

Ramification in Division Fields and Sporadic Points on Modular Curves

Hanson Smith

University of Connecticut

- 1. Summary
- 2. Context
- 3. Valuations of Points
- 4. Proof Ideas
- 5. Application to Sporadic Points on $X_1(N)$

Summary

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime *p*.

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime *p*. Suppose $P \in E(K)$ is a point of exact order p^n .

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime p. Suppose $P \in E(K)$ is a point of exact order p^n . Then we precisely classify the possible valuations of the *x*- and *y*-coordinates of *P* in terms of the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial of *E*.

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime p. Suppose $P \in E(K)$ is a point of exact order p^n . Then we precisely classify the possible valuations of the *x*- and *y*-coordinates of *P* in terms of the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial of *E*.

Call this valuation¹ μ . If $\mu \geq \frac{p}{p+1}$, then all the *x*-coordinates of p^n -torsion points have the same valuation, which is

$$rac{-2}{p^{2n}-p^{2n-2}}=-2\cdotrac{1}{p^{2(n-1)}(p^2-1)}.$$

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Let *E* be an elliptic curve that is supersingular at some prime above *p* with $\mu \ge \frac{p}{p+1}$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0. Let *E* be an elliptic curve that is supersingular at some prime above *p* with $\mu \ge \frac{p}{p+1}$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0.

In other words, E does not have a p^n -torsion point over a number field of especially small degree.

Let N > 12 be a positive integer not divisible by 6 and write $N = \prod_{i=1}^{k} p_i^{e_i}$ for the prime factorization. Suppose E/\mathbb{Q} has good supersingular reduction at each p_i , then j(E) does not correspond to a sporadic point on $X_1(N)$.

Being supersingular at primes dividing N can be an obstruction to having an N-torsion point defined over a number field of particularly low degree.

Context

Previous work in this area comes in a couple of different flavors:

• Firstly, in analogy with cyclotomic fields we can ask about the arithmetic structure of fields obtained by adjoining some or all of the *N*-division points of an elliptic curve.

Previous work in this area comes in a couple of different flavors:

- Firstly, in analogy with cyclotomic fields we can ask about the arithmetic structure of fields obtained by adjoining some or all of the *N*-division points of an elliptic curve.
- We can also ask about the possible torsion structures for elliptic curves over a number field with a given Galois group or degree.

Arithmetic of Torsion Fields: [Duke and Tóth, 2002]; [Adelmann, 2001]; [Kraus, 1999], [Cali and Kraus, 2002], [Freitas and Kraus, 2018]; [González-Jiménez and Lozano-Robledo, 2016].

Mazur's Theorem +: [Mazur, 1977], [Mazur, 1978]; [Kenku and Momose, 1988], [Kamienny, 1992]; [Jeon et al., 2004], [Najman, 2016], [Derickx et al., 2020].

Uniform Boundedness +: [Merel, 1996]; Oesterlé's proof: [Derickx et al., 2017, Appendix A]; [Parent, 1999]; [Lozano-Robledo, 2018].

Valuations of Points

Canonical Subgroups

P=(x,y) my ty EE

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at p and write [p]T for the multiplication-by-p map.

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case. Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all *p*-torsion elements in \hat{E} having the same valuation,

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all *p*-torsion elements in \hat{E} having the same valuation, or it could have two sides (two-slope case), corresponding to a subgroup of $\hat{E}[p]$ of order *p* having larger valuation.

The Two-Slope Case

Notice μ is the valuation of the coefficient corresponding to sums of products of $p^2 - p$ roots.

The One-Slope Case

Figure 2: The Newton polygon for the polynomial $\prod_{\hat{P} \in \hat{E}[=p]} (T - \hat{P})$

Hanson Smith

In the 'two-slope case' people say that E has a canonical subgroup at \mathfrak{p} . This is because the subgroup of \hat{E} with larger valuation is a canonical lift of the kernel of Frobenius. This subgroup is very important to those who study overconvergent modular forms and well-studied in that context.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

If $\mu \ge \frac{p}{p+1}$, then there is no canonical subgroup and all the elements in $\hat{E}[=p]$ have the same valuation, which is $\frac{1}{p^2-1}$.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

If $\mu \ge \frac{p}{p+1}$, then there is no canonical subgroup and all the elements in $\hat{E}[=p]$ have the same valuation, which is $\frac{1}{p^2-1}$.

