The trivial line bundle has φi = 1 for all i. To prove that L is isomorphic to the trivial
line bundle, we need to show that there is some choice of αi such that αjα

−1
i = φij . All of

this shows that we can identify Pic(X) with the first cohomology of the sequence∏
i

Γ(Ui,O∗Ui)→
∏
i<j

Γ(Uij ,O∗Uij )→
∏

i<j<k

Γ(Uij ,O∗Uijk)

3This calculation also works over a field. With small modification, it even works over an arbitrary base
ring replacing Z.
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One way to do this is to consider the simplex and interpret the entries above as computing
the Čech cohomology of the sheaf of (discontinuous) functions on the vertices valued in Z
and the sheaf of locally constant functions, valued in the units of the base.

Exercise 43.21. Prove that Pic Pn = Z with 1 ∈ Z corresponding to O(1).
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Chapter 14

Sheaf cohomology

44 Divisors

45 Sheaves III

45.1 Injective resolutions

Definition 45.1. Let X be a scheme.1 A sheaf of OX -modules I is said to be injective if
HomOX -Mod(F ,I ) is an exact functor of F .

Exercise 45.2.Should be easy, but it’s
important to know and
understand why this is

true

Show that I is injective if and only if, for every injection of sheaves of
OX -modules F ′ → F , the map Hom(F ,I )→ Hom(F ′,I ) is surjective.

Theorem 45.3 (Grothendieck [Gro57, Théorème 1.10.1]). Every sheaf of OX-modules can
be embedded in an injective module.

The proof uses a few facts about the category of OX -modules:

(i) the category is abelian: it has kernels, cokernels, and images that behave as we are
accustomed;

(ii) the category has a set of generators: every object is a quotient of a direct sum of OU
for U ⊂ X open;

(iii) arbitrary (small) colimits exist and filtered colimits are exact.

The proof is known as the ‘small object argument’. The idea is that if we have a witness
F ′ ⊂ F to the failure of injectivity of a sheaf I then we pushout:

F ′ //

��

F

I

Iterating this process enough, we get an injective module. The details of the proof will be
a series of exercises, following [Gro57, §1.10].

1or, really, a ringed space

183
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Exercise 45.4. Show that the category of sheaves of OX -modules has a generator.2 (Hint:
Take the direct sum of all OU , with U ranging among open subsets of X.)

Exercise 45.5. Let G be the generator. Show that I is injective if and only if, for every
subobject G ′ ⊂ G , every morphism G ′ → I extends to G → I .

Solution. Suppose that F ′ ⊂ F and F ′ → I are given. Let F ′′ ⊂ F be the largest
submodule to which the map extends. (This exists by the existence and exactness of filtered
colimits.) To show F ′′ = F , we consider a map G → F and let G ′′ be the preimage. The
map G ′′ → I extends to G → I . Therefore the map F ′′ → I extends to the image of
G in F . By assumption, this is contained in F ′′, since F ′′ is maximal. Thus every map
G → F has image in F ′′, so F ′′ = F .

Exercise 45.6. Fix F . For each successor ordinal n + 1, let Fn+1 be the pushout of the
diagram below: ∑

G ′⊂G G ′ ×Hom(G ′,Fn) //

��

∑
G ′⊂G G ×Hom(G ′,Gn)

Fn

When n is a limit ordinal, let Fn = lim−→m<n
Fm. Show that Fn is injective for large n.

Solution. Choose a limit ordinal n larger than the cardinality of the set of subobjects of
G . Consider a map v : G ′ → Fn for some G ′ ⊂ G . Let G ′m = v−1Fm for each m ≤ n.
Then by the pigeonhole principle, G ′m is constant for all m ≥ m0, where m0 < n. Thus
G ′ = v−1F = v−1Fm0

. In other words, v(G ′) ⊂ Fm0
. But then G ′ → Fm0

extends to
G → Fm0+1 ⊂ Fn, as required.

45.2 Flaccid sheaves

Definition 45.7. A sheaf I is said to be flaccid if

I (U)→ I (V )

is surjective for all open V ⊂ U .

Exercise 45.8. Show that injective sheaves are flaccid.

Exercise 45.9. Suppose that

0→ A → B → C → 0

is exact and A is flaccid.

(i) Show that
0→ Γ(X,A )→ Γ(X,B)→ Γ(X,C )→ 0

is exact.

2A generator is an object A such that an injection B → C is an isomorphism if and only if the induced
map Hom(A,B)→ Hom(A,C) is an isomorphism.
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(ii) Show that B is flaccid if and only if C is flaccid.

Solution. Suppose x ∈ B(V ). Let x be its image in C (V ). Choose y ∈ C (U) with
image x. Lift this to y ∈ B(U) using the fact that A is flaccid. Then x − y = 0 in
C (V ), so x− y is the image of z ∈ A (V ). Lift z to w ∈ A (U), using again that A is
flaccid. Then y + w restricts to x in B(V ).

Now suppose x ∈ C (V ) and B is flaccid. Lift x to y ∈ B(V ), using that A is flaccid.
Lift y to z ∈ B(U) using that B is flaccid. Then let w be the image of z in C (U) and
we are done.

45.3 Cohomology as a derived functor

Definition 45.10. Let F be a sheaf of OX -modules. Choose an embedding F ⊂ I where
I is a flaccid OX -module. Define

H1(X,F ) = Γ(X,I /F )/Γ(X,I )

Hn(X,F ) = Hn−1(X,I /F ) for n ≥ 2.

45.4 Torsors

Definition 45.11 (Torsor). Let G be a sheaf of groups on X. A G -torsor is a sheaf of sets
P, equipped with an action of G , such that there is a cover of X by open subsets U such
that P

∣∣
U

is isomorphic to G
∣∣
U

as a sheaf on U with G
∣∣
U

-action.
A G -torsor is said to be trivial if it is isomorphic to G as a sheaf of G -sets. Define

H1(X,G ) to be the set of isomorphism classes of G -torsors on X.

