Non-monogenic Division Fields and Endomorphisms of Abelian Varieties

Hanson Smith

University of Connecticut

Table of contents

1. Background
2. Division Fields
3. Results for Division Fields of Elliptic Curves
4. Results for Abelian Varieties of Dimension >1

Background

Monogeneity

One of the primary interests of number theory is understanding the roots of monic polynomials in $\mathbb{Z}[x]$. When and how can the roots of one polynomial be expressed by the roots of another polynomial?

Monogeneity

One of the primary interests of number theory is understanding the roots of monic polynomials in $\mathbb{Z}[x]$. When and how can the roots of one polynomial be expressed by the roots of another polynomial?

Let K / \mathbb{Q} be a number field of degree n with ring of integers \mathcal{O}_{K}. We say K is monogenic or \mathcal{O}_{K} admits a power integral basis if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in K$.

Monogeneity

One of the primary interests of number theory is understanding the roots of monic polynomials in $\mathbb{Z}[x]$. When and how can the roots of one polynomial be expressed by the roots of another polynomial?

Let K / \mathbb{Q} be a number field of degree n with ring of integers \mathcal{O}_{K}. We say K is monogenic or \mathcal{O}_{K} admits a power integral basis if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in K$. More explicitly, $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is an \mathbb{Z}-basis for the \mathbb{Z}-module \mathcal{O}_{K}.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise. In both cases $\mathbb{Q}(\sqrt{d})$ is monogenic.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise. In both cases $\mathbb{Q}(\sqrt{d})$ is monogenic.

Let ζ_{n} be a primitive $n^{\text {th }}$ root of unity and consider the $n^{\text {th }}$ cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise. In both cases $\mathbb{Q}(\sqrt{d})$ is monogenic.

Let ζ_{n} be a primitive $n^{\text {th }}$ root of unity and consider the $n^{\text {th }}$ cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. It is a bit more difficult than in the quadratic case, but one can show that the ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise. In both cases $\mathbb{Q}(\sqrt{d})$ is monogenic.

Let ζ_{n} be a primitive $n^{\text {th }}$ root of unity and consider the $n^{\text {th }}$ cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. It is a bit more difficult than in the quadratic case, but one can show that the ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.

The maximal real subfield of the $n^{\text {th }}$ cyclotomic field is $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$.

Our First Friends

Take $\mathbb{Q}(\sqrt{d})$, with d square-free. The ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \bmod 4$ and $\mathbb{Z}[\sqrt{d}]$ otherwise. In both cases $\mathbb{Q}(\sqrt{d})$ is monogenic.

Let ζ_{n} be a primitive $n^{\text {th }}$ root of unity and consider the $n^{\text {th }}$ cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. It is a bit more difficult than in the quadratic case, but one can show that the ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.

The maximal real subfield of the $n^{\text {th }}$ cyclotomic field is $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. These number fields are also monogenic with $\zeta_{n}+\zeta_{n}^{-1}=2 \cos (2 \pi / n)$ providing a generator.

"All that glistens is not gold."

Does this always happen? When one is learning (or discovering) algebraic number theory, they might be tempted to think every extension of \mathbb{Q} is monogenic.

"All that glistens is not gold."

Does this always happen? When one is learning (or discovering) algebraic number theory, they might be tempted to think every extension of \mathbb{Q} is monogenic. It works for the first few families of number fields we encounter, so maybe we expect it always happens.

"All that glistens is not gold."

Does this always happen? When one is learning (or discovering) algebraic number theory, they might be tempted to think every extension of \mathbb{Q} is monogenic. It works for the first few families of number fields we encounter, so maybe we expect it always happens.

Expectation is the root of all heartache.

- William Shakespeare

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\Theta_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{O}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$.

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\Theta_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{Q}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$. That is,

$$
f(x) \equiv f_{1}(x)^{e_{1}} \cdots f_{r}(x)^{e_{r}} \bmod p \quad \text { and } \quad p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}
$$

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\Theta_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{O}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$. That is,

$$
f(x) \equiv f_{1}(x)^{e_{1}} \cdots f_{r}(x)^{e_{r}} \bmod p \quad \text { and } \quad p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}} .
$$

For example, consider $\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x^{2}-2 x-8$.