If $\mu < \frac{p}{p+1}$, then there is a canonical subgroup. The elements that are not in it have valuation $\frac{\mu}{p^2-p}$ and the elements that are in it have valuation $\frac{1-\mu}{p-1}$.

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

2S-tors $5^{2}(5^{2}-1)$ L[5]

stors 1

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

Even when there is a canonical subgroup, for points that are not above it we still divide by p^2 .

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

Even when there is a canonical subgroup, for points that are not above it we still divide by p^2 . So a 125-torsion element \hat{P} such that $[5^2]\hat{P}$ is not in the canonical subgroup has valuation $\frac{\mu}{5^4(5^2-5)}$. Interestingly, we have a phenomenon that is similar to the canonical subgroup in some ways occurring for higher power torsion.

Interestingly, we have a phenomenon that is similar to the canonical subgroup in some ways occurring for higher power torsion. When μ is small enough, then in the fibers over (p^{th} roots of) elements in the canonical subgroup, $[p]^{-1}\hat{Q}$, there is a subset of *p*-elements with larger valuation.

For n > 1, let $s \in \mathbb{Z}^{\geq 0}$ be the smallest integer such that $\mu \geq \frac{1}{p^{s}(p+1)}$. If $n \leq s+1$, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{n-1}\mu}{p^{n-1}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^2 - p)},$$
 (1)

where *m* is the smallest non-negative integer such that $v_{\mathfrak{p}}\left(\left[p^{m}\right]\hat{P}\right) = \frac{\mu}{p^{2}-p}$.

For n > 1, let $s \in \mathbb{Z}^{\geq 0}$ be the smallest integer such that $\mu \geq \frac{1}{p^{s}(p+1)}$. If $n \leq s+1$, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{n-1}\mu}{p^{n-1}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^2 - p)},$$
 (1)

where *m* is the smallest non-negative integer such that $v_{\mathfrak{p}}\left(\left[p^{m}\right]\hat{P}\right)=rac{\mu}{p^{2}-p}$. If n>s+1, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{s}\mu}{p^{2n-s-2}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^{2}-p)},$$
 (2)

where m is as above.

Proof Ideas

Main Idea

Stare at the power series for the multiplication-by-p map in the formal group of E at p for a long time. Because E is supersingular at p this is equivalent to staring at the p^{th} division polynomial.

Main Idea

Stare at the power series for the multiplication-by-p map in the formal group of E at p for a long time. Because E is supersingular at p this is equivalent to staring at the p^{th} division polynomial.

Let $\pi_{\mathfrak{p}}$ be a uniformizer at \mathfrak{p} . The multiplication-by-p map has the form

$$[p]T = pf(T) + \pi^{\mu}_{\mathfrak{p}}g(T^{p}) + h(T^{p^{2}}),$$

where f, g, and h are power series without constant coefficients and with f'(0), g'(0), h'(0) all units.

After a little work we see that we must compare $pv(\hat{P}) + \mu$ and $p^2v(\hat{P})$ where \hat{P} is the image of a point of $E[=p^n]$ in the formal group. We also have that the minimum of these two values is greater than or equal to \hat{Q} , where $Q \in E[=p^{n-1}]$.

Application to Sporadic Points on $X_1(N)$

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

So to preclude sporadic points on $X_1(p^n)$, compare the lower bound with have with an upper bound on the \mathbb{Q} -gonality of the modular curve $X_1(p^n)$.

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

So to preclude sporadic points on $X_1(p^n)$, compare the lower bound with have with an upper bound on the Q-gonality of the modular curve $X_1(p^n)$. There is also some dotting of i's and crossing of t's with additive reduction resolving to good supersingular reduction and Weber functions.

