Math 2001 Assignment 32

Your name here
Due Monday, November 10

Reading 1. Scheinerman, $\S 24$ (pp. 167-175)
Definition 2. Suppose A and B are sets. A bijection from A to B is a subset $f \subset A \times B$ with the following two properties:
(i) for any $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$;
(ii) for any $b \in B$ there is a unique $a \in A$ such that $(a, b) \in f$.

Two sets have the same cardinality if and only if there is a bijection between them.

Problem 3. Let $A=\{1,2,3,4\}$ and $B=\{1,2,5,6\}$. Let

$$
f=\{(1,2),(2,6),(3,1)\}
$$

What element should be added to f to make it a bijection from A to B ? Explain your answer.

Problem 4. Scheinerman, $\S 24, \# 4$
Problem 5. Scheinerman, $\S 24, \# 5$
Problem 6. Prove that having the same cardinality is an equivalence relation on sets. Your proof will have three parts:
(i) To prove that the relation is reflexive, you need to show that for any set A there is a bijection from A to itself. (Hint: Δ_{A}.)
(ii) To prove that the relation is symmetric, you need to show that if there is a bijection f from A to B then there is a bijection from B to A. (Hint: f^{-1}.)
(iii) To prove that the relation is transitive, you need to show that if there are bijections f from A to B and g from B to C then there is a bijection from A to C. (Hint: $g \circ f$.)