Exercise 45.12. Show that a G -torsor P is trivial if and only if Γ(X,P) 6= ∅.

Exercise 45.13. Suppose that G is a flaccid sheaf of groups. Show that every G -torsor is
trivial.

Solution. Let P be a G -torsor. View the open subsets of X as a partially ordered set,
ordered by inclusion. Let U ⊂ X be an open subset that is maximal among those on
which P has a section. We argue that U = X. Suppose that x ∈ X. Choose an open
neighborhood V of x such that P

∣∣
V

is trivial. Pick p ∈P(U) and q ∈P(V ). Then there

is some g ∈ G (V ∩ U) such that g.p
∣∣
V ∩U = q

∣∣
V ∩U . Lift g to g′ ∈ G (V ). Then let p′ = g′.p.

We get g′
∣∣
V ∩U = q

∣∣
V ∩U so we can find q ∈P(V ∪U) lifting q. Thus V ⊂ U so we conclude

U = X.

Exercise 45.14. Suppose that G acts on a sheaf of sets P.

(i) Show that there is an exact sequence

0→ Γ(X,G )→ Γ(X,P)→ Γ(X,P/G )→ H1(X,G ).

(Hint: Given a section σ ∈ Γ(X,P/G ), consider its preimage in P.)

(ii) Show that the last arrow is surjective if P is flaccid.
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Solution. Let Q be a G -torsor. Consider the sheaf of G -equivariant morphisms Hom(Q,P).
This is flaccid. Indeed, suppose f : Q

∣∣
V
→ P

∣∣
U

and V ⊂ U . Let U ′ ⊂ U be the
largest open subset to which f extends. We argue that U ′ = U .

For any x ∈ X, pick an open neighborhood W of x in X such that Q
∣∣
W
' G

∣∣
W

. Pick

q ∈ Q(W ) and restrict to W∩U ′. Then f(q
∣∣
W∩U ′) = y

∣∣
W∩U ′ for some y ∈P(W ). For

any W ′ ⊂W , any z ∈ Q(W ′) can be written as gq
∣∣
W ′

for a unique g ∈ G (W ′). Define

f ′(z) = gy
∣∣
W ′

. If W ′ ⊂W ∩ U ′ then f ′(g.q
∣∣
W ′

) = g.y
∣∣
W ′

= g.f(q
∣∣
W ′

) = f(g.q
∣∣
W ′

) so

f
∣∣
W∩U ′ = g′

∣∣
W∩U ′ . Therefore f and f ′ extend to W ∩ U ′. We conclude that W ⊂ U ′

so U ′ = U , as required.

Since Hom(Q,P) is flaccid, it follows that Hom(Q,P) 6= ∅. Consider the map
Q →P →P/G . The image is a section of P/G whose image in H1(X,G ) is Q.

Exercise 45.15. Prove that our two definitions of H1(X,G ) coincide when G is a sheaf of
abelian groups.

Solution. Choose an embedding G ⊂ I where I is flaccid. Then we have a commutative
diagram with exact rows:

0 // Γ(X,G ) // Γ(X,I ) // Γ(X,I /G ) //

��

H1
tors(X,G ) //

��

0

0 // Γ(X,G ) // Γ(X,I ) // Γ(X,I /G ) // H1
der(X,G ) // 0

The last vertical arrow exists and is an isomorphism because the other vertical arrows are
isomorphisms.

Exercise 45.16. Show that the sheaf of isomorphisms between two G -torsors is nat-
urally equipped with the structure of a G -torsor by (g.f)(x) = g.(f(x)). Show that
[Q]− [P] = [Hom(P,Q)] in the additive structure of H1(X,G ) induced from the derived
functor construction.

45.5 Line bundles

Exercise 45.17. Construct an equivalence of categories between the category of line bundles
on a scheme X and the category of torsors on X under the group Gm.

46 Čech cohomology

Exercise 46.1. Let F be a sheaf of abelian groups on X. For each open U ⊂ X, define
H pF (U) = Hp(U,F ).

(i) Show that H pF is naturally a presheaf on X. (Hint: The restriction of a flaccid
sheaf to an open subset is still flaccid, and restriction of sheaves is exact.)

(ii) Show that the sheafification of H pF is the zero sheaf for all p > 0.
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Solution. It’s enough to show that the sheafification of H 1F is the zero sheaf. We
must show that every section is locally zero. But a section of H 1F over U corresponds
to the isomorphism class of an F -torsor over U , which is trivial over some open cover
of U . To put it another way, if we choose an embedding F ⊂ I with I injective
then a section of H 1F over U can be represented by a section of I /F over U . Any
such section is locally in the image of I by the definition of a surjection of sheaves,
so the section represents the zero element of H 1F locally in U .

Definition 46.2. For each n, let Un be the set of all symbols U1∧· · ·∧Un. Define Cp(U,F )
to be the set of functions σ on Un with

σ(U1 ∧ · · · ∧ Un) ∈ F (U1 ∩ · · · ∩ Un)

σ(Uf(1) ∧ · · · ∧ Uf(n)) = sgn(f)σ(U1 ∧ · · · ∧ Un).

These are the Čech p-cochains. Define a coboundary map

Cp(U,F )→ Cp+1(U,F )

by defining d(σ)(U1 ∧ · · · ∧Up+1) =
∑

(−1)iσU1,...,Ûi,...,Up+1

∣∣
U1∩···∩Up+1

. The cohomology of

this complex is called the Čech cohomology of F with respect to U and is denotedH∗(U,F ).3

Exercise 46.3. (i) Construct a map H1(U,G )→ H1(X,G ).

(ii) Show that the image consists of all G -torsors P such that P
∣∣
U

trivial for all U in U.

(iii) Conclude that Ȟ1(X,G ) = H1(X,G ) for all sheaves of groups G on X.