Let *E* be an elliptic curve that is supersingular at some prime above *p* with no canonical subgroup $(\mu \ge \frac{p}{p+1})$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0. Let *E* be an elliptic curve that is supersingular at some prime above *p* with no canonical subgroup $(\mu \ge \frac{p}{p+1})$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0.

Elliptic curves with a canonical subgroup are "less supersingular" because, like ordinary elliptic curves, they have a canonical lift of the kernel of Frobenius. Hence, if one was willing to speak imprecisely (which I always am), we could say that the most supersingular elliptic curves do not correspond to sporadic points.

https://xkcd.com/888/

📄 Adelmann, C. (2001).

The decomposition of primes in torsion point fields, volume 1761 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin.

Cali, E. and Kraus, A. (2002).

Sur la *p*-différente du corps des points de *l*-torsion des courbes elliptiques, $l \neq p$.

```
Acta Arith., 104(1):1–21.
```

References ii

Derickx, M., Etropolski, A., van Hoeij, M., Morrow, J. S., and Zureick-Brown, D. (2020).

Sporadic Cubic Torsion.

arXiv e-prints.

Derickx, M., Kamienny, S., Stein, W., and Stoll, M. (2017).

Torsion points on elliptic curves over number fields of small degree.

ArXiv e-prints.

The splitting of primes in division fields of elliptic curves.

Experiment. Math., 11(4):555-565 (2003).

References iii

Freitas, N. and Kraus, A. (2018).

On the degree of the *p*-torsion field of elliptic curves over \mathbb{Q}_{ℓ} for $\ell \neq p$.

ArXiv e-prints.

📑 González-Jiménez, E. and Lozano-Robledo, Á. (2016).

Elliptic curves with abelian division fields.

Math. Z., 283(3-4):835-859.

Jeon, D., Kim, C. H., and Schweizer, A. (2004).

On the torsion of elliptic curves over cubic number fields.

Acta Arith., 113(3):291–301.

References iv

Kamienny, S. (1992).

Torsion points on elliptic curves and *q*-coefficients of modular forms.

Invent. Math., 109(2):221-229.

Kenku, M. A. and Momose, F. (1988).

Torsion points on elliptic curves defined over quadratic fields.

Nagoya Math. J., 109:125–149.

Kraus, A. (1999).

Sur la *p*-différente du corps des points de *p*-torsion des courbes elliptiques.

Bull. Austral. Math. Soc., 60(3):407-428.

Lozano-Robledo, Á. (2018).

Uniform boundedness in terms of ramification.

```
Res. Number Theory, 4(1):4:6.
```

📄 Mazur, B. (1977).

Modular curves and the Eisenstein ideal.

Inst. Hautes Études Sci. Publ. Math., (47):33–186 (1978).

📄 Mazur, B. (1978).

Rational isogenies of prime degree (with an appendix by D. Goldfeld).

```
Invent. Math., 44(2):129–162.
```

Merel, L. (1996).

Bornes pour la torsion des courbes elliptiques sur les corps de nombres.

Invent. Math., 124(1-3):437–449.

Najman, F. (2016).

Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$.

Math. Res. Lett., 23(1):245-272.

Parent, P. (1999).

Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres.

J. Reine Angew. Math., 506:85–116.

Ramification in Division Fields and Sporadic Points on Modular Curves

Hanson Smith

University of Connecticut

- 1. Summary
- 2. Context
- 3. Valuations of Points
- 4. Proof Ideas
- 5. Application to Sporadic Points on $X_1(N)$

Summary

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime *p*.

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime *p*. Suppose $P \in E(K)$ is a point of exact order p^n .

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime p. Suppose $P \in E(K)$ is a point of exact order p^n . Then we precisely classify the possible valuations of the *x*- and *y*-coordinates of *P* in terms of the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial of *E*.

