Problem 1. Let S be the set of equivalence classes of congruence modulo 7 on the integers. Draw the graph of the function $f: S \rightarrow S$ defined by $f(x)=x+3$.

Problem 2. Suppose $f: A \rightarrow B$ is a function and that there is another function $g: B \rightarrow A$ such that $f \circ g=\mathrm{id}_{B}$. What can you say with certainty about f ?
A) f is injective
B) f is surjective
C) f is bijective
D) None of these

Problem 3. What about g ?
A) f is injective
B) f is surjective
C) f is bijective
D) None of these

Problem 4. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. Assume that both f and g are surjective. Is $g \circ f$ surjective?
A) Yes
B) No

Problem 5. Prove that $\binom{n}{k}=\binom{n}{n-k}$ when n and k are non-negative integers such that $0 \leq k \leq n$.
Problem 6. Let S be a finite set. Prove that the number of subsets of S is the same as the number of functions from S to $\{0,1\}$.

Problem 7. Can a function be one-to-one without being onto?
A) Yes
B) No

Problem 8. If $f: A \rightarrow B$ is one-to-one then $|B| \geq|A|$.
A) True
B) False

Problem 9. If $f: A \rightarrow B$ is onto then $|B| \geq|A|$.
A) True
B) False

Problem 10. Let A and B be finite sets. How many functions are there from A to B ?
A) $|A|+|B|$
B) $|A| \times|B|$
C) $|B|^{|A|}$
D) $|A|^{|B|}$
E) None of these

Problem 11. Let A and B be finite sets. How many bijections are there from A to B ?
A) $|B|^{|A|}$
B) $|A|^{|B|}$
C) $|A|$!
D) $|B|$!
E) None of these

Problem 12. What does the graph of the identity function on a set S look like?
Problem 13. Prove that $\operatorname{im} f \circ g \subset \operatorname{im} g$. Give an example where $\operatorname{im} f \circ g=\operatorname{im} g$ and an example where $\operatorname{im} f \circ g \neq \operatorname{im} g$.