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\Theta_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{O}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$. That is,

$$
f(x) \equiv f_{1}(x)^{e_{1}} \cdots f_{r}(x)^{e_{r}} \bmod p \quad \text { and } \quad p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}
$$

For example, consider $\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x^{2}-2 x-8$. Dedekind computed the factorization (2) $=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime} \mathfrak{p}_{2}^{\prime \prime}$.

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\mathcal{Q}_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{O}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$. That is,

$$
f(x) \equiv f_{1}(x)^{e_{1}} \cdots f_{r}(x)^{e_{r}} \bmod p \quad \text { and } \quad p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}} .
$$

For example, consider $\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x^{2}-2 x-8$.
Dedekind computed the factorization (2) $=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime} \mathfrak{p}_{2}^{\prime \prime}$.
Thus, if this field is monogenic, there is a cubic polynomial that generates and has three distinct linear factors in $\mathbb{F}_{2}[x]$.

Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let $f(x)$ be a monic, irreducible polynomial in $\mathbb{Z}[x]$ with α denoting a root. If $p \in \mathbb{Z}$ is a prime that does not divide $\left[\Theta_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$, then the factorization of p in $\mathcal{O}_{\mathbb{Q}(\alpha)}$ mirrors the factorization of $f(x)$ in $\mathbb{F}_{p}[x]$. That is,

$$
f(x) \equiv f_{1}(x)^{e_{1}} \cdots f_{r}(x)^{e_{r}} \bmod p \quad \text { and } \quad p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}} .
$$

For example, consider $\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x^{2}-2 x-8$.
Dedekind computed the factorization (2) $=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime} \mathfrak{p}_{2}^{\prime \prime}$.
Thus, if this field is monogenic, there is a cubic polynomial that generates and has three distinct linear factors in $\mathbb{F}_{2}[x]$. In this case we say 2 is a common index divisor.

Division Fields

Cyclotomic Fields $\mathbb{Q}\left(\mathbb{G}_{m}[n]\right)$ and Division Fields $\mathbb{Q}(A[n])$

Recall that the $n^{\text {th }} \mathbb{G}_{m}$ division field (the $n^{\text {th }}$ cyclotomic field) is monogenic. In analogy with \mathbb{G}_{m}, we can ask about the division fields of other abelian groups, like elliptic curve and other abelian varieties.

Cyclotomic Fields $\mathbb{Q}\left(\mathbb{G}_{m}[n]\right)$ and Division Fields $\mathbb{Q}(A[n])$

Recall that the $n^{\text {th }} \mathbb{G}_{m}$ division field (the $n^{\text {th }}$ cyclotomic field) is monogenic. In analogy with \mathbb{G}_{m}, we can ask about the division fields of other abelian groups, like elliptic curve and other abelian varieties.

Motivating question: When is $\mathbb{Q}(A[n])$ monogenic?

Cyclotomic Fields $\mathbb{Q}\left(\mathbb{G}_{m}[n]\right)$ and Division Fields $\mathbb{Q}(A[n])$

Recall that the $n^{\text {th }} \mathbb{G}_{m}$ division field (the $n^{\text {th }}$ cyclotomic field) is monogenic. In analogy with \mathbb{G}_{m}, we can ask about the division fields of other abelian groups, like elliptic curve and other abelian varieties.

Motivating question: When is $\mathbb{Q}(A[n])$ monogenic?

Slightly more approachable, but still difficult question: When is $\mathbb{Q}(E[n])$ monogenic?

Cyclotomic Fields $\mathbb{Q}\left(\mathbb{G}_{m}[n]\right)$ and Division Fields $\mathbb{Q}(A[n])$

Recall that the $n^{\text {th }} \mathbb{G}_{m}$ division field (the $n^{\text {th }}$ cyclotomic field) is monogenic. In analogy with \mathbb{G}_{m}, we can ask about the division fields of other abelian groups, like elliptic curve and other abelian varieties.

Motivating question: When is $\mathbb{Q}(A[n])$ monogenic?
Slightly more approachable, but still difficult question: When is $\mathbb{Q}(E[n])$ monogenic?

Gonzáles-Jiménez and Lozano-Robledo show that $\mathbb{Q}(E[n])$ coincides with $\mathbb{Q}\left(\zeta_{n}\right)$ sometimes. In particular when $n=2,3,4$, and 5 this can happen.

