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0.1. Definition. Sequences allow us to take limits of discrete processes rather than those
occuring over continuous time. One reason sequences are so useful is that humans often
times have a discrete way of thinking. In experiments we take measurements at discrete
times, we chunk our actions into discrete actions. Sequences allow us to use our calculus
ideas with a “discrete way of thinking”.
First let us define what it means to be a limit of a sequence. Your book takes the following
statement to be the definition.

Definition. A sequence {an} has the limit L and we write

limn→∞an = L or an → L asn→∞

if we can make the terms an as close to L as we like by taking n sufficiently large. If limn→∞
exists we say the sequence converges(or is convergent). Otherwise we say the sequence
diverges(or is divergent).

A couple notes about this definition. First is that when we say “we can make the terms
an as close to L as we like by taking n sufficiently large”, another way of thinking about this
is to say “an is eventually as close to L as we would like”. We will omit a formal definition
since it tends not to be the best way to think about limits in the context of Calc 2. We will
however make a note. Consider the sequence

{an} = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .),

where we we continually add one more 0 between the 1s as we go. This sequence diverges
since, even though we eventually stay at 0 for as long of a time as we want, there will always
be some time further along where we will visit 1 again.

0.2. Connection to Function Limits. You may have noticed that this concept is similar to
our idea of taking limits of functions off to infinity. This analogy is useful for conceptualizing
sequential limits, and we will present two results which make the analogy more concrete.

Theorem. If f is some function such that limx→∞f(x) = L and f(n) = an for all positive
integers n, then limn→∞an = L.

Notice that f is a function whose domain is the real numbers and that an is a sequence.
There is actually a stronger version of this theorem, it is sufficient that f(n) = an “even-
tually” instead of for all n. This should not be too supprising since the limit only cares
about the “tail” of the sequence and not anything that only occures at the “beginning” of
the sequence.
The next theorem is useful for conception but is not typically useful for any application.
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Theorem. We will use b·c to denote the floor function. Then if we have a sequence {an}
and define the function f(x) = abxc with domain [1,∞), then

limn→∞an = L if and only if limx→∞f(x) = L.

Furthermore, limn→∞an does not exist if and only if limx→∞f(x) does not exist and

limn→∞an = ±∞ if and only if limx→∞f(x) = ±∞.

After this, most of the results we will discuss should not be too supprising, and some of
them follow directly as a result of this most recent theorem.

0.3. Some Properties of Sequences and a Generalization of the Squeeze Theorem.
We will now state properties of algebraic combinations of sequence limits which are very
similar to some properties of function limits which we proved in Calc 1.

Theorem. Suppose that {an} and {bn} are convergent sequences and that c is some real
number. Then the following hold

limn→∞(an + bn) =
(

limn→∞an

)
+
(

limn→∞

)
limn→∞(c · an) = c · limn→∞an

limn→∞(an · bn) =
(

limn→∞an

)
·
(

limn→∞bn

)
limn→∞

an
bn

=
limn→∞an
limn→∞bn

if limn→∞bn 6= 0

limn→∞apn =
(

limn→∞an

)p

if p > 0 and an ≥ 0 forn ≥ 0.

The squeeze theorem is another theorem for limits of functions for which there is an
analogous theorem for sequences. We state it below.

Theorem. If we have sequences {an}, {bn}, and {cn} such that

an ≤ bn ≤ cn for alln ≥ 1,

and
limn→∞an = limn→∞cn = L,

then
limn→∞bn = L.

The following statement is an immediate corrolary from the “squeeze theorem for se-
quences”. It would be good to check how you would prove the result yourself.

Theorem. If we have some sequence {an} such that limn→∞|an| = 0 then limn→∞an = 0.

0.4. A Result regarding sequences and continuous functions. Here we will state two
results, one useful and one for amusment. Here is the useful result.

Theorem. If we have some function f which is continuous at L, and some sequence {an}
such that an → L as n→∞, then

limn→∞f(an) = f(L).
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The following picture may be useful for visualizing why this theorem is true.

Now this theorem intuitively states that if we approximate a domain value, L, and plug
those values into the function, the outputs will approximate f(L). It turns out that this is
really what we want out of our continuous functions, and is in fact sometimes the way that
continuity is defined. The following theorem illustrates this fact, but will not be used after
this in the course.

Theorem. A function f is continuous at L if and only if given any sequence {an} such that
limn→∞an = L, we also have that limn→∞f(an) = f(L).

This statement is a bit tricky because it can be hard to think of every possible sequence
which converges to some given value.

0.5. Convergence of monotone, bounded, functions. This will be updated after we
talk about it in class.
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