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ABSTRACT

In this thesis we construct explicit formulae for characteristic classes in Noncommu-
tative geometry. The general framework for the construction of characteristic classes
in Noncommutative geometry is provided by Connes’ theory of cycles and their char-
acters. We first consider the case of generalized cycles with “ curvature” and define
characters for them. We prove that our definition agrees with Connes’ original defi-
nition.

We then proceed to apply our construction to several geometric situations. We
treat the case of vector bundles on manifolds, equivariant with respect to the action
of discrete group, and the case of holonomy equivariant vector bundle on a foliated
manifold, and discuss relation of our construction to Connes’ construction of the
Godbillon-Vey cocycle.

We also derive formulae for the Chern character of finitely summable Fredholm
module, as well as transgression formulae. Finally we discuss a different approach to

the characteristic classes, using the cyclic analogue of the Paschke-Voiculescu dual-

ity.
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CHAPTER 1
INTRODUCTION.

Noncommutative geometry was founded by A. Connes. Since then it has been steadily
evolving into a powerful mathematical framework. It has spectacular applications
ranging from geometry and topology to number theory and quantum physics.

This thesis is devoted to the explicit formulae for the characteristic classes in
noncommutative geometry.

Our approach to the problem of construction of explicit characteristic cocycles is
based on the Connes’ theory of cycles and their characters. In the situations arising
naturally one often has to work with the objects more general than the Connes’ cycles,
which we call generalized cycles. A generalized cycle of degree n over a unital algebra
A is defined by the following data: graded algebra 2*; degree 1 graded derivation
V:QF — Q! and element 0 € Q2 such that V2w = [0, w]; and the graded trace ][

on 2" such that ][Vw = 0; and homomorphism p : A — Q° . Such objects appeared
in Connes’ work, and he provided a canonical construction allowing to associate
canonically a cycle with a generalized cycle. The character of the generalized cycle is
then defined as the character of the associated cycle.

We associate with the generalized cycle C" of degree n certain canonical n-cocycle

in the Connes’ (b, B) bicomplex by the formula resembling the character formula of



A. Jaffe, A. Lesniewski and K. Osterwalder. Namely, we put ( a; € A)

Ch*(C™)(ap, ay, . ..ax) =

# > ][/)(@())QioV(P(al))@i1 - V(plax))o™

(50! do+ir i =150
k=nn—2....

We show then that the class of this cocycle in the cyclic cohomology coincides
with the character of the generalized cycle. This provides us with an explicit formula
for the character of the generalized cycle. This formula also continues to make sense
for generalized chains. It defines in this case not a cocycle anymore, but a cochain.
If for the generalized chain C dC denotes the boundary of C, we have the following

relation:
(B +b)Ch(C™) =S Ch(9(C"))

Here S is the usual periodicity shift in the cyclic bicomplex. This allows one to use
cobordisms of generalized cycles to obtain transgression formulae for the characters.
We remark that all of the above constructions continue to work for the nonunital
algebras after suitable modifications.

We then proceed to apply this formalism in the situations arising in geometry and

functional analysis. Main cases considered are:

1. Let V' be a orientable manifold on which a discrete group I' acts by orientation
preserving diffeomorphisms, and let £’ be a I' equivariant vector bundle over V.
We construct an equivariant Chern character of this bundle, which takes values

in the cyclic cohomology HC*(Cg°(V) x I).
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2. Let W be a foliated manifold, and F' be a holonomy equivariant vector bundle
on W. In this case equivariant Chern character takes values in HC* (C°(G)),

where C§°(G) is the convolution algebra of the foliation groupoid.

3. Let (H, F,v) be a bounded, finitely summable Fredholm module over a unital
algebra. Connes constructs explicit formula for the character in the invertible
case when F? = 1, and provides a procedure allowing to reduce the general case
to the invertible one. We derive explicit formulae in the general case, which

give the same cohomology class as the Connes’ reduction procedure.

In the case of I'-equivariant vector bundle a choice of connection allows one to
construct naturally a generalized cycle over the cross-product algebra C°(V) x I
Its character defines a class y in the cyclic cohomology of C§°(V') x I'. It is given by
the following formula (a;U,, € C5°(V) x I') :

X (aoUyy, arU,,, . .. arU,,) =

/ /tr ape” "% (day + a,0(gy))”% e~ 107"

to+-+tpg=1 V
t;>0 i=0,1,...k

(da2 + a25(92))gog1 6—t00909192 o (dak + ak(;(gk))g()mgk—l e—tk090-~-9kdt1 o dtk

when ¢og1...9x = 1 and 0 otherwise. Here notations are as follows: V denotes the
connection on F, § € Q*(V,End(F)) — its curvature, superscript denotes the group
action, and 4(g) is an endomorphism-valued 1-form defined as V — V9. When V is
noncompact we obtain a reduced cyclic cocycle on the cross-product algebra with the

unit adjoined by requiring that x°(1) = 0.



To identify this class we show that under the Connes’ canonical imbedding ® :
H*(VxEI'/T) — HPC*(C (V) xT') of the cohomology of the homotopy quotient into
the periodic cyclic cohomology equivariant Chern character Chp(F') € H*(V x EI'/T)
is mapped into our character Y.

In the case of the holonomy equivariant bundle on the foliated manifold we com-
bine the methods from the previous case with the Connes’ construction of the trans-
verse fundamental class of the foliation.

We also relate our construction to the Connes’ construction of the Godbillon-Vey
cocycle.

For the case of Fredholm modules one can construct the generalized cycle following
the Connes’ construction in the invertible case. Now we can apply the character
formula to obtain the following cyclic cocycle:

In the even case, with n = 2m greater than the degree of summability the cocycle

Cha,,(F) has components Chy for k=0,2, ..., 2m :

Chk(F)(ao,al, cay) =

m)! ' | |
(m+5)1 S Tryao(l— F)*[Fai)(1— F?)" . [F,a)(1 — F?)*

In the odd case the corresponding cocycle Cha,, 41 (F) has components Chj, . for

k=1,3,...,2m+ 1, given by the formula
I(m + 3)V2i
Chy . (ag,a1,... a3) = ——225—
2m+1 (m—f—%)'
> Trag(l — F2)°[F,a](1 — F?)" .. [F,a,](1 — F?)*
k—1

io+i1+---+ik=m7%



We then show, using transgression formulae, that the formulae above compute the
character of the Fredholm module, as defined by Connes.

Alternative approach to the characters of Fredholm modules which we study is
based on the (co)homological analogue of Paschke-Voiculescu map. We construct a
map in cyclic (co)homology which agrees with the Paschke-Voiculescu in K-theory
via the Chern character. This allows us to reduce the problem in K-homology to
the problem in K-theory. Using the well-known formulae for the Chern character in
K-theory we obtain formulae for the characters of Fredholm modules.

The thesis is organized as follows.

Chapter 2 is devoted to the background information from the Noncommutative
geometry. All the material there is well-known and taken from other sources.

In the Chapter 3 we define generalized cycles and chains, their characters, and
describe their main properties.

We then apply methods of the Chapter 3 to the geometric situation of equivariant
vector bundles in the Chapter 4.

In the Chapter 5 we obtain formulae for the characters of Fredholm modules
via the theory of cycles as well as via the cyclic analogue of the Paschke-Voiculescu
duality [Pas81].

Finally, the Appendix is devoted to the analogue of the well-known characteristic

map for the Lie algebras action in the case when the action is twisted by a cocycle.



CHAPTER 2

PRELIMINARIES.

2.1 Cyeclic objects and cyclic (co)homology.

In this section we recall the definitions and properties of the cyclic objects and cyclic

(co)homology, as defined by Connes. All the material is taken from [Con94]|, [Lod92].

Definition 1. A cyclic object in a category is given by a sequence of objects X,,,

n > 0 with the simplicial structure given by the face and degeneracy operators

d;: X, —» X1 and s; : X,, — X411, 0 <7 < n with identities

dl‘dj = dj+1di 1<

8iSj = Sj118; 1 < J

diSj =

(

\

Sj—ldi
1

dei—l

ifi<y
ifi=jori=j+1

ifi>j+1

(2.1)

(2.2)

(2.3)

and the cyclic structure given by the cyclic operator 7, : X,, — X,, satisfying the



identities

Tno1di—p  if1<71<n
d, ifi=0
Tpr18ic1 1 <ie<n

SiTn — (25)

2 -
Tri15n iti=0
\

=1 (2.6)

Example 1. With every unital algebra A over the ring k one associates the cyclic

object A% in the category of the k-modules. One puts A% = A®+1) and defines

ap®ay...a;a;1 - Qa, f0<i<n-—1

diCZo@CLl"'@an: (27)
Ao Q@ a1+ Q@ Ap_1 ifi=n

sia0®a1---®an:a0®a1...ai®1®ai+1---®an (28)

TayRay - Qa, =0, Vag@ay -+ ap_q (2.9)

Example 2. Let T' be a discrete group. Then the standard resolution of the trivial
module has a structure of a cyclic object. Let 3, be the vector space with the basis

consisting of symbols (go, g1, --,9n), g; € I'. Put

di(g()uglu s 7gn) - (.907917 sy 9i-1, 90415 - - - 7971) (2]‘0>
di(gOagla cee 7gn) - (.907917 e 9i-1594, 965 Git 1y - - - 7gn) (211)
Tn(g07g17~--7gn> = (gTHgO’gl""?gn*l) (212)

FExample 3. Let A be an associative algebra and I' a discrete group acting on .A. Then

we can consider a cyclic object (A x )% <(.A X F)ﬁ) C ((AxT)?) is generated
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by the terms of the form ayUy, ® a1Uy, ® -+ - ® a, Uy, with gog1 ... g, = 1. The face,

degeneracy and cyclic operators are restrictions of those from (A x I')A.

We now define the cyclic homology of a cyclic object in an abelian category.
Putv=1+71,+ 7}% + .-+ 17" s = s, and define operators b : X,, — X,,_; and

B:X,— X, by

b=> di (2.13)

i=0
B=(1—-r1)sv (2.14)
One then verifies that
b’ =0 (2.15)
B*=0 (2.16)
bB 4+ Bb =0 (2.17)

With this we can give the following definition
Definition 2. Put

Xj—i itj =i

Cij(X) = (2.18)
0 otherwise
Then b and B define operators acting from Cj; to Cj;—1) and C(;_y); respectively. The
homology of the bicomplex B(X) = (Cj;,b, B) is the cyclic homology of the cyclic
object X.