Exercise 46.4. Suppose that I is a flaccid sheaf. Show that Hp(U,I ) = 0 for all p > 0.
(Hint: Realize the Čech complex as the global sections of an exact sequence of sheaves.)
Conclude that Čech cohomology agrees with sheaf cohomology for flaccid sheaves.

46.1 Affine schemes

Exercise 46.5. Prove H1(X,G ) = 0 for all quasicoherent sheaves G on all affine scheme
X.

Soon we will see that Hn(X,G ) = 0 for n > 0 and all quasicoherent sheaves G on all
affine schemes X.

ex:affine-cech Exercise 46.6. Prove that the Čech complex is exact for any quasicoherent sheaf on an
affine scheme and any cover by distinguished open affines. Conclude that Ȟn(X,F ) = 0
for all n > 0 when X is affine and F is quasicoherent.

3The Čech cohomology is defined by taking a colimit of H∗(U,F ) over all covers, ordered by refinement.
In order for this to make sense and be a filtered colimit, it is best to define a cover to be a choice of open
neighborhood of each point.
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Chapter 15

Lines on a cubic surface

47 Čech cohomology II

47.1 The Čech spectral sequence

Exercise 47.1.Should be simple Suppose I is a flaccid sheaf on X. Show that I
∣∣
U

is also flaccid, for all
open U ⊂ X.

Let F be a sheaf on X and let I • be a flaccid resolution of F . Fix a cover U of X and
write C•(U,F ) for the Čech complex of F . We can form a double complex :

C•(U,I •)

If we compute the cohomology first with respect to C•, we get Γ(X,I •), whose cohomology
is Hq(X,F ). If we compute it first with respect to the I • differential, we get a complex
whose (p, q)-entry is ∏

U1,...,Up∈U

Hq(U1 ∩ · · · ∩ Up,F
∣∣
U1∩···∩Up

).

In particular, we find the Čech cohomology as the q = 0 column. Suppose that Hq(U1 ∩
· · · ∩Up,F ) = 0 for all p and all q > 0. Then everything vanishes but the Čech cohomology
with respect to U.

Exercise 47.2. Suppose that E is a double complex in the first quadrant. Assume that for
all p > 0 we have Hp,•E = 0 and that for all q > 0 we have H•,qE = 0. (In other words, the
columns and rows are all exact, except in degree 0.) Conclude that HpH0,•E = HpH•,0E
(in a natural way) for all p.

Solution. The diagram chasing can be simplified by the following calculus: Keep track of
how E changes if we replace an entry by 0 and replace all arrows out of that entry by
cokernels and all arrows into that entry by kernels. Modify E according to the following

189



190 CHAPTER 15. LINES ON A CUBIC SURFACE

diagram:

0

Ep,01

OO

// 0

Ep−1,0
1 ? //

OO
::

Ep−1,1
1

//

OO

0

0

::

//

OO

Ep−2,1
1

//

OO
::

Ep−2,2
1

OO

// 0

0

;;OO OO

. . . 0

// E2,p−2
1

OO

// 0

0 //

<<

E1,p−2
1

OO

//

::

E1,p−1
1

OO

// 0

0 //

OO ::

E0,p−1
1

?

OO

//

;;

E0,p
1

// 0

A dotted arrow into or out of an entry indicates that a cokernel or kernel has been taken
(respectively). Except for those marked with question marks, all arrows in the diagram above
are isomorphisms. The arrows marked with question marks are nevertheless surjections.
Now divide both Ep,01 and Ep−1,0

1 by the kernel of Ep−1,0
1 → Ep−1,1

1 ; likewise, divide both
E0,p−1

1 and E0,p
1 by the kernel of E0,p−1

1 → E1,p−1
1 . Then Ep,01 is replaced by HpH•,0E and

E0,p
1 is replaced by HpH0,•E. All of the solid arrows remain isomorphisms.

Theorem 47.3 ([Gro57, Théorème 3.8.1]). Suppose U is a cover of X and Hq(U1 ∩ · · · ∩
Up,F ) = 0 for all p, q > 0 and all U1, . . . , Up ∈ U. Then Čech cohomology of F agrees with
derived functor cohomology.

A more careful analysis of the proof of the exercise above gives a refinement of this
theorem. Observe that to get an isomorphism

Hp(U,F ) ' Hp(X,F )
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we needed the following vanishing:

H1(U1 ∩ · · · ∩ Up,F ) = 0

H1(U1 ∩ · · · ∩ Up−1,F ) = H2(U1 ∩ · · · ∩ Up−1,F ) = 0

H2(U1 ∩ · · · ∩ Up−2,F ) = H3(U1 ∩ · · · ∩ Up−2,F ) = 0

...

for all U1, . . . , Uk ∈ U. In particular, we can make the following conclusion:

Theorem 47.4. If Hi(U1 ∩ · · · ∩ Uq,F ) = 0 for i+ q + 1 ≤ p and i > 0 then

Hp(U,F ) = Hp(X,F ).

Corollary 47.4.1. The cohomology of a quasicoherent sheaf on an affine scheme is trivial
in positive degrees.

Proof. We build the double complex Ep,q0 = Cp(U,I q) for each pointed open cover U and
then take a direct limit to get the Čech complex. We have exactness in the I • direction,
except in degree zero, automatically, by the exactness of filtered colimits and the exactness
at each stage. Assume for the sake of induction that Hi(Y,G ) = 0 for all affine schemes Y
and all quasicoherent sheaves G on Y and all 0 < i ≤ p. Then we get Hi(U1∩· · ·∩Uq,F ) = 0
for i + q + 1 ≤ p + 1 and i ≤ p. In other words, we have the desired vanishing for q > 1.
The last thing we want is Hi(U,F ) = 0 for all U ∈ U. Of course, this doesn’t look
any easier, but remember that we are taking a colimit over all open covers U. We have
lim−→
∏
U∈U Hi(U,F ) = 0, as required.

Corollary 47.4.2. The Čech cohomology of a quasicoherent sheaf with respect to an affine
cover of a separated scheme agrees with the derived functor cohomology.