Splitting in $\mathbb{Q}(E[n])$

Let a_{p} be the trace of Frobenius at p, let b_{p} be the index $\left[\Theta_{K}: \operatorname{End}_{\mathbb{F}_{p}}(E)\right]$, and write $\Delta_{\text {End }}$ for the discriminant of $\operatorname{End}_{\mathbb{F}_{p}}(E)$.

Splitting in $\mathbb{Q}(E[n])$

Let a_{p} be the trace of Frobenius at p, let b_{p} be the index $\left[\Theta_{K}: \operatorname{End}_{\mathbb{F}_{p}}(E)\right]$, and write $\Delta_{\text {End }}$ for the discriminant of $\operatorname{End}_{\mathbb{F}_{p}}(E)$. Consider the matrix

$$
\sigma_{p}=\left[\begin{array}{cc}
\frac{a_{p}+b_{p} \delta_{\mathrm{End}}}{2} & b_{p} \tag{1}\\
\frac{b_{p}\left(\Delta_{\mathrm{End}}-\delta_{\mathrm{End}}\right)}{4} & \frac{a_{p}-b_{p} \delta_{\mathrm{End}}}{2}
\end{array}\right],
$$

where $\delta_{\text {End }}=0,1$ according to whether $\Delta_{\text {End }} \equiv 0,1$ modulo 4 .

Splitting in $\mathbb{Q}(E[n])$

Let a_{p} be the trace of Frobenius at p, let b_{p} be the index $\left[\Theta_{K}: \operatorname{End}_{\mathbb{F}_{p}}(E)\right]$, and write $\Delta_{\text {End }}$ for the discriminant of $\operatorname{End}_{\mathbb{F}_{p}}(E)$.
Consider the matrix

$$
\sigma_{p}=\left[\begin{array}{cc}
\frac{a_{p}+b_{p} \delta_{\text {End }}}{2} & b_{p} \tag{1}\\
\frac{b_{p}\left(\Delta_{\text {End }}-\delta_{\text {End }}\right)}{4} & \frac{a_{p}-b_{p} \delta_{\text {End }}}{2}
\end{array}\right],
$$

where $\delta_{\text {End }}=0,1$ according to whether $\Delta_{\text {End }} \equiv 0,1$ modulo 4 .
[Duke and Tóth, 2002]: Suppose n is prime to p. When reduced modulo n, the matrix σ_{p} yields a global representation of the Frobenius class over p in $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$. In particular, the order of σ_{p} modulo n is the residue class degree of p in $\mathbb{Q}(E[n])$.

Results for Division Fields of Elliptic Curves

Main Result A

There are a lot of division fields $\mathbb{Q}(E[n])$ that are not monogenic!

Main Result A

There are a lot of division fields $\mathbb{Q}(E[n])$ that are not monogenic!

Algorithm/theorem statement for $\boldsymbol{p}=2$ (Smith)
If E is an elliptic curve over \mathbb{Q} whose reduction at the prime 2 has trace of Frobenius a_{2} and such that, for one of the n listed on the following slide, the Galois representation

$$
\rho_{E, n}: \operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})
$$

is surjective. Then $\mathbb{Q}(E[n])$ is not monogenic. Moreover, 2 is a common index divisor of $\mathbb{Q}(E[n])$.

Results for $p=2$

a_{2}	σ_{2}	non-monogenic n 0
1	$\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$	$3,5,9,11,15,17,21,27,33,43$, $51,57,63,85,91,93,105,117,129$, $171,195,255,257,273,315,331$, $341,381,455,513,585,657,683$, $771,819,993$
-1	$\left[\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right]$	11
2	$\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$	11 $117,145,195,205,255,257,273$, $315,455,565,585,771,819$
-2	$\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right]$	$5,13,15,17,41,51,65,85,91,105$, $117,145,195,205,255,257,273$, $315,455,565,585,771,819$

Main Result B

There are a lot of division fields $\mathbb{Q}(E[n])$ that are not monogenic!

Main Result B

There are a lot of division fields $\mathbb{Q}(E[n])$ that are not monogenic!