For the unital algebra A cyclic homology is defined as homology of the cyclic

object A%, We will always use slightly different version of the b B bicomplex, which is

8



defined as follows. Put Cj;(A) = C,,(A) = A ® A®", where A = A/k1. One verifies
that operators b and B descend to this bicomplex, which we denote B, and that the
homology of this bicomplex is the same as the homology of the original bicomplex.
The cyclic homology of the algebra A is denoted HC,(A).

The reduced cyclic homology of the unital algebra A is defined as the homology
of the factor-bicomplex B(A)/B(k).

For the nonunital algebra A cyclic homology is defined as the reduced cyclic
homology of its unitalization A™.

One can describe the cyclic bicomplex in the following form. Let u be a formal
variable of degree —2. Then one can consider complex (C\(A) ® k[u], b+ uB).

The cyclic homology of the algebra of smooth functions on the smooth manifold
V', computed by Connes, can be described in the following way. Let Q*(V') denotes
the space of the differential forms on the manifold V' with the usual grading. Consider
the complex D, = (Q2*(V) ® k[u], ud), where d is the de Rham differential. Then the

answer is given by the following theorem of Connes:
Theorem 1. The map of complexes
O (Cu(A) @ Kkfu], b+ uB) — (2°(V) ® k[u], ud) (2.19)
where A = C°(V) defined by u-linearity and
1
Plag®@a; @ ...a) = andal ...day, (2.20)

1S a quasiisomorphism.



All the notions and results of this section can be dualized to the cohomological
context. Cyclic cohomology of the algebra of functions on the smooth manifold are
computed now by the complex D* = ((*(V))' @ k[u],ud), where (Q*(V))" denotes

the space of currents, and u has degree 2.

2.2 Equivariant cohomology and cyclic cohomology.

This section is devoted to the description of the Connes’ map ®, relating cyclic
cohomology of cross-product algebras with equivariant cohomology. It generalizes
(transposed of) the map ® from the Theorem 1 to the case in which discrete group
acts on the manifold.

Let V' be a manifold, and I' be a discrete group acting on V' by diffeomorphisms.
For our purposes it is enough to suppose that V is oriented and that I' acts by
orientation preserving diffeomorphisms, though construction works in the general
case as well.

Ar C Hom(fB., D*) — the space of totally antisymmetric functions on I'*! with

values in D complex of currents on V', satisfying

(1)?((90, 915 - - > 91) = (V(90g, 919, - - -, 919)) (2.21)

The differentials are given by the de Rham differential and by the group cohomology

differential, i.e.

k+1

5’7(907 g1, .- 7gl+1) = Z(_]')ZfY(gO? g1, .- 7.@727 s 7gl+1> (222>
=0

10



The map @ is the map from this complex to the cohomological (b, B) complex of the
algebra A = C§°(V) x .

The construction is the following. Consider an auxiliary algebra B = A ® AT,
where A'T is a free graded-commutative algebra generated by the elements d, of degree

1, g € I', with 6; = 0. We equip it with the differential defined by
dw®e)=dw®e (2.23)

The group I" acts on A'T" by ((5g)h = 0gp-1 — Op-1, and B is equipped with the product
action.
Consider now the algebra C = B x I'. It has a structure of a differential graded

algebra, with the differential defined by
d(bU,) = (db)Uy, + (—1)*8°bU,04, (2.24)

Let now v be a current-valued I' function on I'*!. We associate with it a linear form

4 on B defined by

Hw ® 8y, 80) = (v (L g1, ) (2.25)
and extend it to C by
i () ifg=1
5(00,) = (2.26)
0 otherwise

The map ® is then defined by the following equation, where v € Hom(;,, D™),

k=1l+m+1, and z; € A.

k
O(y)(zo, 1, -+, Tk) = Ak Z Y(dzjsq ... drgzoday . .. dxj) (2.27)

J=0

11



where A = . Extend the map ® by wu-linearity. One then has the following

I
(k1)

Proposition 2. ® is a morphism of complezes.

2.3 Fredholm modules.

An even summable Fredholm module (H, F,~y) over an algebra A is given by the
following data:

A Zs-graded Hilbert space H with grading 7, 7> = 1 and a representation on it
of an algebra A by even operators, i.e. a homomorphism 7 : £ — End™ (H).

An odd operator F', such that

m(a)(1—F* ek (2.28)
m(a)[F,m(b)] € K (2.29)

for any a, b € A
The set of even Fredholm modules with the proper equivalence relation (cf [Bla9d8])
and an operation of direct sum becomes the K-homology group K°(.A). For the unital

algebra A (but not necessarily the unital representation) one can replace the Fredholm

module by an equivalent one satisfying
(1-F)ek (2.30)
[F,m(b)] € K (2.31)
An odd Fredholm module (H, F') over an algebra A is given by the following data:

Hilbert space ‘H and a representation on it of an algebra A, i.e. a homomorphism

7 : L — End(H).

12



An operator F', such that
m(a)(1—F* e K (2.32)
m(a)[F,m(b)] € K (2.33)
As in the even case, one constructs the group K*(A).

If one replaces in the above definitions C by £P one obtains the definition of the
p-summable Fredholm module.

In the paper [Con85] Connes shows that with every Fredholm module (pre-Fredholm
module in Connes terminology) one can canonicaly associate a Fredholm module, sat-
isfying

F?=1 (2.34)
representing the same K-homology class. If the original Fredholm module was p-
summable, the new one will also be p-summable.

With the Fredholm module satisfying (2.34) Connes associates a cyclic cocycle,
the character of the Fredholm module. The cocycle 7, is defined by the following
equations, where Tv'(T') = 1/2Tr (F(FT + TF)):

for the even Fredholm module
To(ag, a1, ... a,) = M\ Tt (yao[F, aq] . . . [F, ay)) (2.35)

where n is even, n > p, A\, = (—=1)"""V20'(n/2 + 1);

for the odd Fredholm module
To(ag, a1, ... a,) = X\, Tt (ag[F, aq] . .. [F, ay)) (2.36)
where n is odd, n > p , A, = V2i(=1)""D20(n/2 + 1);

13



CHAPTER 3
GENERALIZED CYCLES AND THEIR PROPERTIES.

3.1 Definition of cycles.

In this section we will give all the definitions in the case of the unital generalized
cycles over unital algebras. The case of the nonunital cycles will be considered in the

section 3.3.

Definition 3. A unital generalized cycle over a unital algebra A is given by the

following data :

1. A Z-graded unital algebra Q = @,-_ Q™ and a homomorphism p from A to

Q% We require the homomorphism to be unital.

2. A graded derivation V : QF — Q1 £ =0, 1, ... and 6 € Q? which satisfy

V(wé) = V(W)E + (~1)*F“wV(¢) (3.1)
V2(€) = 06 — €0 VE € Q (3.2)
V() =0 (3.3)

Equation (3.1) is just the graded derivation property. We will sometimes call V
connection and ¢ curvature. Since we consider for the moment only the unital

case we require that V(1) = 0.

14



3. A graded trace ][ defined on 2" for some n with the properties

][wf = (—1)degwdeg5][§w for degw +degé =n (3.4)
][V(g) _vEe ot (3.5)

Here (3.4) is just the graded trace property. We will call n the degree of a cycle.

The definition of cycle is obtained by requiring 6 to be 0 .

A simple example of the generalized cycles is the following.

Ezample 4. Let V be a smooth compact oriented manifold, and let £ be a (com-
plex) vector bundle over V. Let A = C*(V) be the algebra of smooth func-
tions on V. Choose any connection on the vector bundle F. This data provides
us with a generalized cycle over an algebra A. Indeed, let QF = Q¥(V,End E) =
(O (V, A*T*V @ End E) denote the space of differential k-forms with values in the
endomorphisms of the bundle E, and let Q = @ QF be the corresponding graded
algebra. We have a natural unital map p : A — Q° (to each function corresponds
the operator of multiplication by this function). Connection and curvature provide
us with the graded derivation V and 6 € Q? satisfying properties (3.1)-(3.3). Finally,
we define the graded trace ][ by

fo= [ (3.6)

v

where tr is the usual (pointwise) trace of the endomorphism.

In the following example we introduce some operations over generalized cycles.

15



Ezample 5. Let C = (2, V, 0, ][) be a generalized cycle over an algebra A. Then

—C=(Q,V,0, —][) (3.7)

is also a generalized cycle, with the homomorphism p unchanged.
Let C; = (Ql,Vl,Ql,][ ) and Cy = (QQ,VQ,QQ,][ ) be two generalized cycles of
1 2

degree n over an algebra A. Then one can construct their disjoint union

cluc2=(Ql@92,v1@v2,el@e2,][ @][> (3.8)
1 2

where ][ @ ][ (W B wy) = ][ w1 + ][ wy, which is again a cycle of degree n, with
the maplp:p12€9p2:A—>Qlé992. :

Let now C; and Cy be generalized cycles over algebras A; and A of degrees ng
and ns respectively. Then one can construct their product which is the generalized

cycle over the algebra A; ® A, of degree nins.
Ci x Cy = (@0, Vi®1 + 18V, 6,31 + 1@02,][ @5][ ) (3.9)
1 2

where ® denotes the graded tensor product, the homomorphism from 4; @ Ay to

(Q1 ® Q)Y is given by p; ® py and

—~ - (—1)n1n2 deg][ wl][ wo if deg w; =N,
][ ®][ (W1Rwy) = 1 2
1 2

0 otherwise

We now introduce morphisms between generalized cycles

Definition 4. A morphism H between two generalized cycles C; = (4, V1, 64, ][ )
1

and Cy = (9, Vo, b, ][ ) over algebras A; and A, respectively, covering the (unital)
2

16



homomorphism h : A; — Aj is a linear grading-preserving unital homomorphism

H : Q) — Q) intertwining all the data, i.e. satisfying

H{(pi(a)) = pa(h(a)) (3.10)
H(V(w)) = Va(H (w)) (3.11)
H(6h) = 0, (3.12)

W= 2H(w) (3.13)

When talking about the morphisms of generalized cycles over the same algebra A we

mean, unless otherwise specified, morphism covering the identity homomorphism.

