SOBOLEV EMBEDDINGS II

Name:

First recall from Wednesday:

Fill in the details

Given Banach spaces By, By, we say that B is
in By and write By C By if we can choose a value C' so that the inequality

/11, 17115,

holds for each f in

Motivated by the FTC, we began looking for inequalities of the form
iy (Rd) = C ||VU’||LP(R’1) :

We saw that this inequality will certainly fail unless we have
1 1 1

prop d
with p < d.
Given p, d we call the value p* the Sobolev conjugate.
Note that while we have determined that the inequality can only hold in this special case,
we have not yet proved that this inequality is ever true. A large portion of this project will
be devoted to showing that the inequality does indeed hold in this case.

Theorem (Gagliardo-Nirenberg-Sobolev inequality). Suppose 1 < p < d. There is a con-
stant C' depending only on d and p so that is p* is the Sobolev conjugate then

||u||Lp*(Rd) <C HVUHLP(Rd)
for any u € CHRY).

Before we prove the theorem we examine some consequences.

Corollary. Suppose 1 < p < d. We have the continuous embedding
WP (RY) c LP" (RY).

Exercise

Provide a brief proof of the above corollary.




Exercise

Directly from the above embedding, given 1 < p < d, for what other values ¢ do we have
the embedding W1P(R?) C LI(R?)?

Exercise

Considering embeddings for W?(R%), what additional embeddings can we obtain for
W2P(R?)?

Exercise

Given p < ¢ < oo, show that for large enough k, we have W*?(RY) C LI(R?).

We are now ready to prove the theorem.

Proof of the Gagliardo-Nirenberg-Sobolev inequality. We will start by trying to prove
the theorem for p = 1, and see if we can adapt the FTC argument to higher dimension.

Note that we can relate u; = u,, and u by the identity
u(z) = / Wi(T1y - Ti 1, Yis Yig1s - - > Ta)dYs.
Hence we have the inequality

()] < / V@, Ty Yo Gesss )|y

o0

Exercise

Explain verbally why we can not relate norms of v and Vu by integrating both sides of
the above inequality.




We need to modify the inequality to obtain sufficient decay in the y; direction on the right

hand side.
Exercise

Find a function which has some decay in every direction and bounds |u(x)|?.

Exercise

Consider the case d = 2. Integrate |u(x)
Gagliardo-Nirenberg-Sobolev inequality in this case.

|2 and the above function in space to obtain the

Unfortunately, this trick is not quite enough for dimensions d > 3. The following two
exercises explain why.
Exercise
Suppose we have u, v € L?(R?). Then for almost every a, The functions u(a, -),u(-, a),v(a, ) |v(-, a)
are in L*(R).

Define a function on R? given by w(z,y, 2) = u(z, y)v(y, 2).
For almost every a, b, w(a, b, -) is in which L? space? What about w(a, -, b) and w(-, a, b)?

How does this relate to the above situation?




Exercise

To clarify why this really is a problem, suppose we have some function u on R? such
that for almost every z, u(z,-) € LY(R), and for almost every y, u(-,y) € L"(R), with
q # r. Why can we not expect u to live in any L? space on R??

We can balance our dimensions by considering the inequality

Ju(x)|? < Hi/ Vu(zr, .o i1, Yi Yirs - - -5 Ta) |y
We know that for p =1, p* = d;fl. so we will modify the equality accordingly.
oo 1/(d—1)
|U((L’)|d/(d_1) S Hz(/ |vu(x17~~';$i—17yi7yi+17---,xd>|dyi> .

We will examine what happens when we integrate in one spatial dimension

- = > 1/(d-1)
/ |u(x)|d/(d—1)dx1 S / (Hz(/ |VU(I’1, ey L1, Yy Yiv 1, - - 7xd)|dyz> )dl‘l

oo —

o 1/(d—1)
= (/ |Vu(y1,a:2,...,xd)|dy1>
~ > 1/(d-1)
/ (HWﬂ(/ ’vu(xla"'7$i717yi7yi+17"-7xd)|dyi> )dl'l
e 1/(d—1)
< (/ |Vu(x1,...,xd)|dx1>

) 0 oo 1/(d-1)
iz (/ / \Vu(@r, ..o 21, Vi Yigas - - - 7$d)|d$1dyz’)



Exercise

Justify the last inequality using Holder’s inequality.