Theorem (Smith)

Let E / \mathbb{Q} be an elliptic curve without $C M$, then for infinitely many $n>1$ the division field $\mathbb{Q}(E[n])$ is not monogenic.

Results for Abelian Varieties of
Dimension > 1

...Or How to Sound Like You Understood a Talk

If you do something for elliptic curves, you can always ask the question, "Can I do this for abelian varieties?"

Difficulties

The construction of the Frobenius in [Duke and Tóth, 2002] was very important for our work with elliptic curves. They use Deuring lifting for their construction. For an arbitrary abelian variety such a canonical lift does not necessarily exist.

Difficulties

The construction of the Frobenius in [Duke and Tóth, 2002] was very important for our work with elliptic curves. They use Deuring lifting for their construction. For an arbitrary abelian variety such a canonical lift does not necessarily exist. Canonical lifts exist if we restrict to ordinary or almost ordinary abelian varieties, but we are interested in low p-rank too.

Difficulties

Instead, we opted to generalize the approach taken by [Centeleghe, 2016] This approach relies on the fact that if A is an abelian variety over a field k with CM by a Gorenstein ring (i.e., if $\operatorname{End}_{k}(A)$ is a Gorenstein ring), then the Tate module $T_{l}(A)$ is free of rank one over $\operatorname{End}_{k}(A) \otimes \mathbb{Z}_{l}$.

Difficulties

Instead, we opted to generalize the approach taken by [Centeleghe, 2016] This approach relies on the fact that if A is an abelian variety over a field k with CM by a Gorenstein ring (i.e., if $\operatorname{End}_{k}(A)$ is a Gorenstein ring), then the Tate module $T_{l}(A)$ is free of rank one over $\operatorname{End}_{k}(A) \otimes \mathbb{Z}_{l}$. This is great! Now we just need to write down a basis for the relevant orders in an arbitrary CM field of degree $2 g$, where the dimension g is greater than 1.

Difficulties

Instead, we opted to generalize the approach taken by [Centeleghe, 2016] This approach relies on the fact that if A is an abelian variety over a field k with CM by a Gorenstein ring (i.e., if $\operatorname{End}_{k}(A)$ is a Gorenstein ring), then the Tate module $T_{l}(A)$ is free of rank one over $\operatorname{End}_{k}(A) \otimes \mathbb{Z}_{l}$. This is great! Now we just need to write down a basis for the relevant orders in an arbitrary CM field of degree $2 g$, where the dimension g is greater than 1 . Even if we restrict to $g=2$ and to maximal orders, this last step is difficult and results in an overwhelming number of cases.

Difficulties

Instead, we opted to generalize the approach taken by [Centeleghe, 2016] This approach relies on the fact that if A is an abelian variety over a field k with CM by a Gorenstein ring (i.e., if $\operatorname{End}_{k}(A)$ is a Gorenstein ring), then the Tate module $T_{l}(A)$ is free of rank one over $\operatorname{End}_{k}(A) \otimes \mathbb{Z}_{l}$. This is great! Now we just need to write down a basis for the relevant orders in an arbitrary CM field of degree $2 g$, where the dimension g is greater than 1 . Even if we restrict to $g=2$ and to maximal orders, this last step is difficult and results in an overwhelming number of cases. Thus we focus on the minimal case.

The Minimal Endomorphism Ring

Suppose $|k|=p^{m}=q$. $\operatorname{End}_{k}(A)$ must contain Frobenius π and its dual verschiebung v. In fact, all orders of $\operatorname{End}_{k}(A) \otimes \mathbb{Q}$ containing π and v are endomorphism rings. Thus the smallest possible endomorphism ring is $\mathbb{Z}[\pi, v]$.

The Minimal Endomorphism Ring

Suppose $|k|=p^{m}=q$. $\operatorname{End}_{k}(A)$ must contain Frobenius π and its dual verschiebung v. In fact, all orders of $\operatorname{End}_{k}(A) \otimes \mathbb{Q}$ containing π and v are endomorphism rings. Thus the smallest possible endomorphism ring is $\mathbb{Z}[\pi, v]$.

The characteristic polynomial of π and v is a Weil q-polynomial. We restrict to abelian varieties with irreducible Weil q-polynomials so that $\mathbb{Z}[\pi, v]$ is Gorenstein.