The next notion we will consider is that of the generalized chain. It should be
thought of as a generalized cycle with boundary. The definition (in the unital case)

is the following

Definition 5. A unital generalized chain over an algebra A is given by the following

data:

1. Graded unital algebras €2 and 02 with a surjective homomorphism r : {2 — 0f2
of degree 0 , and a homomorphism p : A — Q°. We require that p and r are

unital.

2. Graded derivations of degree 1 V on Q and V' on 99 and element § € Q2 such

17



that

V(W) = V()¢ + (=1)*=“wV(€) (3.14)
V(W) = V(W) + (=)= V'(¢) (3.15)
V2(€) =0 — €0 VE€Q (3.16)
V(0) =0 (3.17)
roV=vVor (3.18)

3. A graded trace ][ on " for some n (called the degree of the chain) such that

][wf = (—1)degwdeg§][§w for degw +degé =n (3.19)

][V(f) =0 V¢ € Q" such that r(€) =0 (3.20)

One defines morphisms of chains similarly to the Definition 4.
Similarly to the Example 4 one can construct the following example of the gener-

alized chain.

FExample 6. Let V now be the compact oriented manifold with boundary 0V, and FE
be a bundle over V. Choose a connection on the bundle E. Let, as in the Example
4 A= C®V), Q - the algebra of endomorphism valued differential forms, with
a graded derivation induced by the connection and # given by the curvature of the
connection. Then let 0€) denote the algebra of the differential forms on 0V with values
in the endomorphisms of the restriction of £ to the boundary, r be the restriction
map and V’ be induced by the restriction of V to the boundary. Finally, define the

graded trace ][ by the equation (3.6). Then this data defines a generalized chain.

18



We now define the boundary of the generalized chain and cobordism of generalized

cycles.

Definition 6. Let the notations be as in the definition 5. The boundary of the
/
generalized chain is a generalized cycle (02, V', ¢, ][ ) of degree n— 1 over an algebra

A with the following notations: €’ is an element of 92 defined by
0 = r(6) (3.21)

/
][ is the graded trace on 99"~ ! defined by

][/w’ = ][V(w) (3.22)

where ' € (09)"! and w € Q" such that r(w) = w’. This definition is unambiguous,
as follows from (3.20). Homomorphism p’ : A — 9Q° is given by

p=rop (3.23)

/

Notice that for o' € 9Q (V')?*(§) = 0'w’ — '@ and the definition of ][ is in-
dependent of the choice of w € Q". For the generalized chain C let OC denote its

boundary.

Fxample 7. Similarly to the Example 5, given a generalized chain C one can construct
generalized chain —C, with 9(—C) = —dC. For the two generalized chains C; and Cs
over an algebra A one can construct C; LI Co with 9(C; U Cy) = 0Cy LI OCy. While
the product of two generalized chains is not defined, one can construct a product of
the generalized cycle C; over an algebra A; with the generalized chain C, over an
algebra A,, obtaining the generalized chain C; x Cy over the algebra A; ® A, with
J(Cy x C3) = Cy x OCq
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Definition 7. Two generalized cycles C; and Cy over an algebra A are called cobor-
dant if there exists a generalized chain C such that 0C = (—C;) U Cy ( with notation

as in Example 5).

FExample 8. The construction of the generalized cycle in the Example 4 involves a
choice of connection on the bundle E. If we choose two different connections V; and
V5 then the corresponding generalized cycles C; and Cy are cobordant.

The cobordism is constructed as follows. Consider the manifold M =V x [0, 1],
and let 7 : M — V be the natural projection. Let 2 = Q*(M,End7*FE). To each
function f € C°°(V) corresponds the element of End 7* E' — operator of multiplication
by 7*f. This defines a homomorphism p : C*(V) — Q° We can join V; and V,
by an affine family of connections V! such that V° = V;, V! = V,. One then
considers connection V' + d on 7*E, where d is the de Rham differential on [0, 1].
00 =0V, End E) @ Q*(V,End E). The restriction map r = i} @ i3, where 7; (resp.
i) is the imbedding of V into M as V x 0 (resp. V x 1). Finally the graded trace ][

fo [

M

is defined by

This data provides one with a generalized chain C. One can easily identify dC with

(—Cy) U Cs.
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3.2 Characters of cycles.

With every generalized chain C™ of degree n one can associate a canonical n-cochain
Ch(C™) in the b 4+ B bicomplex of the algebra A, which we call a character of the

generalized chain.

Definition 8. The character of the (unital) generalized chain C™ is the cyclic cochain
Ch(C™), which has components Ch*(C") of degree k for k =n, n — 2, ... . given by

the following formula.

Chk(C")(ao, ay, ... (lk) =

(_nl)kT, Z B ][/)(Cto)ei‘)V(p(<11))91'1 . Viplap)d™  (3.24)

" igtigetip=15E
This formula is closely related to the Jaffe-Lesniewski-Osterwalder formula [JLOSS].

For the generalized chain C let dC denote the boundary of C.

Theorem 3. Let C" be a unital chain, and O(C") be its boundary. Then
(B +b)Ch(C™) =S Ch(0(C")) (3.25)

Here S is the usual periodicity shift in the cyclic bicomplex.

Proof. We need to prove that b Ch™(C") = 0 and that b Ch*~'(C") + B Ch**'(C") =
Ch* (o(Cc")) for k=1,3,5,...,n—1. Since

CI"(C") = const ][p<ao>v<p<a1>>v<p<a2>> Y (p(an))
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verification of the first equality is a standard calculation. The rest of the proof
is devoted to the verification of the second equality. To simplify the formulae we

introduce the notation

_ &

n )
o @ (3.26)

We now compute (here the parity of k is opposite to the parity of n)

B Cth(C")(ao, ay, ... ,ak)

Ciit 2 sgn(}) ][V(P(GA(O))Q“ -V (plax))pt =

to+i1te ot 1= n7§71
A—cyclic permutation

Cht1 Z ][V GU(D .. V(p(aj))eik(ﬁ-l) L

jo+i1+ g1 ="—5— k !
A—cyclic permutatlon

V(p(ar-10))0% 140 .V (p(ar) 96+ (3.27)

Clearly, the result is the sum of the terms of the form

fv<p<ao>>efov<p<a1>>eﬁ L V(plax))6® (3.28)

with jo+71+--+Jjr = "‘T’H Let us compute coefficient with which the term (3.28)
enters the sum in the (3.27). If we consider the summands, coming from the one fixed
cyclic permutation A the term (3.28) will appear as many times as are there iy, i1,

. 7ik+1 with

19 + ik+1 for [ = /\_l(k’)

i
Y0 otherwise
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i.e. ja-1() times. Summing over all the cyclic permutations A we obtain that the term

(3.28) enters into the sum in (3.27) (jo+1)+ (ji+1)+- -+ (js+1) = 221+ k+1 =
niktl Hence we obtain that the sum in (3.27) equals

(%M) ) ][V(p(ao))QjOV(p(al))Gjl . V(p(ar))0™

Jo+tjittig="=

2

Since (ZHE)el | = ¢}7! we can write the final result as

B ChFY(C™)(ag, a1, . .., a) =

Z b

JotjiteHje=1k=1

][v<p<ao>>ej0v<p<a1>>eﬁ L Vi(plan)t (3.29)

Now we compute b Ch*~1(C")(ag, ay, . . ., az).We obtain:

b Ch* Y (C")(ag, ay, ..., ax) =

G X ([t ipa)en . Vpae -
jo+i1+Fig_1= "*§+1
k—1

Z(_l)l][p(ao)eio o V(p(ala“_l))eiz o V(p(ak))eik” X

=1

(—1)* f,omkao)e“wp(al))e“ L V(plm))fr) (330)

Using the derivation property of V (and the trace property of ][) one can easily see
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that

][P(aoal)eiov(P(az))Qil . V(p(ag)g™ 1 +

-1

o

(_1)l][P(CLo)9i° e V(p(alalﬂ))@il Ce V(p(ak))gzk—l +

Il
—

<_1)k][/0(aka0)9i°V(p(al))Qil . V(p(ap)g* 1 =

o

-1

(—1)’][,0(%)92-0 - V(p(a))lplarr), 0]V (p(ar2))0"

l

Il
o

. Viplap)d™ (3.31)

Since

[ az+1 Z 9p Cll+1 = - Z epv al+1 9

pHq=i;— ptg=i;—

and 22t — 1 = n=k=L the expression in (3.30) can be rewritten as

][ ag) 9]0

V(p(an))0" V*(p(ar41))0"+ V(plary2))0" ... V(p(ax))0% (3.32)

k—1

*110

n
— Cp1 E
+jk=

Jo+ji+--

Notice that —c | = ;"' Also

][ (p(a0))0V (p(ar))07" ...V (p(ay))0 +

(—1)l][/)(a0)9j°--~V(P(a1))9jlv2( (ai41))07+ ...V (p(ay))0’ =

=0

F9 (6@ Y pla)p” ... V(plan)o™) (333
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/
Using the definitions of ¢, p’ and ][ from (3.21), (3.23), (3.22) we can rewrite the

last expression in the following way:

19 (pla)t W (pla)p” ... ¥ (plan))6) =
Fripasvipa)er . vipa)er) =
F @@ @)@ T ) @P 630
Hence adding expressions (3.29), (3.32), and using (3.33) we obtain:
(B Ch*H(C™) + b Ch* (M) (ao, ar,y - - -y ax) =

G Y @@ @)@ V) O)

Jot+ji++ir=""5 L

Ch*(a(C™)(ap, ar, . ..ax) (3.35)
O

Remark 4. A natural framework for such identities in cyclic cohomology is provided
by the theory of operations on cyclic cohomology of Nest and Tsygan, cf. [NT95a,
NTI5b]

Corollary 5. If C" is a unital generalized cycle then Ch(C™) is an n-cocycle in the

cyclic bicomplex of an algebra A, and hence defines a class in HC™(A).
FExample 9. We have in the notations of the Example 5
Ch(—C) = — Ch(C) (3.36)

Ch(Cy U Cs) = Ch(Cy) + Ch(Cy) (3.37)
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The proof of the identities above is straightforward. It is also true that [Ch((C;)x)] U
[Ch((C2)x)] = [Ch((C1)x % (C2)x)], as will be proved in the Corollary 21.