47.2 Cohomology and dimension

Theorem 47.5 ([Gro57, Théorm̀e 3.6.5], [Har77, Theorem III.2.7]). Let X be a noetherian
topological space of dimension n. Show that Hp(X,F ) = 0 for all sheaves of abelian groups
F on X and all p > 0.

Proof. We can assume by noetherian induction that the statement holds for all closed subsets
of X other than X itself. If X is reducible, suppose X =

⋃
Yi with neither Yi distinct and

irreducible. Then we have an exact sequence:

0→ F →
∏

FYi →
∏

FYi∩Yj → 0

This induces an exact sequence∏
Hp−1(Yi ∩ Yj ,F )→ Hp(X,F )→

∏
Hp(Yi,F )

and we have the desired vanishing on the ends already. We can therefore assume X is
irreducible.

As F is a filtered colimit of finitely generated subsheaves and filtered colimits commute
with cohomology, we can assume F is finitely generated. By induction on the number of
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generators, we can assume F has a single generator, i.e., it is a quotient of some ZU . We
therefore have an exact sequence

0→ R → ZU → F → 0

and we already hve

Exercise 47.6. Assume the result holds for all closed subsets of X other than X itself.

(i) Show that the result holds when X is irreducible and F = ZU for some open U ⊂ X.

Solution. Let V be the complement of U . We have an exact sequence

0→ ZU → ZX → ZV → 0

whence
Hp−1(V,Z)→ Hp(X,ZU )→ Hp(X,ZX).

But ZX is flaccid and dimV ≤ dimX − 1 so Hp−1(V,Z) = 0 for p > dimX.

(ii) Show that the result holds when X is irreducible and F is a quotient of ZU for some
open U ⊂ X.

Solution. Let R be the kernel of the projection ZU → F . Then R contains dZV for
some open V ⊂ U . Indeed, we may take d so that dZ generates the kernel at the
generic point. Then we have an exact sequence

0→ dZV → R → Q → 0

and Q is supported on a proper closed subset and we already know the result for
dZV ' ZV . Hence we know the result for R. But now we have the sequence

0→ R → ZU → F → 0

so we know the result as well for F .

(iii) Show that the result holds when X is irreducible and F is finitely generated.

Solution. If xi ∈ F (Ui) are generators then we have an exact sequence

0→
m−1∑
i=1

xiZUi → F → ZUmxm → 0

and by induction we can reduce to the case where F = ZUmxm. But then F is
quotient of ZUm .

(iv) Show that the result holds when X is irreducible.

Solution. Realize F as a filtered colimit of finitely generated sheaves and use the fact
that cohomology commutes with filtered colimits.
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(v) Show that the result holds for all X.

Solution. If X is reducible, say X = Y ∪ Z. Then we have an exact sequence

0→ F → FY ×FZ → FY ∩Z → 0

Then we have

Hp−1(Y ∩ Z,F )→ Hp(X,F )→ Hp(Y,F )×Hp(Z,F ).

We have vanishing on the left because dimY ∩ Z ≤ dimX − 1 and vanishing on the
right because Y and Z are closed subsets not equal to X.

47.3 Cohomology of invertible sheaves on projective space

Exercise 47.7. Compute Hp(P1,OP1) for all p.

Solution. We know it vanishes for all p < 0 (definition) and p > 1 (dimension). We can
compute using Čech cohomology:

H0(U0,O)×H0(U1,O)→ H0(U0 ∩ U1,O)

becomes

A[x1/0]×A[x0/1]→ A[x0/1, x1/0]/(x0/1x1/0 − 1).

We can easily see this is surjective with kernel A, so H1(P1,O) = 0.

Exercise 47.8. Compute Hp(P1,OP1(n)) for all integers n and p. (Hint: There is a map
O(n)→ O(n+ 1) by ‘multiplication by x’.)

Exercise 47.9. Repeat the above calculation for P2 and then for all Pn. (Hint: There
should be an induction on n going on here. You’ll have to compute the cohomology of OPn

by hand, though.)

Recall that quasicoherent sheaves on Pn are equivalent to graded modules on An+1 such
that if j : An+1r{0} → An+1 is the inclusion then we have F → j∗j

∗F is an isomorphism.
We compute the derived functors of this inclusion. Under this equivalence, global sections
on Pn correspond to Γ(An+1,F )0. Regarding F = M̃ for some graded module M , we form
the following resolution:

0→M →
∏

1≤i≤n

Mxi →
∏

1≤i<j≤n

Mxixj → · · · →Mx0···xn → 0.

48 Čech cohomology III

49 Lines on a cubic surface

For any scheme S, let G(S) be the set of lines in P3. Equivalently, G(S) is the set of
equivalence classes of 2-dimension vector subspaces V ⊂ A4

S . This is the Grassmannian.
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Exercise 49.1. Show that Grass(k, n) is proper. (Hint: Use the valuative criterion. For
the existence part, let R be a valuation ring with field of fractions K. Represent an element
of Grass(k, n)(K) by an k × n matrix with entries in R such that not all k × k minors
are zero. Multiply by the inverse of the k × k-submatrix whose determinant has minimal
valuation. Argue that the result has entries in R.)

Suppose that V ⊂ A4
S represents a line. This gives an embedding

PSV → P4
S

where PSV is the space of lines in the rank 2 vector bundle V over S. Indeed, any 1-
dimensional subspace of PSV is also a 1-dimensional subspace of A4

S . If we choose an
isomorphism V ' A2

S then we get an isomorphism PSV ' P1
S .