The Matrix Representing Frobenius

Let A / k be an abelian variety with $\operatorname{End}_{k}(A) \cong \mathbb{Z}[\pi, v]$.

The Matrix Representing Frobenius

Let A / k be an abelian variety with $\operatorname{End}_{k}(A) \cong \mathbb{Z}[\pi, v]$. First note that $\left\{1, \pi, \ldots, \pi^{g}, v, \ldots, v^{g-1}\right\}$ forms a \mathbb{Z}-basis for $\mathbb{Z}[\pi, v]$.

Write

$$
f(x)=x^{2 g}+a_{2 g-1} x^{2 g-1}+\cdots+a_{1} x+a_{0}
$$

for the Weil q-polynomial of A. The following matrix yields the action of π on $\mathbb{Z}[\pi, v]$, and hence on $T_{l}(A)$.

The Matrix Representing Frobenius

$$
\begin{aligned}
& 1 \pi \quad \pi^{2} \pi^{g-2} \pi^{g-1} \quad \pi^{g} \quad v \quad v^{2} \quad v^{3} \quad v^{g-1} \\
& \sigma_{\mathfrak{p}}=\left[\begin{array}{ccccccccccc}
0 & 0 & 0 & \ldots & 0 & -q a_{g+1} & q & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 & -a_{g} & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 & -a_{g+1} & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ldots & \vdots & -a_{g+i-1} & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 1 & 0 & -a_{2 g-2} & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 1 & -a_{2 g-1} & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & -q a_{2} & 0 & q & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & -q a_{3} & 0 & 0 & q & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & -q a_{i+1} & \vdots & \vdots & & \ddots & 0 \\
0 & 0 & \ldots & 0 & 0 & -q a_{g-1} & 0 & 0 & 0 & \ldots & q \\
\pi^{g-1} \\
0 & 0 & \ldots & 0 & 0 & -q & 0 & 0 & 0 & \ldots & 0
\end{array}\right] \begin{array}{c}
\pi^{i} \\
\pi^{g} \\
v \\
v^{2} \\
v^{2} \\
v^{i} \\
v^{g-2} \\
v^{g-1}
\end{array}
\end{aligned}
$$

Non-monogenic Division Fields of Abelian Surfaces

Algorithm/theorem statement for $\boldsymbol{p}=2$ (Smith)
Let A / \mathbb{F}_{p} be an abelian surface and write the Weil polynomial of A as

$$
x^{4}+a_{3} x^{3}+a_{2} x^{2}+p a_{3} x+p^{2}
$$

Suppose the Weil polynomial is irreducible, $\operatorname{End}_{k}(A)$ is minimal, and

$$
\rho_{\hat{A}, n}: \operatorname{Gal}(\mathbb{Q}(\hat{A}[n]) / \mathbb{Q}) \rightarrow \operatorname{GSp}_{4}(\mathbb{Z} / n \mathbb{Z})
$$

is surjective for some \hat{A} that reduces to A modulo p. The following tables show the $n<500$ for which the prime 2 is a common index divisor of $\mathbb{Q}(\hat{A}[n])$ over \mathbb{Q}.

Non-monogenic Division Fields of Abelian Surfaces

a_{3}	a_{2}	p-rank	non-monogenic n
-3	5	2	3, 19, 31, 57, 61, 93, 171, 183
-2	2	0	$\begin{aligned} & 5,7,9,13,15,21,35,37,39,45,51,61,63,65,85,91,105,109 \text {, } \\ & 111,117,119,133,135,153,171,185,189,195,205,219,221, \\ & 241,247,255,259,273,285,305,315,325,327,333,351,357, \\ & 365,377,399,455,481,485 \end{aligned}$
-2	3	2	7, 47
-1	-1	2	$\begin{aligned} & 5,9,11,15,23,37,43,45,67,111,127,135,151,185,203,301, \\ & 333 \end{aligned}$
-1	0	1	47
-1	1	2	3, 9, 103, 127
-1	3	2	5, 15, 59
0	-3	2	$\begin{aligned} & 3,5,9,11,15,23,29,33,37,45,53,87,111,135,137,185,203, \\ & 233,281,301,333 \end{aligned}$
0	-2	0	$\begin{aligned} & 3,5,7,9,11,13,15,19,21,27,33,35,39,43,45,51,57,63,65, \\ & 67,73,77,81,85,91,93,99,105,109,111,117,119,129,133, \\ & 135,151,153,171,185,189,195,201,217,219,221,231,241, \\ & 247,255,259,273,279,285,301,315,327,331,333,337,341, \\ & 351,357,365,381,387,399,441,453,455,481,485 \end{aligned}$