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Hanson Smith

Let *E* be an elliptic curve over a number field *K* with good supersingular reduction at some prime p living above the rational prime p. Suppose $P \in E(K)$ is a point of exact order p^n . Then we precisely classify the possible valuations of the *x*- and *y*-coordinates of *P* in terms of the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial of *E*.

Call this valuation¹ μ . If $\mu \geq \frac{p}{p+1}$, then all the *x*-coordinates of p^n -torsion points have the same valuation, which is

$$rac{-2}{p^{2n}-p^{2n-2}}=-2\cdotrac{1}{p^{2(n-1)}(p^2-1)}.$$

¹Normalize so that $v_{\mathfrak{p}}(p) = 1$.

Let *E* be an elliptic curve that is supersingular at some prime above *p* with $\mu \ge \frac{p}{p+1}$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0. Let *E* be an elliptic curve that is supersingular at some prime above *p* with $\mu \ge \frac{p}{p+1}$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0.

In other words, E does not have a p^n -torsion point over a number field of especially small degree.

Let N > 12 be a positive integer not divisible by 6 and write $N = \prod_{i=1}^{k} p_i^{e_i}$ for the prime factorization. Suppose E/\mathbb{Q} has good supersingular reduction at each p_i , then j(E) does not correspond to a sporadic point on $X_1(N)$.

Being supersingular at primes dividing N can be an obstruction to having an N-torsion point defined over a number field of particularly low degree.

Context

Previous work in this area comes in a couple of different flavors:

• Firstly, in analogy with cyclotomic fields we can ask about the arithmetic structure of fields obtained by adjoining some or all of the *N*-division points of an elliptic curve.

Previous work in this area comes in a couple of different flavors:

- Firstly, in analogy with cyclotomic fields we can ask about the arithmetic structure of fields obtained by adjoining some or all of the *N*-division points of an elliptic curve.
- We can also ask about the possible torsion structures for elliptic curves over a number field with a given Galois group or degree.

Arithmetic of Torsion Fields: [Duke and Tóth, 2002]; [Adelmann, 2001]; [Kraus, 1999], [Cali and Kraus, 2002], [Freitas and Kraus, 2018]; [González-Jiménez and Lozano-Robledo, 2016].

Mazur's Theorem +: [Mazur, 1977], [Mazur, 1978]; [Kenku and Momose, 1988], [Kamienny, 1992]; [Jeon et al., 2004], [Najman, 2016], [Derickx et al., 2020].

Uniform Boundedness +: [Merel, 1996]; Oesterlé's proof: [Derickx et al., 2017, Appendix A]; [Parent, 1999]; [Lozano-Robledo, 2018].

Valuations of Points

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at p and write [p]T for the multiplication-by-p map.

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case. Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all *p*-torsion elements in \hat{E} having the same valuation,

Let \hat{E} denote the formal group of an elliptic curve that is supersingular at \mathfrak{p} and write [p]T for the multiplication-by-p map.

In "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques," Serre recognized that the Newton polygon associated to [p]T could have two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all *p*-torsion elements in \hat{E} having the same valuation, or it could have two sides (two-slope case), corresponding to a subgroup of $\hat{E}[p]$ of order *p* having larger valuation.

The Two-Slope Case

Notice μ is the valuation of the coefficient corresponding to sums of products of $p^2 - p$ roots.

The One-Slope Case

Figure 2: The Newton polygon for the polynomial $\prod_{\hat{P} \in \hat{E}[=p]} (T - \hat{P})$

Hanson Smith

In the 'two-slope case' people say that E has a canonical subgroup at \mathfrak{p} . This is because the subgroup of \hat{E} with larger valuation is a canonical lift of the kernel of Frobenius. This subgroup is very important to those who study overconvergent modular forms and well-studied in that context.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

If $\mu \ge \frac{p}{p+1}$, then there is no canonical subgroup and all the elements in $\hat{E}[=p]$ have the same valuation, which is $\frac{1}{p^2-1}$.

