Series Convergence & negetive taring For series w/ positur (convergen it -1 (r <0) (divogus it rZ-1), {a,3, Eb,3 have pisitive terms, angbe for ever n, then angle divign, Zubn does as not It and 1F " Žbn (orvoges Žin n:1" n=1 ļ - $|a_n| \leq |b_n|$

If
$$\{a,3\}, \{b,3\}$$
 have provide terms,
if $\lim_{n \to \infty} \frac{a_n}{b_n} = C$ where C70
and Cis finite, then either
 $a_n = \sum_{n \neq 0} \sum_{n \neq 0$

Definition ;	We	512	that	if	27 bu
(ohvigu,	then	(5161	Cor	reges
absolutdy.			- / (

Thm: If a series conveges absolutely, that the series also converges. Alternating services, Services of the form $\tilde{C}(-1)^n$ an or $\tilde{C}(-1)^{n+1}$ an when $\tilde{C}(-1)^n$ as sequence with posther terms.

(-1)" an= bn 51 (-1)ⁿan 645**63** n-, b35 Ebn to Ebn positive <u>~</u> b. is positive. decompily senurce, lila w hsunlly (-1)ⁿ⁺¹ GN Gn 5

From this considening

$$\widetilde{Z}(-1)^n an, \quad for any even$$

man N2n

$$\int_{n=1}^{m} (-1)^{n} a_{n} \sum_{n=1}^{n} \int_{n=1}^{n} (-1)^{n} a_{n} \sum_{n=1}^{n} \int_{n=1}^{n} \int_{n=1}^{n$$

 $\sum_{i=1}^{m} (1)^{i} a_{i} \leq \sum_{i=1}^{m} (-1)^{i} a_{i}$ N SI M] (when this exists

It scens like two, should close in
Then:
Consider a sensence of positive
terms Eand such that Eand is monotive
decreasily and lim an = 0. Then

$$n \neq \infty$$

both
 $\tilde{Z}^{7}(-1)^{n}an$ and $\tilde{Z}^{7}(-1)^{n+1}an$
 $n \neq \infty$

Convery.

Recall absolute communic: Mate that an tlan has Note Vositile terms, and is bounded from about 2/91 61

IS Ean Converses absolutuly, the

Ezlarl construin, and W direct Comparson fost, Elanten Conneges BU algebraic limit thm, $\frac{2}{2}a_{n}+|a_{n}|-|a_{n}|=\left(\sum_{n=1}^{\infty}a_{n}+|a_{n}|\right)-\left(\sum_{n=1}^{\infty}a_{n}\right)$

Thm . a sensure of positue Consider terms Ean's such that Ean's is monotine decompily and lim an =0. Then Ž¹(-1)^han and Ž(-1)ⁿ¹an both $\frac{v-1}{cos(u)} = \frac{v-1}{u^2} + \frac{(cos(u))}{u^2} + \frac{(cos(u))}{u^2}$ Do the following sources Converse? • $\sum_{n=1}^{\infty} (-1)^n (n - n)^n \sum_{n=1}^{\infty} (-1)^n (\log(n)) \cdot \sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ $n = 1 \quad n = 1$ • $\sum_{n=1}^{\infty} \frac{(-1)^n}{\log(n)} Cavess \left\{ 1 \right\}$ { log(u)} lim (-1)" login) divers

Thm: If Ebn is an alternating Series, then if Elbal? () monotine decreasing and limba = 0, 30 ba Converges, (lim |bn| = 0) log(n) Iden: Absolute convergence For a general serves $\tilde{E}_{n=1}^{o}$ ($\tilde{E}_{n=5}^{cn}$), Consider instead $\tilde{E}_{n=1}^{o}$ ($\tilde{E}_{n=5}^{cn}$),

We Say
$$\sum_{n=1}^{\infty} b_n$$
 converses absolutely it
 $\frac{\sum_{n=1}^{\infty} |b_n|}{\sum_{n=1}^{\infty} b_n}$ converses absolutely,
thin $\sum_{n=1}^{\infty} b_n$ converses absolutely,
thin $\sum_{n=1}^{\infty} b_n$ converges,
 $\frac{Q'}{Des}$ if have to converge absolutely? [NO!]
 $\frac{\prod_{n=1}^{\infty} (Alternative series test)}{\sum_{n=1}^{\infty} (Alternative series test)}$
 $\frac{\prod_{n=1}^{\infty} (Alternative series test)}{\sum_{n=1}^{\infty} (Alternative series test)}$

with only non-negative terms
$$b_n \ge 0$$
,
Such that $a_n = (1)^n b_n$ on $a_n = (-1)^{n+1} b_n$
Such that $|a_n| \ge |a_{n+1}|$ ($[b_n, b_n]$ is
monotone decreasing), $b_n \ge b_{n+1}$, and

$$\lim_{n \to \infty} |d_n| - \lim_{n \to \infty} |d_n| - |d_n| -$$

then
$$2 \alpha_n = 2 (-1)^n b_n$$
 converges,
 $n=($ $n=($

Recall
$$\frac{\partial}{\partial n}$$
 is not true!!!
Not is not true!!!
Not is not true!!!
Nonotone decreasing

Je turn into alteration Servis $\tilde{z}_{n=1}^{(-1)^n}$ by AST(alternting serves) r=1 $\tilde{z}_{n=1}^{(-1)^n}$ Lest, $\tilde{z}_{n=1}^{(-1)^n}$ Converges, n=1but Since $2\left[\frac{1-1}{n}\right] = 2$ in diverges, n=1Still does un converge absolutely Main tool for showing demance for Sedes v/ negrative terms is - Diversina test

Ratio Test: Suppose we have a series Ebn, $\lim_{n \to \infty} \left| \begin{array}{c} D_{n+1} \\ \overline{D_n} \\ \end{array} \right| = L$ L<1 •It absolutely, 2 br Converges then L71, then $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = L$ • It Ebn diverges, If lim butiled the therman N700 butiled the therman Says nothing. We say the Watlo test • | + is inconclusive.

L<1 lin Dutl = L We can (nose LCX <], so that eventnally $b_{n+1} \langle b_n \rangle$ $b_{n+z} < b_{n+i} \land \langle b_n \rangle^2$ bntm (bn)m

Ĵ Ĵ 5 15 1 2 < 2₂ \$ 1 1 1 1 Shrank these enorgy Īf we could converge

Katio Test; Suppose we have a series Ebn, 6<1 • It lim but = L N700 but = L then Zbn Converges absolutely, L71, then • It lim | b1+1 - L Ebn diveges, If lim batl h700 ball - the therman Says nothing. We say the Watlo test • | + is inconclusive.

\$, h ~ n Concluse Ĉ n! \$ n² n=1 N71 by rate test $\lim_{\substack{n \neq 0 \\ n \neq 0}} \frac{(n+1)!}{\frac{1}{n!}} = \lim_{\substack{n \neq \infty}} \frac{n!}{(n+1)!} =$ - lim / |m| |m||m| |m|204 = $\lim_{n \to \infty} \frac{n}{n+1} = 1$ $\frac{1}{120} \begin{pmatrix} \frac{1}{(N+1)^2} \\ \frac{1}{N^2} \end{pmatrix} = \begin{bmatrix} \frac{1}{(N+1)^2} \\ \frac{1}{N^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{(N+1)^2} \\ \frac{1}{N^2} \end{bmatrix}$