Corollary 6. Whenever two unital generalized cycles C{ and C} are cobordant
S Ch(cy)] =[S Ch(cy)]
in HC"2(A) (where [ ] denotes the class in the cyclic cohomology).
We will also use several times the following straightforward observation:

Proposition 7. Let H : C; — Cy be a (unital) morphism of two (unital) generalized
chains covering the homomorphism h of the underlying algebras. Then h* Ch(Cy) =
H(Cy).

Formula (3.24) can also be written in the different form, closer to the formula

from [JLOS88]. We will use the following notations. First, ][ can be extended to the

whole algebra () by setting ][5 =0 if deg& # 0. For £ € Q € is defined as > 0 S

j=0 3!

Then denote A* the k-simplex {(to,t1,...,t,)|[to+t1+- - +tx = 1} with the measure

dtidtsy ... dtg. Finally, o is an arbitrary nonzero real parameter. Then
Chk(C )ao, a1, ...ax) =

| (fotanse =0T ptan)ye ... Vlpfane ) dndts.. b (339

where k is of the same parity as n. Indeed,

][ plag)e "V (plar))e=1 .V (p(ax))e " =
()" > u][f’(ao)eiov(p(al))é)“ - Vip(ar)0™ (3.39)

Zo'Zl‘ -
to+i1+-Fip="5" 2
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and our assertion follows from the equality

ioliy! .. . ig!
(o + i1+ +ig + k)!

/tf)%ﬁl R dbdty . dty =
An

Note that if C" is a (non-generalized) cycle Ch(C™) coincides (up to a constant) with

the character of C" as defined by Connes.

3.3 The nonunital case.

We worked above only in the context of unital algebras and maps. Here we will treat
the general case. In this section we explain how given a nonunital generalized chain
over a nonunital algebra one can canonically construct a unital generalized chain over
the algebra with adjoined unit.

First we need to define a nonunital generalized cycle. The definition of the gener-
alized cycle in the nonunital case differ from the definition in the unital case only in
two aspects: first, we do not require algebras and morphisms to be unital, second, we
do not require any more that the curvature @ is an element of O?; rather we require

it to be a multiplier of the algebra 2. We follow [Nis97].

Definition 9. A (nonunital) generalized cycle over an algebra A is given by the

following data :

1. A Z-graded unital algebra Q = @,°_, Q™ and a homomorphism p from A to
0o,
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2. A graded derivation V : QF — QF1 k£ =0, 1, ... and a multiplier § of degree

2 of the algebra 2 (i.e. degfw = degwf = degw + 2) which satisfy

V(wg) = V()¢ + (-1)*=“wV(€) (3.40)
V(W) = fw — wh Yw € Q (3.41)
V(bw) = 0Vw V(wl) = V(w)0 (3.42)

3. A graded trace ][ defined on 2" for some n with the properties

][w§ — (—1)deswdees ][gw for degw + degé =n (3.43)

][V(w) =0Vwe Q! (3.44)

][Hw _ ][we (3.45)

FExample 10. In the Example 4 we can now remove the condition that V' is com-
pact. The algebra A we consider now is C3°(V), and the graded algebra =
Qy(V,End F) = C°(V,A*T*V ® End E). With all the other data defined exactly

as in the Example 4 we obtain a nonunital generalized cycle.

FExample 11. We can define negative of a generalized cycle, disjoint union, and prod-

uct for the nonunital case exactly as in the example 5.

The definition of morphisms in the nonunital case is a suitable reformulation of

the Definition 4.

Definition 10. A morphism H between two generalized cycles C; = (21, V1, 6y, ][ )
1
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and Cy = (g, Va, 05, ][ ) over algebras A; and Aj respectively, covering the homo-
2

morphism h : A; — Aj is a linear grading-preserving homomorphism H : Q; — €

satisfying
H(pi(a)) = p2(h(a)) (3.46)
H(Vi(w)) = Va(H(w)) (3.47)
H(01w) = 0w H(wby) = wby (3.48)

][ w = ][ H(w (3.49)

Here again talking about the morphisms of generalized cycles over the same algebra A

we mean, unless otherwise specified, morphism covering the identity homomorphism.

With each nonunital generalized cycle C = (Q,V,0 ][) over an algebra A one

can canonically associate a unital generalized cycle C* = (QF, V1, 67, ][+) over the
algebra A™ — algebra A with the unit adjoined. The construction is the following.
The graded algebra Q" is obtained from the algebra 2 by adjoining an element 6©
of degree 2 with relations 6w = 6w and wdt = wh (in the right hand side we have the
action of the multiplier #), and adjoining the unit (of degree 0). The homomorphism
T AT — (Q7)° is the unique unital extension of the homomorphism p : A — Q°.
The graded derivation V' is the unique unital (i.e. V*(1) = 0) extension of V
to Q satisfying V*(61) = 0. Conditions (3.40)-(3.42) assure that such an extension
really exists.

_l’_
Finally, the graded trace ][ is an extension of the ][ . If the degree of the cycle n

+
is odd, (QT)" = Q" and ][ coincides with ][ . If n is even, there is one new element
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+
in (Q*)", namely (§+)"2 if n > 0 and 1 if n = 0. We put ][ (02 =0ifn >0

+
and][ 1=0ifn=0.
One can easily check that C* is indeed a unital generalized cycle.

Ezample 12. We have (—C)™ = —(CT) and (C; UCy)* = C{” UCy . Tt is not true that
(C; x Cy)T =Cf x C, but we have a natural morphism (C; X Co)™ — C;{ x Cy

If we have a morphism H : C; — Cy covering the homomorphism A : A; — As,
one defines a morphism H* : C{ — CJ covering h™ : C{ — C, which is a unital
extension of H, satisfying H(6;) = 05

We now give the definition of the nonunital generalized chain.

Definition 11. A (nonunital) generalized chain over an algebra A is given by the

following data:

1. Graded unital algebras €2 and 02 with a surjective homomorphism r : {2 — 0f2

of degree 0 , and a homomorphism p : 4 — Q°.

2. Graded derivations of degree 1 V on Q2 and V' on 02 and multiplier 6 of degree
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2 of the algebra (2 such that

V(wé) = V(W) + (-1)*=“wV(€) (3.50)
V(W) = V' (W) + (-1)*5w'V'(¢) (3.51)
V() = w — wh Yw € Q (3.52)
V(w) = 6Vw V(wh) = V(w)f (3.53)
rovV=Vor (3.54)
r(0w) = r(wh) = 0 if r(w) =0 (3.55)

3. A graded trace ][ on Q" for some n (called the degree of the chain) such that

][wf = (—1)degwdeg§][§w for degw + degé =n (3.56)

][V(w) =0 Vw € Q"' such that r(w) =0 (3.57)

][Qw = ][wH (3.58)

Notice that we can define a multiplier 6" of 00 by 0w’ = r(fw), 0" = r(W'6)

where w is such that r(w) = w'. This definition is unambiguous, as follows from

(3.55). With this one can define the boundary of the (nonunital) generalized chain C

/ /
as the (nonunital) generalized cycle 0C = (02, V', ¢, ][ ), where ][ , as in the unital

/
case is defined by ][w’ = ][Vw, with r(w) = '

With a nonunital generalized chain over an algebra A one can, similarly to the

case of generalized cycle, canonically associate a unital generalized chain. The details

are the following.
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The graded algebra Q7 is obtained from the algebra € by adjoining an element 6
of degree 2 with relations 6w = 6w and Wt = wh (in the right hand side we have the
action of the multiplier #), and adjoining the unit (of degree 0). The homomorphism
pt: AT — (QT)° is the unique unital extension of the homomorphism p : A — Q°.
The algebra 99" is similarly obtained from the algebra 992 by adjoining elements
(0)* and 1. The homomorphism r is extended as a unital homomorphism with
r(07) = (¢")". Tt is easily seen to remain surjective.

The graded derivation V', (V)" are unique unital extensions of V and V' to Q*
and OW™ respectively, satisfying V*(07) = 0 and (V")* ((#')7) = 0.

Finally, the graded trace ][+ is an extension of the ][ . If the degree of the cycle n
is odd, (1) = Q", and ][+ coincides with ][ . If n is even, there is one new element

+
in (Q1)", namely (§%)"2. We put ][ (6?2 = 0.

Proposition 8. For a generalized chain C 0(C*) = (9C)™, i.e. wunitalization and

taking boundaries commute.

Proof. The only thing not immediate from the definitions is that graded traces
N\ + 4\ 7/
( ][ > and ( ][ ) coincide. They clearly coincide on the elements of 0). Hence

the only thing we need to check is that if the degree n of the cycle is odd,

() wryere =0

(or (][+)/1 — 0ifn = 0). But since r(6%) = (&), <][+>/((e')+)<"—1>/2 _

+
][ V(9F)=1/2 = (0, and similarly in the case n = 0. O
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We now turn to the characters in the nonunital case. For every nonunital gen-
eralized chain C over an algebra A we can construct its unitalization C* which is a
generalized chain over A*, and consider its character Ch(C") (defined in the Defini-

tion 8) which is a cyclic cocycle in the (b, B) bicomplex of the algebra A™.

Proposition 9. The cochain Ch(C*t) defines a cochain in the reduced (b, B) bicom-

plex of the algebra AT .

Proof. 1f the degree of n C is odd, there is nothing to prove. If the degree of C is

even, we need to verify that Ch®(C*)(1) = 0. But
+
Ch’(cH(1) = ][ @2 =0
+
by the definition of ][ H

Definition 12. The character of the (nonunital) generalized chain C over an algebra

A is the cochain Ch(C) of the reduced (b, B) bicomplex of the algebra A*.

We have now two different definitions for the character of the unital chain C over
the unital algebra A. One is a cochain of the (b, B) bicomplex of the algebra A, and
the other is a cochain of the reduced (b, B) bicomplex of the algebra AT. The next

theorem shows that these two definitions agree.

