
TESTS FOR CONVERGENCE AND DIVERGENCE OF SERIES

IAN MILLER

Here we will state the big theorems/tests we have learned to check for convergence and
divergence of series. We will try to provide examples using a variety of valid justifications.
We will also cover some important and common tricks you may see.
You should be comfortable with using all the tests in this document, but theorems pre-
ceded by a * can be considered optional. Also, footnotes are intended for clarification, this
information is not very important for exams.

Trick (Telescoping Series). Sometimes when the below tests will not work for us, we must
resort to looking at the sequence of partial sums. Recall that

∑∞
n=1 an is a limit defined by

∞∑
n=1

an = limN→∞

( N∑
n=1

an

)
= limN→∞(a1 + a2 + a3 + · · ·+ aN).

Telescoping series are a nice kind of series where the terms take the form bn− bn+1 for some
sequence {bn} which converges to zero. We will present a concrete example to illustrate how
to handle these series.
Q: Does the series

∑∞
n=1

(
1
n
− 1

n+1

)
converge or diverge? A: We know that limn→∞

1
n+1

= 0.

Now,

∞∑
n=1

( 1

n
− 1

n+ 1

)
= limN→∞

( N∑
n=1

1

n
− 1

n+ 1

)
= limN→∞

((1

1
− 1

2

)
+
(1

2
− 1

3

)
+
(1

3
− 1

4

)
+ · · ·+

( 1

n
− 1

n+ 1

))
= limN→∞

(
1

1
+
(
− 1

2
+

1

2

)
+
(
− 1

3
+

1

3

)
+ · · ·+

(
− 1

n
+

1

n

)
− 1

n+ 1

)
= limN→∞

(1

1
− 1

n+ 1

)
= 1

So the series
∑∞

n=1

(
1
n
− 1

n+1

)
converges, and in fact,

∑∞
n=1

(
1
n
− 1

n+1

)
= 1.

Theorem. Suppose we have some sequence {an}∞n=α where α is some integer. Then if we have
integers β, γ such that β, γ ≥ α, then

∑∞
n=β an converges if and only if

∑∞
n=γ an converges.

The above assertion indicates that our convergence tests should not depend on the starting
index. When applicable, we will use the notation {an} and

∑
an to emphasize this fact.

Theorem (Test for Divergence). If we have some sequence {an} such that limn→∞an does
not exist or limn→∞an exists and is not 0, then

∑
an diverges.

Example. Q: Does the series
∑∞

n=1(1−
1
n
) converge or diverge?

A: The series
∑∞

n=1(1−
1
n
) diverges.
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Notice that limn→∞(1 − 1
n

= 1 and so by the test for divergence, the series
∑∞

n=1(1 −
1
n
)

diverges.

Q: Does the series
∑∞

n=1(−1)n converge or diverge?
A: The series

∑∞
n=1(−1)n diverges.

Consider the sequence {an}∞n=1 defined by the rule an = (−1)n. Then we have that limn→∞an
does not exist, and hence

∑∞
n=1 an =

∑∞
n=1(−1)n diverges.

Theorem (Geometric Series). Here we consider a special type of series. Here, since we
consider the value we converge to, the initial index does matter. Suppose we have some
series

∑∞
n=1 bn where we can choose some real number a and some real number r such that

bn = arn−1. Then
∑∞

n=1 bn =
∑∞

n=1 ar
n−1 is called a geometric series. If |r| < 1, then∑∞

n=1 ar
n−1 is convergent and

∞∑
n=1

arn−1 =
a

1− r
.

If |r| ≥ 1 then
∑∞

n=1 ar
n−1 diverges.1

Theorem (Integral Test). We want to determine the convergence or divergence of some
series

∑∞
n=1 an.

Suppose f is a continuous2, positive, decreasing function on [1,∞) such that an = f(n).
Then the series

∑∞
n=1 an is convergent if and only if the improper integral

∫∞
1
f(x)dx is

convergent. In other words:

• If
∫∞
1
f(x)dx is convergent, then

∑∞
n=1 an is convergent.

• If
∫∞
1
f(x)dx is divergent, then

∑∞
n=1 an is divergent.

Theorem (p-series). This is just a name for a certain type of sequence. A series of the form∑∞
n=1

1
np with p > 0 is called a p-series. The series

∑∞
n=1

1
np is convergent if p > 1 and

divergent if 0 < p ≤ 1.

The above theorem follows directly from the integral test and you should be comfortable
proving it.