Recall, μ is the valuation of the coefficient of $x^{\frac{p^2-p}{2}}$ in the p^{th} division polynomial. Equivalently, it is the valuation of the coefficient of T^p in [p]T. When there is a canonical subgroup, then you can think of μ as the sum of the valuations of elements of $\hat{E}[=p]$ that are **not** in the canonical subgroup.

If $\mu \ge \frac{p}{p+1}$, then there is no canonical subgroup and all the elements in $\hat{E}[=p]$ have the same valuation, which is $\frac{1}{p^2-1}$.

If $\mu < \frac{p}{p+1}$, then there is a canonical subgroup. The elements that are not in it have valuation $\frac{\mu}{p^2-p}$ and the elements that are in it have valuation $\frac{1-\mu}{p-1}$.

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

Even when there is a canonical subgroup, for points that are not above it we still divide by p^2 .

First off, if there is no canonical subgroup, we "just divide by p^2 ." So a 125-torsion element has valuation $\frac{1}{5^4(5^2-1)}$.

Even when there is a canonical subgroup, for points that are not above it we still divide by p^2 . So a 125-torsion element \hat{P} such that $[5^2]\hat{P}$ is not in the canonical subgroup has valuation $\frac{\mu}{5^4(5^2-5)}$. Interestingly, we have a phenomenon that is similar to the canonical subgroup in some ways occurring for higher power torsion.

Interestingly, we have a phenomenon that is similar to the canonical subgroup in some ways occurring for higher power torsion. When μ is small enough, then in the fibers over (p^{th} roots of) elements in the canonical subgroup, $[p]^{-1}\hat{Q}$, there is a subset of *p*-elements with larger valuation.

For n > 1, let $s \in \mathbb{Z}^{\geq 0}$ be the smallest integer such that $\mu \geq \frac{1}{p^{s}(p+1)}$. If $n \leq s+1$, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{n-1}\mu}{p^{n-1}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^2 - p)},$$
 (1)

where *m* is the smallest non-negative integer such that $v_{\mathfrak{p}}\left(\left[p^{m}\right]\hat{P}\right) = \frac{\mu}{p^{2}-p}$.

For n > 1, let $s \in \mathbb{Z}^{\geq 0}$ be the smallest integer such that $\mu \geq \frac{1}{p^{s}(p+1)}$. If $n \leq s+1$, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{n-1}\mu}{p^{n-1}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^2 - p)},$$
 (1)

where *m* is the smallest non-negative integer such that $v_{\mathfrak{p}}\left(\left[p^{m}\right]\hat{P}\right)=rac{\mu}{p^{2}-p}$. If n>s+1, then either

$$v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{1 - p^{s}\mu}{p^{2n-s-2}(p-1)} \text{ or } v_{\mathfrak{p}}\left(\hat{P}\right) = \frac{\mu}{p^{2m}(p^{2}-p)},$$
 (2)

where m is as above.

Proof Ideas

Main Idea

Stare at the power series for the multiplication-by-p map in the formal group of E at p for a long time. Because E is supersingular at p this is equivalent to staring at the p^{th} division polynomial.

Main Idea

Stare at the power series for the multiplication-by-p map in the formal group of E at p for a long time. Because E is supersingular at p this is equivalent to staring at the p^{th} division polynomial.

Let $\pi_{\mathfrak{p}}$ be a uniformizer at \mathfrak{p} . The multiplication-by-p map has the form

$$[p]T = pf(T) + \pi^{\mu}_{\mathfrak{p}}g(T^{p}) + h(T^{p^{2}}),$$

where f, g, and h are power series without constant coefficients and with f'(0), g'(0), h'(0) all units.

After a little work we see that we must compare $pv(\hat{P}) + \mu$ and $p^2v(\hat{P})$ where \hat{P} is the image of a point of $E[=p^n]$ in the formal group. We also have that the minimum of these two values is greater than or equal to \hat{Q} , where $Q \in E[=p^{n-1}]$.