Theorem 10. Let C be the unital chain over the unital algebra A. Let h be the

canonical quasiisomorphism B(A) — Brea(A") (cf. [Lod92]. Then

h(CL(C)) = Ch(C*)
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Proof. This is a direct consequence of the explicit formulae for h and the characters.

O]

It is clear that the following generalization of the Theorem 3, where we no longer

require unitality holds:
Theorem 11. Let C be a chain, and O(C) be its boundary. Then
(B +b)Ch(C) = S Ch(aC) (3.59)
Here S is the usual periodicity shift in the cyclic bicomplex.
This theorem together with the Theorem 10 has the following corollaries.

Corollary 12. IfC™ is a generalized cycle then Ch(C™) is an n-cocycle in the reduced
cyclic bicomplex of an algebra A, and hence defines a class in HC! (AT) = HC"(A).
The definition of the class in HC™(A) agrees with the previous definition in the case

of the unital cycle.
Corollary 13. Whenever two generalized cycles C{' and C¥ are cobordant
[S Ch(CT)] = [S Ch(Cy)]
in HC"2(A).
We also have

Proposition 14. Let H : C; — Cy be a morphism of two generalized chains covering

the homomorphism h of the underlying algebras. Then h* Ch(Cy) = Ch(Cy).
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3.4 Variation of connection.

Proposition 15. Let Cy = (2,00,rV, V|, 6, ][) be a unital generalized chain of de-
gree n over an algebra A

For some element n € Q' put

V,=V+adn (3.60)

0,=0+Vn+n (3.61)
Then C, = (2,09,rV,, V', 0,, ][) s also a generalized chain. If Cy is a cycle, then
50 15 Cp.
Proof. All the conditions of the Definition 5 are immediate, except possibly (3.16),
(3.17). We will now verify (3.16).

(Vy)’w = (V +adn)’w = Vw + V([n,w]) + [1, Vo] + [, [, w]] (3.62)

Using the identities [n, [, w]] = [n?, w] and V([n,w])+[n, V(w)] = [V(n), w] we rewrite
the result of the previous computation as [0 + Vn + 7%, ).

We will now verify (3.17).

Vn‘gn =

(V+adn) (0 +Vn+n°) =+V>n+V()n—nVn) + [0,0]+ [0, V()] + [n,7*] =0
(3.63)

]
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Theorem 16. LetC = (QQ,V, 0, ][) be a generalized cycle of degree n over an algebra

A. For some element n € Q' put

V, =V +adn (3.64)

0,=0+Vn+n (3.65)
Then C, is a generalized cycle by Proposition 15, and
[Ch(C)] = [Ch(Cy)] (3.66)

Proof. We start by constructing a cobordism between cycles C and C,. This is
analogous to a construction from [Nis97]. The cobordism is provided by the chain
Ce = (Q°,00° 1, Ve, (V) 6°, ][C) with dC¢ = —C,) U C;, defined as follows.

The graded algebra Q° is defined as Q*([0, 1])®2, where ® denotes the graded
tensor product, and Q*([0, 1]) is the algebra of the differential forms on the segment

[0,1]. The map p¢: A — Q° is given by
o(a) = 18p(a) (3.67)

We denote by ¢ the variable on the segment [0, 1].
The graded derivation V¢ is defined by

Vé(a@w) = da®w + (—1)*8*a@Vw + (—1)%*E*ta®@[n, ] (3.68)

Here d is the de Rham differential on [0, 1].

The curvature ¢ is defined to be
180 4+ t&Vn + 2&n° + dt&n (3.69)
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As expected, the algebra 09)¢ is defined to be 2 @ 2. The restriction map r¢ :
Q¢ — Q@ is defined by

a(Q)wd a(l)w if dega=0
r(a@w) = Oke&ath ° (3.70)

0 otherwise
The connection V' on Q @ 2 is given by V@ V,. All the conditions (3.14)-(3.18) are
clear, except possibly (3.16), (3.17). To verify them notice that in the case n = 0 they
are clear, and the general case follows from the computations from the proof of the
Proposition 15. Indeed, connections V¢ differs from the corresponding connection in
the case = 0 by ad t®n.
The graded trace ][C on (2¢)"*! is given by the formula

il a][w if degw =n and dega =1

][ a®w = { 0.1 (3.71)
0 otherwise
It is easy to see that
c N (1) — a(O))][w if degw =n and dega =0
][ Ve(aBw) = (3.72)

0 otherwise
This computation both checks the condition (3.57) and shows that the “boundary”
trace (][C)’ induced on Q& Q equals —][GB][. Conditions (3.56) and (3.58) are clear.
Hence we constructed the generalized chain C¢, providing the cobordism between
C and C,. The Corollary 6 implies that [S Ch(C)] = [S Ch(C,)]. To obtain the more
precise statement (3.66) and finish the proof of the Theorem, we need to examine the

character Ch(C¢), since by the Theorem 3 S Ch(C) — S Ch(C,) = (b + B) Ch(C®).
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Ch(C®) has components Ch*(C¢) for k = n+1, n — 1, .... Its top component

Ch™™(C®) is given by the formula

Ch"(C)(ag, ar, .- ., apy) = ! )][CPC(GO)VC(PC(Gl))---VC(PC(%H)) (3.73)

(n+1)!

where a; € A. But the expression under ][C is easily seen to be of the form a®w,
with a of degree 0. Hence the expression (3.73) is identically 0, by the definition
(3.71) of ][C. It follows that Ch(C¢) is in the image of the map S, and this implies
that [Ch(C)] = [Ch(C,)]. O

From the proof of the Theorem 16 one obtains also an explicit formula for the
n — 1 cochain T in the (b, B) bicomplex such that Ch(C) — Ch(C,) = (b+ B)T. To
simplify the formulae we introduce the notations

V=V +tadn (3.74)
0, = 0 +tVn + t*n? (3.75)

Corollary 17. In the notations of the Theorem 16 Proposition 15 we have:
Ch(C) — Ch(C,) = (b+ B)T (3.76)
where T is the cochain in the (b, B) bicomplex of the algebra A, with components

given by

Tk(ao,al, coag) = Ch(Cc)k(ao,al, coag) =

> Z /][ a0)07° V(p(ar))0;" ..

2 . G041 ti= n—1—k 1 k 7=0

Vilp(a)) 8V (plag )07 .. Vilplan)d  (3.77)
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We now proceed to the nonunital case. First, we establish the analogue of the

Proposition 15.

Proposition 18. Let C = (2,00, rV, V|, 0, ][) be a nonunital generalized chain of

degree n over an algebra A, and let ) be a degree 1 multiplier of 2, such that

= ()02 (3.78)

r(nw) =r(wn) =0ifr(w) =0 (3.79)
We can then define a multiplier of Q Vn by
(Viw = V(1w) +nVw; wVn = (=1)%(V(wn) — V(w)n) (3.80)

and a multiplier r(n) of 02 by r(n)w' = r(nw), where r(w) = w'. Put

V,=V+adnp (3.81)
V1=V +adr(n) (3.82)
0,=0+Vn+n (3.83)

Then C, = (2,00, rV,, V!, 0,, ][) 15 also a generalized chain. If C is a cycle, then so

is Cy.

Proof. The fact that Vi and r(n) are multipliers of the respective algebras follows
from the definitions. All the conditions of the Definition 11 are immediate, except

possibly (3.52), (3.53). The proof of (3.52) is identical to the similar proof in the
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Proposition 15. We will now verify first identity of (3.17) ( the other identity is

similar).

Vi (Opw) =
(V+adn) (dw + V(n)w + n*w) = 6Vw + V(n)w + V(n)Vw +

(V(m)n = nVn)w +1°Vw + [, 0] + [0, V()] + [n,nw] =

OVw + V(1) Ve + 17V (w) + 0[n, ] + V() [n,w] + n*[n,0] =
0,V,w (3.84)
(]

We now proceed to the nonunital analogue of the Theorem 16.
Theorem 19. LetC = (Q,V, 0, ][) be a generalized cycle of degree n over an algebra
A, let n be a degree 1 multiplier of ), such that ][nw = (—1)("1)/2][w7]. Put

V,=V+adn (3.85)
0,=0+Vn+n (3.86)
where V) is defined in (3.80). Then C, is a generalized cycle by Proposition 18, and

[Ch(C)] = [Ch(Cy)] (3.87)

Proof. We start by enlarging the algebra {2 similarly to the construction of the cycle
P
CT. More precisely, consider the following generalized cycle C? = (P, VP, 6P, ][ )

over the algebra A". The algebra (¥ is obtained from the algebra by adjoining
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unit of degree 0, element 7” of degree 1, and elements 67 and (Vn)? of degree 2. The

relations of this algebra are the following, where w € (2

Pw = Ow; wh? = wb (3.88)
nPw = nw; wn? = wn (3.89)
(Vn)Pw = Vnw; w(Vn)? =wVn (3.90)

and the usual relations with respect to the unit. The V? extends V, satisfies

VP =0 (3.91)
VPO = 0 (3.92)
VP = (V) (3.93)
VP(Vn)P = 0P —n"0P (3.94)

and is extended to the whole QF as a derivation. It follows that (V?)? = ad6P.
Indeed, on the both sides of this equality are derivations, and they coincide since
they coincide on generators.

The graded trace ][p is the extension of ][ satisfying ][pP(Qp ,n", (Vn)P) =0 for
any polynomial P.

Notice that there is a natural unital morphism H : CT — CP defined by H(0%) =
07, and hence Ch(C?) = Ch(C™"). Notice also that Ch(CP) is clearly a reduced cocycle.

Consider now the cycles (C,)™ and CP. We can construct a unital morphism F

between them defined by F ((6,)") = (6),. The only thing in need of verification is

that if n = degC is even then

£y =o (3.5
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But
][p (67),)"2 = ][pwp VP ()2 = 0 (3.96)

P
by the definition of ][ . Hence Ch((C,)") = Ch(CP).
Then Corollary 17 shows that Ch(C?),, — Ch(C?) = (b + B) Ch((C?)°), and hence

Ch((C;)") — Ch(C") = (b+ B) Ch((C7))

To finish the proof it remains to remark that Ch((C?)°) is also a reduced cocycle, as

follows from the explicit formula for its components and a computation similar to

(3.96). 0

3.5 Relation with Connes’ construction.

With every generalized cycle C = (€2, V, 6, ][) over an algebra A Connes shows how

to associate canonically a cycle Cx = (Qx, dx, ][ ). Then definition of the character
of a cycle allows one to associate Connes chara(izer with it. The main goal of this
section is to prove that the class of this character in the cyclic cohomology coincides
with the class of the character of the generalized cycle.