This construction has an inverse: If we have a closed embedding of S-schemes f : P ⊂ P3
S

then it is given by a tuple (L , x0, . . . , x3) with the xi generating L . Let π : P → S be the
projection. Then x0, . . . , x3 give a map O4

S → π∗L . If P is isomorphic to P1
S locally in S

and L is locally isomorphic to OP1
S
(1) then π∗L is a locally free sheaf of rank 2 on S. If

we show the map O4
S → π∗L is surjective then V(π∗L ) → V(O4

S) ' P3
S will be a closed

embedding.
To see that O4

S → π∗L is a surjection, it is sufficient to treat the case when S is a point.
(A morphism of finite rank vector bundles that is a surjection fiberwise is a surjection,
by Nakayama’s lemma.) Now this corresponds to a degree 1 morphism of graded modules
k[x, y]→ k[x, y] that is surjective modulo x and modulo y. It follows that the image contains
both x and y so it is surjective on global sections.

Exercise 49.2. Let H(S) be the set of closed embeddings of S-schemes f : P ⊂ Pn
S

such that locally in S, we have P ' Pk
S and f∗OPnS

(1) = OPkS
(1). Prove that H '

Grass(k + 1, n+ 1).

Let Y = AN be the space of all homogeneous cubics in 4 variables. Let X be the functor
with X(S) equal to the set of pairs (p, L) where p is a homogeneous cubic in 4 variables, and
L is family of lines in P3 parameterized by S such that L lies on the cubic surface defined by
p. If we view p as a morphism A4

S → A1
S and L as a 2-dimensional linear subspace V ⊂ A4

S

then the condition defining X is p(V ) = 0.

Exercise 49.3. (i) Show that X is representable by a scheme.

(ii) Show that X is proper over Y . (Hint: Make use of the properness of the Grassman-
nian.)

Exercise 49.4. Give an example of a non-smooth cubic surface. Show that the number of
lines on a non-smooth cubic surface does not have to be the same as the number of lines on
a smooth cubic surface.

Let Z(S) be the set of pairs (p, x) where p is a homogeneous cubic and x is a point of
the cubic surface defined by p. In other words, Z(S) consists of p : A4

S → A1
S and x is

represented by a 1-dimensional subspace W ⊂ A4
S with p(W ) = 0. Let Z0 ⊂ Z be the set

of all points (p, x) such that Z is not smooth over Y at x.

Exercise 49.5. (i) Show that Z fails to be smooth at (p, x) if and only if p′(x) = 0. (You
might need to work locally in Z to make sense of this condition.)
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(ii) Conclude that Z0 ⊂ Z is closed.

(iii) Conclude that the p ∈ Y defining smooth cubic surfaces form an open subset, denoted
Y ◦ ⊂ Y .

Let X◦ be the preimage of Y ◦. Points of X◦ correspond to lines on smooth cubic surfaces.

Exercise 49.6. Let X ′ be a cubic surface over S′ and L ⊂ X a line. Suppose that S ⊂ S′
is a square-zero extension with ideal J and π : X → S is the restriction of X ′ to S. Let
τ : L → S be the restriction of π. Show that there is an obstruction to extending L to a
line L′ ⊂ X ′ over S′ lying in Ext1

OL(I /I 2, π∗J) and that extensions are parameterized by
HomOL(I /I 2, τ∗J).

Solution. We have an exact sequence:

0→ I → OX → OL → 0.

Let A be the quotient of OX′ by the kernel of the map J ⊗OX → J ⊗OL. Let J be the
kernel of A → OL. Then we have an exact sequence:

0→ J ⊗OL →J → I → 0

This is a sequence of OX′ -modules. Dividing by J 2 gives:

0→ τ∗J →J /J 2 → I /I 2 → 0

This is a sequence of OL-modules. As J 2 = I 2, splitting this sequence or the one before
is the same. But if σ is a splitting then OL′ = OX′/σI gives the deformation of L. This
proves that the class of the sequence above obstructs the existence of L′ and that splittings of
the sequence, which are in bijection with Hom(I /I 2, τ∗J) parameterize choices of L′.

Exercise 49.7. With notation as in the last exercise, show that I /I 2 = OL(1).

Solution. We have an exact sequence:

0→ NL/X → NL/P3 → NX/P3

∣∣
L
→ 0

We know NX/P3 ' OX(3) and NL/P3 is an extension of OL(1) by OL(1). Taking
∧2

, we
find

OL(2) ' NL/X(3)

yielding NL/X ' OL(−1). Dually, I /I 2 = OL(1).

Exercise 49.8. Prove that Exti(I /I 2, τ∗J) = 0 for i = 0, 1. (Suggestion: The case where
S = Spec k and J = k is all we really need, so feel free to do just that.)

Solution. In the special case, we have to show H0(L,OL(−1)) = H1(L,OL(−1)) = 0, which
we know because we know the cohomology of quasicoherent sheaves on P1. In general, one
can reduce to this case using the upper semicontinuity of the ranks of R1τ∗τ

∗J(−1).

Solution. Conclude that X◦ is proper and étale over Y ◦, so its fibers all have the same
size. Compute that size over a particular smooth cubic surface, like the one defined by∑
x3
i = 0.
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Chapter 16

Deformation theory

50 Formal functions

51 Locally trivial deformation problems

51.1 Deforming morphisms to a smooth scheme

51.2 Deforming smooth schemes

51.3 Deforming vector bundles

52 Homogeneous functors and Schlessinger’s criteria

B Lines on a cubic surface

53 Divisors and line bundles

54 Associated points and the field of fractions

Reading 54.1. [Vak14, §5.5], [Eis91, §3.1]

Every integral domain can be embedded in a field, but not every commutative ring
can. We will see that there is a replacement for the field of fractions, called the total ring
of fractions, obtained by localizing the ring at its associated primes, or equivalently by
inverting all nondivisors of zero. The only associated prime of an integral domain is the
zero ideal, so the total ring of fractions recovers the field of fractions in this case.

Definition 54.2. Let A be a commutative ring and M an A-module. For any subset
S ⊂ M , the annihilator1 of S in A is the set of all a ∈ A such that ax = 0. It is denoted
Ann(S).

1The French use the more evocative assassin.
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Definition 54.3. Let A be a noetherian ring and let M be a finitely generated A-module.2

A prime p of A is said to be associated to M if there is an injection of A-modules A/p→M .
The set of primes assocated to M is denoted Ass(M).