Application to Sporadic Points on $X_1(N)$

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

So to preclude sporadic points on $X_1(p^n)$, compare the lower bound with have with an upper bound on the \mathbb{Q} -gonality of the modular curve $X_1(p^n)$.

The work above gives the minimal ramification necessary to have a p^n -torsion point in terms of the valuation of a coefficient of the p^{th} division polynomial. This yields a lower bound on the degree of a field over which a p^n -torsion point is defined.

So to preclude sporadic points on $X_1(p^n)$, compare the lower bound with have with an upper bound on the Q-gonality of the modular curve $X_1(p^n)$. There is also some dotting of i's and crossing of t's with additive reduction resolving to good supersingular reduction and Weber functions.

Let *E* be an elliptic curve that is supersingular at some prime above *p* with no canonical subgroup $(\mu \ge \frac{p}{p+1})$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0. Let *E* be an elliptic curve that is supersingular at some prime above *p* with no canonical subgroup $(\mu \ge \frac{p}{p+1})$, then j(E) does not correspond to a sporadic point on $X_1(p^n)$ for any n > 0.

Elliptic curves with a canonical subgroup are "less supersingular" because, like ordinary elliptic curves, they have a canonical lift of the kernel of Frobenius. Hence, if one was willing to speak imprecisely (which I always am), we could say that the most supersingular elliptic curves do not correspond to sporadic points.

https://xkcd.com/888/

📄 Adelmann, C. (2001).

The decomposition of primes in torsion point fields, volume 1761 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin.

Cali, E. and Kraus, A. (2002).

Sur la *p*-différente du corps des points de *l*-torsion des courbes elliptiques, $l \neq p$.

```
Acta Arith., 104(1):1–21.
```

References ii

Derickx, M., Etropolski, A., van Hoeij, M., Morrow, J. S., and Zureick-Brown, D. (2020).

Sporadic Cubic Torsion.

arXiv e-prints.

Derickx, M., Kamienny, S., Stein, W., and Stoll, M. (2017).

Torsion points on elliptic curves over number fields of small degree.

ArXiv e-prints.

The splitting of primes in division fields of elliptic curves.

Experiment. Math., 11(4):555-565 (2003).

References iii

Freitas, N. and Kraus, A. (2018).

On the degree of the *p*-torsion field of elliptic curves over \mathbb{Q}_{ℓ} for $\ell \neq p$.

ArXiv e-prints.

📑 González-Jiménez, E. and Lozano-Robledo, Á. (2016).

Elliptic curves with abelian division fields.

Math. Z., 283(3-4):835-859.

Jeon, D., Kim, C. H., and Schweizer, A. (2004).

On the torsion of elliptic curves over cubic number fields.

Acta Arith., 113(3):291–301.

References iv

Kamienny, S. (1992).

Torsion points on elliptic curves and *q*-coefficients of modular forms.

Invent. Math., 109(2):221-229.

Kenku, M. A. and Momose, F. (1988).

Torsion points on elliptic curves defined over quadratic fields.

Nagoya Math. J., 109:125–149.

Kraus, A. (1999).

Sur la *p*-différente du corps des points de *p*-torsion des courbes elliptiques.

Bull. Austral. Math. Soc., 60(3):407-428.

Lozano-Robledo, Á. (2018).

Uniform boundedness in terms of ramification.

```
Res. Number Theory, 4(1):4:6.
```

📄 Mazur, B. (1977).

Modular curves and the Eisenstein ideal.

Inst. Hautes Études Sci. Publ. Math., (47):33–186 (1978).

📄 Mazur, B. (1978).

Rational isogenies of prime degree (with an appendix by D. Goldfeld).

```
Invent. Math., 44(2):129–162.
```

Merel, L. (1996).

Bornes pour la torsion des courbes elliptiques sur les corps de nombres.

Invent. Math., 124(1-3):437–449.

Najman, F. (2016).

Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$.

Math. Res. Lett., 23(1):245-272.

Parent, P. (1999).

Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres.

J. Reine Angew. Math., 506:85–116.