We start by recalling Connes’ construction. The algebra (2x consists of elements

of the form wy; + w12 X + Xwo + Xwee X, where X is a formal symbol of degree 1,

and multiplication is defined formally by relations X? = 0 and w; Xw, = 0. In other
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words, graded algebra {2x as a vector space can be identified with the space of 2 by

2 matrices over an algebra 2, with the grading given by the following:

W11 W12
k- k k—1 k-2
EQX if w; €0 wu,leeQ and woy € €
W21 W22
/ /
w11 Wi2 , Wip Wiz |
and the product of the two elements w = and w' = is given
/ /
W21 W22 Wy Wy
by
/ /
wHrw = (3.97)
/ /
. . . W11 Wi2 .
Here we identify the matrix w = with the element wi; + wia X + Xwoy +
W21 W2
XWQQX.

The homomorphism px : A — Qx is a composition of the homomorphism p :

A — Q with the natural inclusion Q — Qx. In terms of matrices it is given by

ox(a) = |9 (3.98)
0 0

We can construct an extension Vx of V to 2x by formally requiring that Vx X =

0, or in terms of matrices

Vs W11 W12 _ V(wn) V(wlz) (3.99)

Wa1 Wag —V(wa) —V(wa)
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We have

9 w11 Wiz VZ(WM) VQ(MQ)
VX pu— p—
Wa1 Wag Vz(wm) V2(W22)
6 0 w11 W12 W11 Wi2 6 0 6 0 W11 W12 W11 W12 0 0
— — %k — *
0 ¢ W21 W2 W21 Wa2 0 0 0 1 W21 Wa2 Wa1 W22 0 1
(3.100)
0 0
When C is nonunital we treat as a multiplier of the algebra Qx.
0 1
Define now the graded derivation dx on 2x formally by
dX(X) =0 (3.101)
dx(w) = Vw + Xw + (—1)%8“wX (3.102)
Then d3% = 0. In terms of the matrices dx is written as
W11 W12 V(wn) V(wm) 0 —0 Wil Wi2
dx = +
Wa1 Wag —V(wm) —V(wm) 1 0 Wao1 W22
w w 0 —0
4(=1)dese | T TE (3.103)
Wo1 W2 1 0

Finally, the graded trace ][

][wn - (_1)degw][ UJQQQ.
X

The main result of this section is the following

is defined by ][ w11 + winX + Xwo + XwepX =

X X
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Theorem 20. Let C be the generalized cycle and Cx be the associated cycle. Then
[Ch(C)] = [Ch(Cx)] (3.104)

Proof. Consider the cycle C' over the algebra A given by (Qx, Vx,0x, ][ ), where
X

0 0
Ox = . We have seen already that V3 = adfy, and it is easy to see

0 1

that all the required properties of the trace are satisfied. Notice that C’ is never a
unital cycle. An easy computation shows that Ch(C’) = Ch(C"), as cocycles over

AT. Consider now a degree 1 multiplier of the algebra Q° given by the matrix

0 -1
X = (3.105)
1 0
W11 W2
In other words, for w = ,
W1 W2
0 0 Wil W12 Bwar Bwao
Xxw= = (3.106)
-1 0 Wo1  Wag —Wi1  —Wi2
w11 W12 0 1 —wi2f Wiy
wr X = — (3.107)
Wo1 W22 -0 0 —wall Wy

We can then construct, as in the Proposition 18, the generalized cycle C’, by perturb-
ing connection and curvature. Indeed, all the conditions of the Proposition are easily
verified.

We claim that the generalized cycle C% coincides with the cycle Cx. Indeed, the
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identities 3.106 show that Vx+ad X = dx. It remains to verify that Ox +V x X+ X2 =

0. But it is easy to see that VxX = 0 and

- B —0 0 -
X =XxX = = 0y

0 -1

The Theorem 19 now implies that
[Ch(C™)] = [Ch(C")] = [Ch(C%)] = [Ch(Cx)]
in the reduced cyclic cohomology of A", and the Theorem follows. l

Corollary 21. In the Examples 5 and 11 we defined for two generalized cycles C' =
(Q, Vl,Hl,][ ) and C§* = (Qq, VQ,GQ,][ ) their product as C; xCy = (Ql®§22, Vi®1+
1

2

1®Vy, 0,81 + 1865, ][ ® ][ ). Then [Ch(C; x C3)] = [Ch(Cy)] U [Ch(Cy)].

1
Proof. For the (non-generalized) cycles this follows from Connes’ definition of the cup-
product. In the general case this implies that [Ch((C;)x)]U[Ch((C2)x)] = [Ch((C1)x X
(Co)x)]. Now the statement follows from the Theorem 20 and the existence of the
morphism (C; X Co)x — (C1)x X (Cy)x. If we denote by X;, X5, Xj5 the formal
elements, corresponding to Cy, Co, C; X Cy respectively, the morphism mentioned above
is the extension of the identity map Q,®Q; — &, defined ( again formally) by
X — (X1®1 + 18X,).
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CHAPTER 4
EQUIVARIANT CHERN CHARACTER.

4.1 Construction of the equivariant character in cyclic coho-

mology.

This section concerns vector bundles equivariant with respect to discreet group ac-
tions. We show that there is a generalized cycle associated naturally to such a bundle
with ( not necessarily invariant ) connection. The character of this generalized cycle
turns out to be related ( see Theorem 22 ) to the equivariant Chern character. The for-
mulae thus obtained are related to the formulae for the character of the K-homology
class constructed in [CM98]. The classes in cyclic cohomology thus obtained are all
concentrated at the identity of the group. There should be the corresponding formu-
lae for the other conjugacy classes, related to the cohomology of the loop spaces, cf.
[Bur85].

Let V' be an orientable smooth manifold of dimension n, E a complex vector
bundle over V', and A = End(FE) — algebra of endomorphisms with compact support.
One can construct a generalized cycle over an algebra A in the following way. The
algebra Q0 = Q*(V, End(FE)) — the algebra of endomorphism-valued differential forms.

Any connection V on the bundle E defines a connection for the generalized cycle,
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with the curvature § € Q*(V,End(F)) — the usual curvature of the connection. On

the Q™(V,End(F)) one defines a graded trace ][ by the formula ][u) = [trw, where
v

in the right hand side we have a usual matrix trace and a usual integration over a

manifold. Note that when V' is noncompact, this cycle is nonunital. The formula

(3.24) then defines a cyclic n-cocycle {Ch*} on the algebra A, given by the formula
Ch*(ag, ay, ... ap) =

/ /tr ape "V (ar)e™? .. V(ap)e ™ | dtydty ... dt, (4.1)

Ak \V
Hence we recover the formula of Quillen from [Qui88]. (Recall that for noncompact
V these expressions should be viewed as defining reduced cocycle over the algebra A
with unit adjoined, with Ch” extended by Ch®(1) = 0).

One can restrict this cocycle to the subalgebra of functions C*(V) C End(FE).
As a result one obtains an n-cocycle on the algebra C*°(V'), which we still denote by

{Ch*}, given by the formula

Ch*(ag, ay,...a;) = /aodal ..day tre”? (4.2)

|4

1
k!
To this cocycle corresponds a current on V', defined by the form tre=?. Hence in this
case we recover the Chern character of the bundle E. Note that we use normalization
of the Chern character from [BGV92].

Let now an orientable manifold V' of dimension n be equipped with an action of

the discrete group I of orientation preserving transformations, and E be a [-invariant

bundle. In this situation, one can again construct a cycle of degree n over the algebra
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A = End(E) x I'. Our notations are the following : the algebra A is generated by
the elements of the form aU,, a € End(E), g € I, and U, is a formal symbol. The

product is (a'Uy)(al,) = a'a?U,,. The superscript here denotes the action of the

group.

The graded algebra Q is defined as Q*(V,End(F)) x I'. Elements of Q clearly
act on the forms with values in E, and any connection V in the bundle E defines a
connection for the algebra 2, which we also denote by V, by the identity (here w € €,
and s € Q*(V, E))

V(ws) = V(w)s + (—1)%8“wV (5s) (4.3)

One checks that the above formula indeed defines a degree 1 derivation, which can be
described by the action on the elements of the form alU, where o € Q*(V, End(E)),

g € I', by the equation
V(iaU,) = (V(a) +aNd(g)) U, (4.4)
where § is Q'(V, End(E))-valued group cocycle, defined by
§(g) =V —-goVog! (4.5)

One defines a curvature as an element 8U;, where 1 is the unit of the group, and 6

is the (usual) curvature of V . The graded trace ][ on " is given by

Ja ifg=1
][ong =]V (4.6)

0 otherwise
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One can associate with this cycle a cyclic n-cocycle over an algebra A, by the
equation (3.24). By restricting it to the subalgebra C§°(V') x I' one obtains an n-

cocycle {x*} on this algebra. Its k-th component is given by the formula

X (aoUyy, a1U,,, . .. ap U, ) =

71 Y2 Yii—1 _7Viy Yiq+1
E apda{ day” ... da; ' a; tda; L

1§i1<i2<"'<ilgk 4

Ozt (V1 -+ 7) (A7)

for gog1...gr = 1 and 0 otherwise. Here the summation is over all the subsets of
{1,2,...k} and the following notations are used: ~; are group elements defined by
Y = 9091 ---9j—1- Oirin.iy(71, .-, 7k) is the form (depending on go, gy ... ) defined

by the formula

@’il,ig,...,il (717 s 7’7]?) =

—tof1  —t1672 —t;, 1071 ;
/tre 00 e L leT Y N (g, )T

Ak

e 0T ettt 0 he e 0y dty, (4.8)

The change of connection does not change the class in the cyclic cohomology, as can be
seen by constructing a cobordism between corresponding cycles. This formula gives
a class in the cyclic cohomology, which represents the equivariant Chern character,
cf. Bott [Bot78]. More precisely, let ® : H*(V xp EI') — HP*(CP(V) x I') be the
canonical imbedding, constructed by Connes, cf. [Con94].Then the following theorem

holds:
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Theorem 22. Let Chr(E) € H*(V xpEI) be the equivariant Chern character. Then

® (Chr(E)) = [X]
where x is the cocycle given by (4.7).