Table 1: $n<500$ where 2 is a common index divisor in $\mathbb{Q}(\hat{A}[n])$

Non-monogenic Division Fields of Abelian Surfaces

a_{3}	a_{2}	p-rank	non-monogenic n
0	-1	2	$3,17,19,23,31,57,61,93,171,183,229$
0	1	2	$3,9,17,19,23,47,57,61,69,93,171,183,229$
			$3,5,7,9,13,15,19,21,27,31,35,39,45,49,51,57,63,65,73$, 0
	2	0	$153,161,171,185,189,195,217,219,221,231,241,247,255$, $259,273,279,285,301,315,327,331,333,337,341,351,357$, $365,381,387,399,441,453,455,481,485$
1	-1	2	$5,7,9,11,15,37,43,45,67,79,111,135,185,203,301,333$
1	0	1	47
1	1	2	3,9
1	3	2	$5,15,59$
			$5,7,9,13,15,21,35,37,39,45,51,61,63,65,85,91,105,109$, $111,117,119,133,135,153,171,185,189,195,205,219,221$, $241,247,255,259,273,285,305,315,325,327,333,351,357$, 3
2	0		365,377,399,455,481,485
2	3	2	7,47
3	5	2	$3,19,31,57,61,93,171,183$

Table 2: $n<500$ where 2 is a common index divisor in $\mathbb{Q}(\hat{A}[n])$

Non-monogenic Division Fields of Abelian Threefolds

Algorithm/theorem statement for $\boldsymbol{p}=2$ (Smith)
Let A / \mathbb{F}_{p} be an abelian threefold and write the Weil polynomial of A as

$$
x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+p a_{5} x^{2}+p^{2} a_{4} x+p^{3} .
$$

Suppose the Weil polynomial is irreducible, $\operatorname{End}_{k}(A)$ is minimal, and

$$
\rho_{\hat{A}, n}: \operatorname{Gal}(\mathbb{Q}(\hat{A}[n]) / \mathbb{Q}) \rightarrow \operatorname{GSp}_{6}(\mathbb{Z} / n \mathbb{Z})
$$

is surjective for some \hat{A} that reduces to A modulo p. The following tables show the $n<200$ for which the prime 2 is a common index divisor of $\mathbb{Q}(\hat{A}[n])$ over \mathbb{Q}.

Non-monogenic Division Fields of Abelian Threefolds

a_{5}	a_{4}	a_{3}	p-rank	non-monogenic n	a_{5}	a_{4}	a_{3}	p-rank	non-monogenic n
-4	9	-15	3	$7,11,23,29,43,71,87,113,127$	0	1	-3	3	3,9
-3	2	1	3	$7,11,29,43,71,87,113,127$	0	1	-1	3	
-3	6	-9	3	$3,9,27,153$	0	1	3	3	3,9
-2	0	3	3	107,149	0	2	-2	0	
-2	1	0	2	$3,5,11,55,83$	0	2	-1	3	7
-2	3	-5	3	$3,9,27,59,63$	1	-1	-5	3	3,9
-2	3	-3	3	$5,83,131$	1	-1	-4	2	$3,7,49$
-2	5	-7	3	3,7	1	0	-3	3	$7,77,103$
-1	-1	5	3	3,9	1	0	1	3	3
-1	0	-1	3	3	1	1	0	2	3,7
0	0	-3	3	$3,7,9,13,15,21,27,29,31,35$, $39,45,63,65,87,91,93,105$, $117,123,141,151,195$	2	4	6	0	3
0	0	-2	0	$3,7,11,15,23,29,37,45,67$, 71,79	2	5	7	3	3,7
0	0	-1	3	$3,5,7,15,19,21,25,35,45,63$, $71,75,95,97,105,123,133$	3	2	-1	3	$7,11,23,29,43,71$, $87,113,127$
0	0	1	3	$3,5,7,15,19,21,25,35,45,47$, $49,63,75,95,97,105,123,133$	3	5	7	3	7
0	0	2	0	$3,7,11,15,23,29,37,45,67$	3	6	9	3	$3,9,27,153$
0	0	3	3	$3,7,9,13,15,21,27,29,31,35$, $39,45,47,63,65,71,87,91,93$, $105,117,123,141,151,195$	4	9	15	3	$7,11,29,43,71,87$, 113,127

Thank You!