An induction argument gives that

/ / |u(x)|d/(d‘1)dx1---dxj
e o i/(d—1)
< (/ / |Vu(:171,...,xd)|dx1---dxj>

0 o 1/(d-1)
'Hi>j(/ / |VU($17---,IEi—lv?Jszle--,fEd)|d$1"'dﬂfjd?/i> .

Make sure to convince yourself of the above.

Hence
/ / |u(q;)‘d/(d’1)dx1~'dxd§ (/ / |Vu<x1’___’xd>’dx1...dxd>

and the proof is complete for p = 1.

The proof for general p < d can be obtained by applying the p = 1 case to functions of
the form |u|”. We will omit the details of this argument.

This completes our examination of the proof.
Classical Derivatives. We now examine further regularity and embeddings. We begin

with a redundant exercise.
Exercise

Show that as p < d approaches d, p* goes to infinity.

We may expect to obtain an L* bound for p = d, but it turns out this is not the case.
In any dimension d > 2, the we can obtain a counterexample using log log growth around a

point.
Exercise

Skip in class; just for fun.
Note that the function u(z) = log|log|z|| defined on B(1) is unbounded.

Explain why Vu is in LY(R?).
Consider the outward radial derivative |0,u| = |Vu|
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We can obtain a more delicate embedding for W14(R%) which we will not investigate here.
Given what we have already said about properties of embeddings, it should not be a shock
to learn that for p > d we do in fact have W1P(R?) C L>*(R?). In fact we obtain something
much stronger. The following exercise is a special case.

Exercise

Another fun exercise not for in class.
Directly use properties of the L? Fourier transform F to show that if k¥ > d/2, then

WHEAHRY) ¢ F(LY(RY) € Co(R?Y) ¢ L*®(RY).

We now present the embedding. We note that there is a well known stronger version
involving what are known as Holder spaces.

Theorem (A weak Morrey’s inequality). If d < p < oo then for any k > 1, we have the
continuous embedding

Wkp(RY) ¢ CFH(RY).

Exercise

Fix 1 < p < oo, d > 1. Show that for any [ > 0, we can choose k sufficiently large so
that the continuous embedding

WP (R?) C C'(R?)
holds.




Finally, we give some optional homework which applies these ideas to PDE.

Optional Homework: Conservation Laws. In this homework we will derive conservation
of mass for an NLS equation which has broad applications to physics. The equation we
consider is

u(0) = up € W22(R?)

with unknown u(¢,z) : R x R?, Q;u a time derivative of u, and Au the spatial Laplacian.
After one "classical” exercise, we will not need to worry too much about the interpretation
of this equation.

Exercise

{i@tu + Au — |u?u =0

Use the equation to show that if we have some u € C?*(R x R3), which is also in, say
W22(R3) for each t, then

o, / u(t, z)2dz — / [04(m)) = 0

where you may assume the first equality. Explain why for all ¢ > 0 we then have

/ u(t, z) 2z = / (0, z)[2de.

We will now list some "local” properties of solutions with initial data in W22(R3) as well as
properties of solutions with initial data in W*2(R3) for large k, and ask you to show that
all solutions with W?22?(R?) initial data also satisfy conservation of mass.

Properties of solutions

Properties of solutions with W?22?(R?) initial data:
Suppose we have uy € W?(R3) Then we have

e (Local existence up to time 7" around wug) there is some 7" > 0 and r > 0 so
that for each vy € By2z2rs)(r), there is a solution v(t) : [0, 7] — W*?*(R?) to the
equation, continuous in ¢ with respect to the W?%?2(R?) norm, such that v(0) = vy.

e (Uniqueness) For each vy € Byy2.2(gs)(r), the solution v as described above is the
unique function mapping [0, 7] — W*2(R3), continuous in time and such that
v(0) = vy.

e (continuous dependence) Furthermore, the map vy — v(t) on By22(rs)(r) is
continuous in W22(R3) for each t.

Properties of solutions with W*2(R?) initial data:
There is some large enough k so that for ug € W*2(R?) = W*2(R3) N W22(R3), if u is
any solution as described above, then we additionally have u € C*(R x R?).

These properties are enough to establish conservation of mass.
Exercise

Show that for any wy € W2%(R3), if w : [0,7) — W??(R3) is any solution which is
continuous in time with respect to W*2(R?) norm and w(0, x) = wy(x), then

/|w0(x)\2d:c:/|w(t,x)]2dx.