Exercise 54.4.Should be quick and
easy and not worth

writing down.

Show that p is associated to M if and only if there is some x ∈ M such
that AnnA(x) = p.

Exercise 54.5 ([Vak14, Exercise 5.5.J], [Eis91, Proposition 3.4]). Consider the collection
of all proper ideals of A that are annihilators of elements of M , ordered by inclusion. Show
that the maximal elements of this collection are associated primes of M .

Solution. Suppose that I annihilates x ∈ M . If ab ∈ I then abx = 0. Since Ann(ax) and
Ann(bx) both contain I, it follows that either Ann(ax) = I or Ann(ax) = A. In the former
case, we have b ∈ I and in the latter, we have ax = 0, whence a ∈ I. Thus I is prime, hence
is an associated prime of M .

Exercise 54.6 ([Vak14, Exercise 5.5.K]). Show that M →
∏

p∈Ass(M)Mp is injective.

Solution. Suppose that x ∈M lies in the kernel. Then for every associated prime p there is
some f ∈ A r p such that fx = 0. Thus Ann(x) is not contained in any associated prime.
Then Ann(x) = A so x = 0.

Exercise 54.7. Show that the union of the associated primes of a noetherian commutative
ring A is the set of zero divisors of A.3

Solution. Suppose that x ∈ A is a zero divisor. Then there is a nonzero y ∈ A such that
xy = 0. Then Ann(y) 6= A so x ∈ Ann(y) is contained in some associated prime of A.
Conversely, if x ∈ p ∈ AssA then p = Ann y for some y 6= 0 so xy = 0 and x is a zero
divisor.

Exercise 54.8. Let A be a commutative noetherian ring, M an A-module, and f ∈ A.
Show that AssAf Mf = D(f) ∩AssAM .

Solution. Suppose p ∈ D(f) ∩ AssAM . Then p = AnnA x for some x ∈ M . We argue
AnnAf x = pAf . Certainly pAf ⊂ AnnAf x. Suppose g ∈ A has image in AnnAf x. Then

fkgx = 0 for some k ≥ 0. Then fkg ∈ AnnA x = p. But f 6∈ p by assumption so g ∈ p.
Suppose p ∈ AssAf Mf . Then p ∈ D(f) by definition and there is some x ∈M such that

AnnAf x = p. Consider the increasing chain of ideals AnnA f
kx. This stabilizes since A is

noetherian, say to I. Suppose ab ∈ I. Then abfkx = 0 so a ∈ p or b ∈ p. In the former
case, we have ax = 0 in Af so f `ax = 0 in A, whence a ∈ I. Thus I is prime. Moreover,
IAf = p. Indeed, if a ∈ IAf then afkx = 0 in A so ax = 0 in Mf ; if a ∈ p then ax = 0 in
Af so fkax = 0 in A so a ∈ I.

54.1 Normalization

54.2 Intuition from topology

Let k be a field. Fix a k-vector space V . The set of 1-dimensional subspaces of V is denoted
P(V ). When V = kN+1 we also write kPN . This notation is usually only employed when
k = R or k = C.

2The definition makes sense even when A is not noetherian and M is not finitely generated. It is less
clear how useful the definition is in this generality, however.

3By a zero divisor, we mean an element a ∈ A such that there is a nonzero b ∈ A with ab = 0.
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Every non-zero vector in V spans a 1-dimensional subspace. This gives a surjection
V r {0} → PV . Two vectors span the same 1-dimensional subspace if and only if one is a
non-zero multiple of the other. That is, we get a bijection

(V r {0})/k∗ ' PV

where (V r {0})/k∗ is the set of orbits of the group k∗ acting on V r {0}.
When V has a topology (for example k = R or k = C) this allows us to put a topology

on PV . However, this doesn’t explain why this topology is natural.

Suppose W ⊂ V has codimension 1 and let W ′ be the translate of W by a vector not in
W . We obtain a map W 'W ′ → PV . Its complement is the natural inclusion PW ⊂ PV .

Exercise 54.9. Show that, when k = R or k = C, the inclusions W ⊂ PV constructed
above are open embeddings and that they cover PV .

We can weaken the assumption that V be a vector space in this construction, at least
when k = R or k = C. What we really need is for V to be an cone. That is V should carry
a continuous action of the multiplicative monoid k. The vertex of V is 0.V .

Exercise 54.10. The vertex of V is the same as the fixed locus of k∗.

Solution. Suppose k∗v = v. Then 0v = limλ→0 λv = v so v ∈ 0.V . Conversely, if v = 0w
then λv = λ0w = 0w = v for all λ ∈ k.

Exercise 54.11. There is a continuous retraction V → 0.V sending v to limλ→0 λv. (Note
we are assuming k = R or k = C here.)

Define PV to be the set of lines in V , equivariant closed embeddings k → V .

54.3 Cones in algebraic geometry

54.4 Line bundles

If PV is supposed to be the space of lines in the vector space V then a map X → PV
should be a family of lines in V parameterized by X. In this section, we make sense of what
a “family of lines” is supposed to be.

We give several definitions of a line bundle over a scheme. The first will be familiar to
those with background in differential geometry.

Exercise 54.12. Show that the functor A 7→ GLr(A) is representable by an affine scheme.
(Hint: Show Matm×n is representable by an affine scheme and then construct GLr as an
principal affine open subscheme of Matr×r.)

Definition 54.13. A map X×An → X×Am is linear if it is of the form (x, t) 7→ (x, λ(x)t)
where λ : X → Matm×n(r) is a morphism of schemes.

Exercise 54.14. Give an equivalent definition of linearity for a map SpecA × An →
SpecA×Am in terms of the homomorphism of commutative rings

A[t1, . . . , tm]→ A[t1, . . . , tn].
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Solution. There is a M ∈ Matm×n(A) such that

(t1, . . . , tm) 7→ (t1, . . . , tm)M.