Here E pulls back to an equivariant bundle on V' x EI', and then drops down to
V xr EI', and the equivariant Chern character Chr(F) is the Chern character of the
resulting bundle. We recall that we use normalization from [BGV92]. The proof of

this Theorem will be given in the Section 4.3

4.2 Some properties of Connes’ map o.

Let the group I' act on the manifold V', as in the previous section. In the cyclic
complex of the algebra C§° x I' one can consider the subcomplex of the cochains
satistying ¢(foUyy, f1Ugys - - - fxUg,) = 0 unless gogy ... gr = 1 (it is easy to see that
the differentials b and B preserve this condition). We say that cocycles satisfying
this condition are concentrated at the identity. The main goal of this section is to
show that the image of the Connes map & consists of the part of cyclic cohomology
concentrated at the identity.

We will use the following well-known statement:

Lemma 23. Let T be a group, and let (X[, d;) i = 1, 2, be two complexes of projective
I' modules, with differentials commuting with the action of I'. Denote by (X}“V)*
the corresponding complexes of I'-invariants. Let V : X7 — XJ be a I'-equivariant
quasiisomorphism of complezes. Then the induced map W™ : (XIV)* — (XIv)" s

a quasiisomorphism.
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Proof. Let (8;(I"),d) be the standard resolution. Consider the bicomplex CP? =
Homr(f,, X]), with the horizontal differential induced by ¢ and vertical by d;. Since
the X/ is a projective I'-module, all the rows of this bicomplex are exact, and its
cohomology coincides with the cohomology of the complex Ker o = Homp(C, X[) =
(xim)"

U induces map C}™ — C;™, and the corresponding map in the cohomology is
Ui By our hypothesis, and since £3, is free, ¥ induces a quasiisomorphism in
every column, and hence quasiisomorphism of bicomplexes, and the statement of the

Lemma follows.

O

To describe the part of the cyclic cohomology of cross-products concentrated at
the identity, V. Nistor considers the following cyclic object N in the category of vector
spaces (which we consider only in the case of algebras of smooth functions). Its m-
th component is C°(V)? @ B,,(I'), with the face, degeneracy and cyclic operators
coming from factors. We denote generators of this tensor product by symbols like
(fos f1,-- -, fm; 90,91, - - - gm), Where f; are functions and g; are elements of the group.

This cyclic object is a free I' module with the action given by

(fos frse e fr 90591, gu)? = (f§ ff oo f] 909,919, grg)  (4.9)

It is easy to see that the group action commutes with all the face, degeneracy and

cyclic operators. We now define a I'-invariant map of the cyclic objects p : N —
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(Ce°(V) x T)%. The definition is the following:

p((f07f17 s 7fm;g()7gly s 7gm)) - gOUgngl ® flglUgw{l o 'f]nggjg;jl . ‘ng’Lngmgal
(4.10)

It is easy to see that the map p is -invariant, and that the map p* identifies B(N )™
with B(Cg°(V) x I).

Consider also the bicomplex A C Hom(3,, D*) — the space of totally antisymmetric
functions on I'"*! with values in D complex of currents on V. The differentials are

given by the de Rham differential and by the group cohomology differential, i.e.

k+1

57(907 g1, .- 7gl+1) = Z(_:[)lFY(gO? g1,--- 7.@727 o 7gl+1) (411>
=0

The group I' acts on this complex by

—1

9(7) (90,91, - - -, 9%) = (v(909, 919, - - -, 9r9))’ (4.12)

We will construct now a I'-equivariant map of complexes ¥ : A** — B(N).
The construction is the following. Let A*I" be the graded algebra generated by the
anticommuting variables of degree 1 labeled by the elements of I'. Each v € A**

defines a functional on the algebra Q(V)®A*T by

(7,wRgo A gi A .. 1) =< (o, g1, -, G1),w > (4.13)

With the right action of ' on Q(V)@A*T defined by

(w@go/\gl/\...gl)g:wg_l<§>ggg/\glg/\...glg (4.14)
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this pairing satisfies

v, (WRgo Agi A ... g)?) = (g(7),w@go A gL A ... q1) (4.15)

Put now

V() ((fo, f1s- - fr3 90,91, gr)) =

K
(=)™ Ak (7, fo(z gi)(dfy + f1(g1 — 92))(df2 + folg2 — 93)) - - - (dfi + fr(gr — 90)))

=0

(4.16)

where ~ is of the type [, m, and k =1+ m + 1, and

A = (4.17)

(k+1)!

Proposition 24. The map ¥V is I'-equivariant.

Proof. Indeed, we have

) ((for fro - fri 00,910 06)) = OO F o f 5 009,919 919)) =
(=)™ Ay £ <Z GO+ 1 (019 — 929))(dff "+ 5 (929 — 959)) - -
(A + 17 (909 = 909))) =
U(g(v))((fos frs- - fri gos 915+ - - gr)) (4.18)
]

Proposition 25. Restricted to the invariants, the map ¥ coincides with Connes’

map @, after the identification of B(N)™ with B(C§e(V) x T').

o4



Proof. We have p(fo, ... fx;go,---gr) = To @ X1 -+ Q@ Xy, where x; = fI'U, 1. we

B g'Lg'H»l

will now show that

(—1)(j_1)(k_j+1)(ﬁ’7/)(dl'j Ce dflkaodl'l c. dl’j_l) =

(—1)m<9;1(7)> fogi(dfs + fi(g1 — g2))(dfa + fa(g2 — g3)) - - - (dfy. + fr(gr — 90)))
(4.19)
Indeed,

daj..doaode, .. dej oy = (dfPU, o+ f"ng]gmdgng)
(U, + U B ) JoUos
(A Uy + S0, lggl>...<dfiglUgjl S, 18 ) =
<dffj+f;”'(5gjgj_1—6gj+lgj_1))...<df + £ Gy 6909;1)) o
(A1 + 12 Gyt = Gy )) o (A 00 g = 0,000)) =

<_1)(j71)(k7j+1)fgj (dffj * fiqj <5919j_1 N 59293-_1)) o (dfli]j + flgj (5gk9]-_1 — 59093-_1))
(4.20)
But since
< 7(1’gilga'_l’gi29;1a e 7gilg;1),ng >=
<YL 9095" 90295 -0 9085 )Y w >=< g7 (V{5 Girs - g0)w > (4.21)

we have

(—1)(j_1)(k_j+1):§(dl‘j Ce d[L‘k[E()de‘l c. dCCj_l) =

(_1)m<9j_1(7)7 Jogi(dfy + fi(g1 — g2))(df2 + f2(g2 — 93)) - - - (dfi + fr(gr — 90)))
(4.22)
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Let now v be I['-invariant. Then gj_l(v) = ~ and the statement then follows by

summation of (4.19) over j. O
Proposition 26. U is a map of complexes.
Proof. We need to check two identities:

BU() = ¥(dy) (4.23)

bU(v) =V (0v) (4.24)

The first one is proved as follows. We have

BY(Y)(fi,-- s fes 9105 0%) =
(=)™ (k+1) Ak (v, (Z gi)(dfr+ f1(g1 — g2))(dfa+ fo(g2—g3)) - - - (df+ fr(gr—91)))

(4.25)

But from the proof of the identity (4.19) we have

(—1)U=DE=+D (g (3)(da; . . . dugday . . . d;_y) =
(=1)"™ v, g5(dfy + filgr — 92))(df2 + fo(g2 — g3)) - - - (dfic + fulgr — 90))) (4.26)
The identity
) (dxj ... dxpdry .. drj_y) = (=) (dy)(dz; . . . dogry .. dxj_y) (4.27)

then immediately implies that

(v,95(dfr + fi(gr — g2))(dfo + fa(g2 — g3)) - - - (dfi + fe(ge — 90))) =

— (dv, gj fildfa + fa(g2 — 93)) - (dfe + fulgr — 90))) (4.28)

56



Summing this equality over j and using (k + 1)A\;x = A;(x—1) we obtain the desired
equality.

The second identity will follow from the following lemmata:

Lemma 27. Eztend ~y to the group algebra by linearity. Then

Y(h g = 91,95 = gas - 98 — 6i) = ()" () — 91,95 — Gz, 91 — gr)  (4:29)
Proof.
a (h 0o_ 1 0o _ 1 0 1): (_1)0'1+o'2+..‘0'la (h o1 o9 O'l):
7 791 g1792 g27 .gl gl ’Y 791 792 9 791
(=)™ (9! — 91,95 — 93,9 —9l) +

l
(D)™ YO (=) ey g7t g5, g . g]t) (4.30)
=1

where each o; is either 0 or 1. But the last sum is 0. Indeed, each term of the form
v(h, g7t 952, . .. ,;7:"\ ...g]") enters the sum twice, for o; = 0 and 1, with opposite

signs. (]

Lemma 28.

bU () ((for - fra15905 - -+ Ghy1)) =

(=)™ N1k (v, fo(dfy + filgr — 92))(df2 + fa(go = g3)) - - - (dfisr + Frrr (o1 — 90)))
(4.31)
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Proof. This is proved by the following computation:

bW () ((for- - fes1: 90, - -5 Grr1)) =
k

S =0k oD g)dfy + filgr — g2))(dfz + fa(g2 = 95)) - -

i=0 J#i+1
(d(fifi+1> + fifiJrl(gi - gi+2)) T (dfk+1 + fk+1(gk+1 - 90))> +
(=)™ Nk, frar foO 90 dfs + Figr — 92))(dfz + falg2 — g5)) - ) =
J#0
k

D (=0 Ny foldh + filgr — g2))(dfa + fa(g2 — 95)) - - (filgi — gi1)) -

= (_1)m_1(l+1)/\l,k<7a fO(dfl +f1(g1—gz))(df2+f2(gg—gg)) c. (dfl~|>fz(gl—gz+1)) L.
(dfit1 + frr1(gerr — 90))) (4.32)

]

We now have by the Lemma 27

\IJ(GV)((f(b s fk‘-i—l; go, - - - 7.gk’+1)) = (_1)m_1(k + 2)>\k+17l+1

(v, foldfy + fi(gr — g2))(dfs + fa(g2 — g3)) - - - (dfrsr + frs1(grs1 — 90))) (4.33)

and comparison with the result of the Lemma 28 finishes the proof, since (k +
2) Nkt 141 = Agiq- [
Proposition 29. V is a quasiisomorphism of complezes.