Hanson Smith
Non-monogenic Division Fields and Endomorphisms of Abelian Varieties

Centeleghe, T. G. (2016).
Integral Tate modules and splitting of primes in torsion fields of elliptic curves.

Int. J. Number Theory, 12(1):237-248.
Centeleghe, T. G. and Stix, J. (2015).
Categories of abelian varieties over finite fields, I: Abelian varieties over \mathbb{F}_{p}.

Algebra Number Theory, 9(1):225-265.
Duke, W. and Tóth, A. (2002).
The splitting of primes in division fields of elliptic curves.
Experiment. Math., 11(4):555-565 (2003).

References ii

围 Smith, H. (2021).
Non-monogenic division fields of elliptic curves.
J. Number Theory, 228:174-187.

圊 Waterhouse, W. C. (1969).
Abelian varieties over finite fields.
Ann. Sci. École Norm. Sup. (4), 2:521-560.

An Example with an Ordinary Elliptic Curve

Suppose E is an elliptic curve with $a_{2}=1$. The characteristic polynomial of Frobenius is $x^{2}-x+2$ and this has discriminant -7 . Letting π denote the Frobenius endomorphism of E over \mathbb{F}_{2}, we have
$\operatorname{End}_{\mathbb{F}_{2}}(E) \cong \mathbb{Z}[\pi]=\mathcal{O}_{\mathbb{Q}(\pi)}$.
Combining all this information, we see Duke and Tóth's matrix representing π is

$$
\sigma_{2}=\left[\begin{array}{cc}
8 / 2 & (-7 \cdot 8) / 4 \\
1 & -6 / 2
\end{array}\right]=\left[\begin{array}{cc}
4 & -14 \\
1 & -3
\end{array}\right] .
$$

Denote the order of σ_{2} modulo n by ord $\left(\sigma_{2}, n\right)$. This is the residue class degree of 2 in $\mathbb{Q}(E[n])$.

An Example with an Ordinary Elliptic Curve

Generically, we expect the degree of $\mathbb{Q}(E[n])$ over \mathbb{Q} to be $\left|G L_{2}(\mathbb{Z} / n \mathbb{Z})\right|$. Thus 2 will split into $\frac{\left|G L_{2}(\mathbb{Z} / n \mathbb{Z})\right|}{\operatorname{ord}\left(\sigma_{2}, n\right)}$ primes in $\mathbb{Q}(E[n])$.

The number of irreducible polynomials of degree m in $\mathbb{F}_{p}[x]$ is
$\frac{1}{m} \sum_{d \mid m} p^{d} \mu\left(\frac{m}{d}\right)$. With Dedekind's factorization theorem in mind, we
compare $\frac{\left|\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})\right|}{\operatorname{ord}\left(\sigma_{2}, n\right)}$ and $\frac{1}{\operatorname{ord}\left(\sigma_{2}, n\right)} \sum_{d \mid \operatorname{ord}\left(\sigma_{2}, n\right)} 2^{d} \mu\left(\frac{\operatorname{ord}\left(\sigma_{2}, n\right)}{d}\right)$.
If the number of irreducible polynomial of degree ord $\left(\sigma_{2}, n\right)$ in $\mathbb{F}_{2}[x]$ is less than $\frac{\left|\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})\right|}{\operatorname{ord}\left(\sigma_{2}, n\right)}$, then 2 must divide the index of any monogenic order in $\mathcal{O}_{\mathbb{Q}(E[n])}$. We find that σ_{2} has order 10 modulo 11 , so that 2 splits into 1320 primes in $\mathbb{Q}(E[11])$. There are only 99 irreducible polynomials of degree 10 in $\mathbb{F}_{2}[x]$. Thus 2 is a common index divisor of $\mathbb{Q}(E[11])$ over \mathbb{Q}.