Theorem (Direct Comparison Test). The intuition: Here we are considering series
∑
an

and
∑
bn where the sequences {an} and {bn} have only nonnegative terms and seeing how

comparisons of the term size can allow us to compare the convergence/divergence properties
of the sequences.
Suppose {an} and {bn} are sequences such that for every n, an ≥ 0 and bn ≥ 0. Then the
following statements hold.

1The reason for the notation using rn−1 is to make so that we can use n = 1 for our initial term and have
first term in the sequence be a. You may also see geometric series notated by

∑∞
n=0 ar

n. This is exactly the
same series.

2The continuity property is really just to ensure that we can integrate f(x). We can extend this in a
number of ways, the easiest being that can allow f(x) to have finitely many discontinuities. It is usually
easier to just check for continuity though.
Also, if we have some positive integer b such that the above hypotheses hold for f on [b,∞) then we can
replace the 1 in both the integral and the sum with b and the theorem still holds. It is usually easier to just
use 1.
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• If
∑
bn is convergent and an ≤ bn for all n, then

∑
an is also convergent.

• If
∑
bn is divergent and an ≥ bn for all n, then

∑
an is also divergent.

Theorem (Limit Comparison Test). The intuition: Here we are considering series
∑
an

and
∑
bn where the sequences {an} and {bn} have only nonnegative terms and seeing

how comparisons of the growth rate of {an} and {bn} can allow us to compare the con-
vergence/divergence properties of the sequences.
Suppose {an} and {bn} are sequences such that for every n, an ≥ 0 and bn ≥ 0. Then if

limn→∞
an
bn

= c

where c is a finite number and c > 0, then either
∑
an and

∑
bn both converge or

∑
an and∑

bn both diverge.

Now we present an unsurprising but useful extension to the limit comparison test. Learning
it is optional, but I think it could make your life easier.

*Theorem (Generalized Limit comparison Test). Suppose {an} and {bn} are sequences such
that for every n, an ≥ 0 and bn ≥ 0. If

limn→∞
an
bn

= c

Where c is a finite number (possibly 0), then the following statements hold.

• If
∑
bn converges then

∑
an also converges.

• If
∑
an diverges then

∑
bn also diverges.

Alternatively, if

limn→∞
an
bn

= c,

where c > 0 and possibly c =∞, then the following statements hold.

• If
∑
an converges then

∑
bn also converges.

• If
∑
bn diverges then

∑
an also diverges.

Series From Sequences With Some Negative Terms. So far we have looked at tests
which apply to series generated by sequences with nonnegative terms. We we discuss how to
deal with those generated sequences which have some negative terms and introduce a new
test.

Definition. Given a series
∑
an, we say that

∑
an converges absolutely if

∑
|an| con-

verges.

Theorem. If
∑
an is a series which converges absolutely, then

∑
an also converges in the

usual sense.

This result is extremely useful. If we are dealing with a series
∑
an where {an} is a

sequence with some negative terms, then we automatically can not use many of the useful
tests described above.3 However, we may be able to apply the tests to

∑
|an|. A common

question we ask is whether a series converges absolutely, converges (but not absolutely), or

3The careful reader might notice that the problems only really come up for sequences which have both
infinitely many positive terms and infinitely many negative terms. For sequences where this problematic
condition does not hold, the problem of absolute convergence is equivalent to the problem of convergence.

3



diverges. Now we look at some ways to tackle the question of convergence possibly without
absolute convergence.

Definition. We call
∑
an an alternating series if the terms of an alternate between non-

negative and nonpositive. That is, if there is some sequence {bn} such that bn ≥ 0 for all n,
and either an = (−1)nbn for all n or an = (−1)n+1bn for all n.

Theorem (Alternating Series Test). If we have an alternating series,
∑

(−1)nbn, where {bn}
is a nonnegative sequence such that bn is monotone decreasing and limn→∞bn = 0, then∑

(−1)nbn converges.
This theorem also applies to alternating series of the form

∑
(−1)n+1bn.

Theorem (Ratio Test). Suppose we have some series
∑
an where limn→∞

∣∣∣an+1

an

∣∣∣ converges.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then the series
∑
an is absolutely convergent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L > 1, then the series
∑
an is divergent.

For the above theorem, if we have limn→∞

∣∣∣an+1

an

∣∣∣ = 1, then we say that “the ratio test is

inconclusive for
∑
an.” The ratio test does not give us information about the convergence

or divergence of these series. This test can be thought of as measuring how much a series
acts like a geometric series.
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