Definition 54.15 (Line bundles via charts). A line bundle on a scheme X is a scheme L
and a projection π : L→ X, together with a cover of X by affine open subschemes U ⊂ X
and isomorphisms φU : π−1U ' X ×A1 such that the transition maps

(U ∩ V )×A1
φU

∣∣
U∩V←−−−−− π−1(U ∩ V )

φV

∣∣
U∩V−−−−−→ (U ∩ V )×A1

are linear.

Definition 54.16 (Line bundles via the functor of points). A line bundle on a scheme X is
a scheme L over X with an action of A1 on the fibers of L over X that is locally isomorphic
in X to the action of A1 on itself.

Exercise 54.17. Show that these two definitions of line bundles are equivalent.

Reading 54.18. [Vak14, §§5.4, 9.7]

Definition 54.19. Let A → B be an injective homomorphism of commutative rings. We
say that A is integrally closed in B if every x ∈ B that satisfies a monic polynomial with
coefficients in A lies in A.

Definition 54.20. A scheme X is said to be normal if for all x ∈ X, the local ring OX,x
is an integrally closed domain.

54.5 Torsors under the multiplicative group

Definition 54.21 (Torsor). Let G be an algebraic group. A G-torsor over a scheme X is
a G-action on an X-scheme P such that there is a cover of X by open subschemes U ⊂ X
such that P

∣∣
U

is isomorphic to GU as a G-scheme.

Exercise 54.22. (i) Suppose that L is a line bundle on X. Define Φ(L) = Isom(L,A1
X)

to be the sheaf whose value on U ⊂ X is the set of isomorphisms L ' A1
U . Show that

Isom(L,A1
X) is a Gm-torsor.

(ii) Suppose that P is a Gm-torsor on X. Define Ψ(P ) = Hom(P,A1
X) to be the sheaf

whose value on U ⊂ X is the set of Gm-equivariant morphisms P
∣∣
U
→ A1

U . Show

that Hom(P,P1
X).

(iii) Show that Φ and Ψ define inverse equivalences of categories between the category of
Gm-torsors and the category of line bundles on X.
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55 Quasicoherent sheaves on projective space

C Chow’s lemma

56 Morphisms to projective space

56.1 Blowing up

56.2 A criterion for closed embeddings

56.3 Ample line bundles

56.4 Another proof of Noether normalization

In this section we will find a more geometric construction of Noether normalization. This
yields a slightly less general version of the theorem, but it is just as good for practical
purposes.

Exercise 56.1. (i) Let S be a scheme and suppose that M is a m × n matrix with
coefficients in Γ(S,OS) such that for every point ξ ∈ S the matrix M(ξ) has rank m.
Construct a morphism of S-schemes Pm

S → Pn
S sending (L , x) to (L , xM).

(ii) What goes wrong in the previous part when rankM < m?

(iii) More generally, suppose that M is an m × n matrix as above. Let U ⊂ Pm
S be the

subfunctor consisting of all (L , x) ∈ Pm
S such that xM generates L. Show that the

formula above gives a map U → Pn
S .

(iv) Show that U is open in Pm
S .

Solution. To show U is open in Pm
S is a local problem. We can therefore assume

S = SpecA and that L = A. Then we have elements xM1, . . . , xMn ∈ A and want to
show that there is a universal A-scheme over which these generate A as a module. By
definition, this is D(xM1, . . . , xMn), which is open by definition.

Exercise 56.2. Let k be a field, p ∈ Pn
k , and H ⊂ Pn

k a hyperplane. We make the
following construction precise: For any point q ∈ Pn

k r{p}, there is a unique line connecting
p and q, denoted L(p, q). This line intersects H in a unique point, hence determines a map
Pn
k r {p} → Pn−1

k .

(i) First we explain what we mean by a hyperplane. Fix a linear equation f(x0, . . . , xn).
For any k-scheme S, we let H(S) be the set of all (L , x0, . . . , xn) ∈ Pn

k (S) (here L
is an invertible sheaf on S and xi ∈ Γ(S,L ) generate L ) such that f(x0, . . . , xn) = 0
as an element of L . Show that H is representable by a closed subscheme of Pn

k and
that H ' Pn−1

k .

(ii) Suppose that p and q are two disjoint S-points of Pn
k . Show that there is a unique

linear map g : P1
S → Pn

k such that g(0) = p and g(∞) = q. (Here 0 is the S-point
(OS , 0, 1) ∈ P1

S(S) and ∞ is the S-point (OS , 1, 0) ∈ P1
S(S). ‘Linear’ means that the

map must be of the form (L , x0, x1) 7→ (L , g(x0, x1)) where g is a linear function.)
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(iii) Let g and H be as in the last two parts. Show that g−1H consists of a single S-point
of P1

S .

Exercise 56.3. Let X = SpecB and assume that f : X → An
k is a finite map that is not

surjective. We construct a finite map X → An−1
k .

(i) Embed An
k ⊂ Pn

k by the map sending (x1, . . . , xn) to (O, 1, x1, . . . , xn). Show that
there is a finite map f : X → Pn

k such that f−1An
k = X and f

∣∣
X

= f . (Hint: Take
the ‘integral closure’ of Pn

k in X.) (Suggestion: You may want to skip this part of the
problem, since it is not necessary to prove Noether normalization if you set up your
induction carefully.)

(ii) Choose a point p ∈ Pn
k not on H or X.

57 The relative spectrum

Reading 57.1. [MO, §I.7], [Gil11]

Suppose that X is a locally ringed space and that A is a sheaf of OX -algebras on X.
We can define a functor on locally ringed spaces: for any locally ringed space S, let F (S)
be the collection of all (f, ϕ) where

(i) f : S → X is a morphism of locally ringed spaces, and

(ii) ϕ : f−1A → OY is a f−1OX -algebra homomorphism.

Exercise 57.2. The second datum could be replaced with an OX -algebra homomorphism
A → f∗OY .

Our goal is to demonstrate that F is representable.

