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1. Introduction

We will present algorithms for computing antiderivatives of special functions. We will
present an algorithm for functions of the form sinn(x)cosn(x) with n,m ≥ 0. We will also
provide an algorithm for functions of the form secn(x)tanm(x) with n ≥ 1 and m ≥ 0. We
will also provide a set of practice problems.
The general method for constructing these algorithms is to directly compute a class of
integrals, and then to find ways to reduce all of the integrals in question to those basic
integrals.

2. Integrating Functions of the Form sinn(x)cosn(x)

The integral is trivial when n,m = 0 so we can just consider cases where n ≥ 1 or m ≥ 1.

2.1. Computations when n = 1 or m = 1. We will directly compute these cases. First
we will consider sin(x)cosn(x). In this integral we will use the substitution u = cos(x).∫

sin(x)cosn(x)dx = −
∫

(−sin(x))cosn(x)dx

= −
∫

undu

=
−un+1

n + 1

=
−cosn+1(x)

n + 1

Now we will consider sinm(x)cos(x). In this integral we will use the substitution u = sin(x).∫
sinm(x)cos(x)dx =

∫
umdu

=
um+1

m + 1

=
sinm+1(x)

m + 1

This is just a technical note, but notice that these computations are valid when the variable
exponent is equal to zero.
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2.2. Computations when n is odd or m is odd. Recall the identities sin2(x) = 1−cos2(x)
and cos2(x) = 1 − sin2(x). We will use these identities freely in the following computations.
First suppose that m is odd. This implies that we can choose some nonnegative integer l,
such that m = 2l + 1 and we have the following equality:

sinm(x)cosn(x) = (sin2(x))lsin(x)cos(x) = sin(x)cos(x)(1 − cos2(x))l.

Notice then that the integral∫
sinm(x)cosn(x)dx =

∫
sin(x)cos(x)(1 − cos2(x))ldx.

will then decompose into sums and differences of integrals of a form that we have already
solved. For example:∫

sin5(x)cos4(x)dx =

∫
sin(x)cos4(x)(1 − cos2(x))2dx

=

∫
sin(x)cos4(x)(1 − 2cos2(x) + cos4(x))dx

=

∫ (
sin(x)cos8(x)dx

)
− 2
(

sin(x)cos6(x)dx
)

+
(∫

sin(x)cos4(x)dx
)
.

The case with n being odd uses a symmetric method applying the identity cos2(x) = 1 −
sin2(x) to reduce the maximum exponent on the sin function to 1.

2.3. Computations when both n and m are even. The following two identities will be
useful.

sin2(x) =
1

2
(1 − cos2x) and cos2(x) =

1

2
(1 + cos2x)

The fundamental idea here is to apply both identities to obtain an expression comprised only
of constants and exponents of cos(2x). Then we decompose this integral into the summands,
and if there are any integrals containing only even powers of cos(2x), we apply the identity
again to obtain an expression of cos(4x). We can repeat this until we only have to integrate
constants and odd power cosine functions. Seeing an example is helpful for this.∫

sin2(x)cos2(x)dx =

∫
(
1

2
(1 − cos2x))(

1

2
(1 + cos2x))dx

=
1

4

∫
(1 − cos22x)dx

=
1

4

∫
1dx− 1

4

∫
cos22xdx

=
1

4

∫
1dx− 1

4

∫
(
1

2
(1 + cos4x))dx

=
1

4

∫
1dx− 1

8

∫
1dx− 1

8

∫
cos4xdx.

Notice that integrating cosm(2jx) has the same fundamental difficulties as the integral
cosm(x) after a linear substitution of u = 2jx.
From these techniques we can now integrate all of the desired functions.
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3. Integrating Functions of the Form secn(x)tann(x)

We will again break the problem down into cases. We will show how to integrate all
functions of this form with n ≥ 1 and m ≥ 0

3.1. The integral of secant. The integral of sec(x) is ln(sec(x) + tan(x)). This integral
was, for a time in the seventeenth century, an open problem and is a difficult computation,
but it is readily verified by differentiation.

3.2. Integrating sec2(x)tanm(x). We will use the substitution u = tan(x).∫
sec2(x)tanm(x)dx =

∫
umdu

=
um+1

m + 1

=
tanm+1(x)

m + 1
.

3.3. Integrating secn(x)tan(x). We are only concerned with the case when n ≥ 1. We
will use the substitution u = sec(x).∫

secn(x)tan(x)dx =

∫
undu

=
un+1

n + 1

=
secn+1(x)

n + 1
.

3.4. Computations when n is even. Recall the identity

secn = 1 + tan2(x).

Using a similar technique to what we did for sine cosine functions with an odd exponent, we
can use the given identity to decompose the integral into integrals of the form sec2(x)tanm(x),
which we know how to solve.

3.5. Computations when m is odd. Recall the identity

tan2(x) = sec2(x) − 1.

Using a similar technique to above, we can use the identity to decompose our integral into
integrals of the form secn(x)tan(x).

3.6. Computations when n is odd and m is even. This final case is the most difficult
and will require new techniques.

4. Integrating Rational Functions

Coming this week
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