Exercise 57.3. Show that if X = Spec k is a point, where k is a field, in which case A is
just a k-algebra A, then F is representable by SpecA.

Exercise 57.4. Show more generally that if X is a point, in which case OX is a local ring
B, and A is a OX -algebra A, that F is representable by SpecA×SpecB X.

Exercise 57.5. Show that if A is a sheaf of local rings then F is representable by (X,A ).

In order to construct Spec A , we first construct its underlying topological space. For
each x ∈ X, let A (x) = Ax ⊗OX,x k(x). Define

Spec A =
∐
x∈X

Spec A (x) =
{

(x, z)
∣∣ x ∈ X, z ∈ Spec A (x)

}
There is a function π : Spec A → X sending (x, z) to x.

Exercise 57.6. Show that, equivalently, a point of Spec A consists of a point x ∈ X and
a prime ideal p ⊂ Ax such that, if α : OX,x → Ax is the structural map, then α−1p is the
maximal ideal of the local ring OX,x.

Now we need to give Spec A a topology. For each (x, z) ∈ Spec A , let k(x, z) be the
residue field of Ax at the points z ∈ Spec Ax.
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Exercise 57.7. For each open U ⊂ X, construct a map π−1U → Spec A (U) such that the
restriction to π−1x = Spec A (x) is induced by the composition

A (U)→ Ax → A (x).

We give Spec A the coarsest topology such that all of the maps

π−1U → Spec A (U)

and π : Spec A → X are continuous.
It is also possible to construct this topology without prior knowledge of Spec A (U).

That is the content of the next exercise (which is also important for constructing the sheaf
of rings on Spec A ).

Suppose that U ⊂ X is open and f ∈ A (U). If x ∈ U and z ∈ Spec A (x), define f(x, z)
to be the image of f under the homomorphism

ev(x,z) : A (U)→ Ax → A (x)
evz−−→ k(x, z).

Let DU (f) be the set of points (x, z) in π−1U such that f(x, z) 6= 0.

Exercise 57.8. Suppose that ϕ : π−1U → Spec A (U) denotes the continuous function
constructed above.

(i) Show that ϕ−1DSpec A (U)(f) = DU (f)

(ii) Show that the sets DU (f) are a basis for the topology of Spec A .

Morally, we will construct the structure sheaf on Spec A by sheafifying the presheaf
B(DU (f)) = A (U)[f−1]. However, it is a little tricky to get this right, because it is possible
for DU (f) to coincide with DV (g) for different open subsets U and V , and therefore for the
rings A (U)[f−1] and A (V )[g−1] to be different. This makes it hard to say just what the
presheaf in question should be. We could get around this by considering B as a presheaf on a
basis in which a single open set has multiple representatives (an example of a Grothendieck
topology), but we will take a more direct route and bake the sheafification step into the
definition.

In any case, we can see what the stalks of OSpec A will be. For each (x, z) ∈ Spec A , let
p(x,z) be the kernel of the map

ev(x,z) : Ax → A (x)→ k(x, z).

Then define A(x,z) to be the local ring of Ax at p(x,z).
This effectively tells us the underlying set of the espace étalé of OSpec A . We can charac-

terize the sheafification of a presheaf as the space of continuous sections of the espace étalé,
which allows us to construct the sheafification as a subsheaf of an ambient sheaf. We do
the same thing here:

Definition 57.9. For each open U ⊂ Spec A , let OSpec A (U) be the collection of tuples
s ∈

∏
(x,z)∈U A(x,z) with the following property:

for each (x, z) ∈ U there is an open neighborhood V of x in X and a section
g ∈ A (V ) with g(x, z) 6= 0 such that, for every (y, w) ∈ DV (g), the component
s(y,w) is the image of A (V )[g−1]→ A(y,w).
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Exercise 57.10. Show that OSpec A is a sheaf. (Hint: it is a subpresheaf of the sheaf F
where F (U) =

∏
(x,z)∈U A(x,z).)

By construction, the stalks of OSpec A are local rings. Now we build the projection map
π : Spec A → X and show it is a morphism of locally ringed spaces. Define π(x, z) = x. To
get a map OX → π∗OSpec A consider an open U ⊂ X. If f ∈ OX , we get a map

OX(U)→ A (U)→
∏
x∈U

Ax →
∏

(x,z)∈π−1U

A(x,z).

If f ∈ OX(U), its image can certainly be represented on DU (1) by the image of f in A (U),
which gives us a well-defined map.

Exercise 57.11. Prove that Spec A , with the sheaf constructed above, represents the
functor F .

Solution. Suppose we have a map of locally ringed spaces u : S → X and an OX -algebra
map ϕ : A → u∗OS . We construct a v : S → Spec A such that πv = u and show it is
unique. If s ∈ S, we get a homomorphism A (x) → k(s). The kernel is a point z ∈ π−1x,
so we define v(s) = (x, z).

To see that this is continuous, consider DU (f) ⊂ Spec A . Its preimage in S is precisely
DS(ϕ(f)).

For each s ∈ S, we have a local homomorphism of OX,x-algebras

Av(s) → OS,s

by the construction of v. For each open U ⊂ Spec A , this gives us a map

ψ :
∏

(x,z)∈U

A(x,z) →
∏

s∈v−1U

OS,s.

We have to check it carries OSpec A (U) into OS(v−1U). Suppose that f ∈ OSpec A (U). We
want to prove ψ(f) ∈ OS(v−1U), which is a local question since OS is a sheaf. Therefore
we can replace U with an open set DV (g) such that f is in the image of A (V )[g−1]. But
then ψ(f) is in the image of the map

A (V )[g−1]→ OS(v−1DV (g)) = OS(Du−1V (ϕ(g)))→
∏

s∈Du−1V (ϕ(g))

OS,s

as required.

Exercise 57.12. Adapt the construction of this section to show that, if X is a ringed space,
the functor

F (S) = HomRS(S,X)

is representable by a locally ringed space.
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