Proof. In [Nis90] it is proved that the following map ¢ : D* — B*(N) is a quasiiso-

morphism:

DO or- - fii o 90) = 33 < C fodfy - dfc > (4.34)
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Here C' is a current, and the map is u-linear.

There is a natural inclusion 7 : D* < A**, each current considered as a constant

function on the group I'. It is easy to see that

Voi=1

(4.35)

Hence to prove the Proposition it is enough to show that ¢ is a quasiisomorphism.

To do this we introduce the projection p : A** — D* defined by

y(1) ifl=0
p(v) =
0 ifl>0
It is clear that
poi=id

Define now an operator h : A"™ — Al=Lm by

0
(hy)(915---91) =

(_1)m—1,}/(1’ g1, - agl)

Then it is easy to see that
top=1—0oh—hod

and hence ¢ and p define inverse quasiisomorphism

The following Theorem is then an immediate corollary of the Lemma 23:

itl=0

ifl>0

(4.36)

(4.37)

(4.38)

(4.39)

Theorem 30. The image of the map ® is the part of cyclic cohomology concentrated

at the identity of the group.
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Remark 31. We also obtain another proof of the injectivity of the map ®, different

from the Connes’ proof from [Con94].

Remark 32. The Theorem and the proof remain true for the case of the convolution

algebra of an etale groupoid.

4.3 Relation with Bott’s characteristic classes.

This section is devoted to the proof of the Theorem 22.

To prove the theorem we need some preliminary constructions and facts. For a
[manifold Y by Yr we denote the homotopy quotient Y xp ET".

Suppose we are given ['-manifolds V' and X, X oriented. We construct then a
map I : HCV(CP(V) x T') — HCIHmX(Cee(V x X) x I'). The construction is the

following: in HCUmX(C5°(X) x T') there is a class represented by the cocycle

[y fodf{® . df " if gogr . ge =1
T(fOUgoaflUgM"‘?kagk) =

0 otherwise

One then constructs the map I from the following diagram:

HOI(CE(V) x T) 5 HCTHmX ((Ce(V) 1 T) @ (C5°(X) % T))

2L HOHImX (Coo(V x X) 1 T)  (4.40)
Here the last arrow is induced by the natural map

A:CPV xX)xT =(CP(V)®CP(X)) »T

— (CP(V)xT) @ (CP(X) xT) (4.41)
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defined by A ((f @ f)U,) = (fU,) ® (f'U,).

Suppose now that V' is also oriented.

Proposition 33. The following diagram is commutative:

HP*(C*(V x X) xT) «—=— H*((V x X)r)

IT Tn* (4.42)

P

HP*(Ce(V)xTI)  —— H* (V)
Here m: (V x X)r — Vp is induced by the ( T'-equivariant ) projection V- x X x EI' —
V x EI.

Proof. We can consider V' x X with action of I' x I'. We start with showing that the

following diagram is commutative:
HP*(C®(V x X) % ([ xT)) e—=— H* (V x X)@xn)
UTT TW* (4.43)
HP*(C(V) xT) 2 H* (V)
Here we identify C3°(V x X) x (I' x ') with (Cg°(V) x T') @ (C§°(X) x I') and
(V x X)rxry with Xp x Vp. This is verified by the direct computation, using the
Eilenberg-Silber theorem and the shuffle map in cyclic cohomology, cf. [Lod92].

Now we note that the commutativity of the following diagram is clear:

HP(Cg*(V x X) % (I x ) e—— H*((V x X)(rxr))

l l (4.44)

P

HP*(Cg°(V x X) xT) —— H*((VxX)r)
where the vertical arrows are induced by the diagonal maps I' — I' x I' and EI' —

ET" x EI'. This ends the proof. O
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Proposition 34. Let E be an equivariant vector bundle on V with connection V.
Let x € HC™(C§°(V) x I') be the character of the associated cycle, and let x' €
HC™k(Cso(V x X) x T') be the character of the cycle constructed with the bundle
priyE and connection pri,V, where pry : X x V. — V. Then I(x) = x' (Here n and

k are dimensions of V and X respectively)

Proof. Let C denote the corresponding cycle over C§°(V) x I, and T -transverse
fundamental cycle of X. Then C x T is a cycle over (C§°(V) x T') @ (Cg°(X) x T),

and
Ch(CxT)=Ch(C)UT

by the Corollary 21. If by pr*C we denote the corresponding cycle over C§°(V x X)) x T,

we have
Ch(prC) = A" (Ch(C®T)) = A* (Ch(C) UT) = I(Ch(C))
O

Lemma 35. Suppose in addition to the conditions of the Theorem 22 that I' acts

freely and properly on V. Then the statement of the Theorem holds.

Proof. Since the group acts freely and properly, one can find a connection on £ which
is ['-invariant. For the class of the cocycle x written with the invariant connection

the result follows easily from the definition of the map ®. O

Lemma 36. Let X be a topological space, and € H*(X;Q) be a cohomology class
of X. Suppose that for any smooth oriented manifold M and continuous map f :

M — X we have f*3 =0. Then 3 = 0.
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Proof of the Theorem 22. Comparison of the construction from [Nis90] with the def-
inition of the map ® implies that (class of) x is in the image of ®, [y] = ®(§) for
some (necessarily unique) & € H*(V xp EI'). We need to verify that £ = Chp(E).
We do this by showing that for any oriented manifold W and any map continuous
[+ W —=Vr fr&= f* Chr(E).

Let W be the principal I'-bundle obtained by pullback of the bundle V xEI' — V.,

so that the following diagram is commutative, and fis [-equivariant:

W L VxEr

l J (4.45)

w1 W%
We can write fvas a composition of two I'-equivariant maps fl W — W x V x EIL,
which embeds W as the graph of fand pr: W xV xEl =V x ET', projection. Let
T (W XxV)r—=Vrand f1 : W — (ﬁ// X V)r be the induced maps. We have f = 7 fj.

Construct now the class x' € H P”(COOO(W x V) x T') using the bundle pr*E with

connection pr*V. By the Proposition 34 x' = I(x), where I : HP*(C§°(V) x I') —
HP*JFdimW(CgO(/MV/ x V) x T'). By the Proposition 33 x’ = I(x) = I(®(§)) = ®(n*¢).
By the Lemma 35, since W x V is acted by I freely and properly, x' = ®(Ch(pr*E)).

But since Ch(pr*(E)) = n* Ch(F), and using injectivity of ® we conclude that
7" Ch(E) = "¢
Hence

f*Ch(E) = fim" Ch(E) = fim"{ = ["¢
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4.4 Relation with the Godbillon-Vey cyclic cocycle.

In the paper [Con86] Connes considers (in particular) the case of the circle S acted by
the group of its diffeomorphisms Diff (S?) . Here we present the Connes construction
in the multidimensional case and indicate some relations with our construction of
cyclic cocycles representing equivariant classes.

In the situation of the Section 4.1 take the bundle E to be A"T*X. This is
a 1 -dimensional trivial bundle, naturally equipped with the action of the group
I' = Diff(X). Let ¢ be a nowhere 0 section of this bundle, i.e. a volume form. Define

a flat connection V on E by

V(f¢)=dfe, ¢ € C=(X) (4.46)

We can thus define the cycle C over the algebra C*°(X).

Let now d(g) be defined as above, and put

g

) =5 € CFX) (4.47)
Then 4 is a cocycle, i.e.
p(gh) = p(h)?u(g) (4.48)
We also have
d(g) = dlog nu(g) (4.49)

Indeed,



and

_ dplg)¢ _ dulg) _ .,
i(g) = b o) = dlog(u(9))

For every t we define a homomorphism p, : C*(X) x I' — End(F) x I by

pi(aly) = a(,u(g))tUg (4.50)

This is a homomorphism due to the cocycle property of i, which according to [Con86]
is the Tomita-Takesaki flow associated with the state given by the volume form ¢.
Consider now the transverse fundamental cycle ® over the algebra A = C*>(X)
defined by the following data:
the differential graded algebra Q*(X) x I' with the differential d(wU,) = (dw)U,
the graded trace ][ on Q*(X) x I' defined by

Jw ifg=1
][ng— X

0 otherwise

the homomorphism p = py = id from A = C*°(X) x ' to C*°(X) x I'. The flow
(4.50) acts on the cycle ®, by replacing pg by p;. We call the cycle thus obtained ;.

Using the identities

d(pe(al,)) = (da + ta dlogu(g)) u(g)'Uy = (da + ta 6(g))u(g)" U, (4.51)

and

1(90) 1(g1)% p(g2) ™" . .. p(gi) 991 = p(gogs - - - gk (4.52)
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we can explicitly compute Ch(®;). This is the cyclic n-cocycle with the only compo-

nent of degree n The result is:
Ch(®,) =Y t'p; (4.53)
5=0
where p; is the cyclic cocycle given by

pi(aoUyy, ar1U,,, ..., a,Uy,) =

Yir-1 Yiy g Yig+l
— E apdal*day? ... da;" ' a;  da; "},

n' 11—1 “iq i1+1
l§i1<i2<-~<ij§nX

®i1,i2 ..... i]‘ (717 ct 7’7]6) (454)

for gog1...g9r = 1 and 0 otherwise, where we define as before v; = gog1 . .. g;—1, and

the j—form @i1,i2 ..... 15 (717 s 77]6) iS given by

@i1,i2 ..... ij (717 s 77]6) = 5(91'1)%15(91'2)%2 cee 5(92] )7ij (455)

In particular, pg is the transverse fundamental class. Comparing these formulae with

the formulae from the Section 4.1 we obtain

Proposition 37. Let &1 be the image of the transverse fundamental cycle ® under
the action of the Tomita-Takesaki flow for the time 1 . Let C be the cycle over
C>®(X) x I' associated to the equivariant bundle A"T*X with the connection from

(4.46). Then, on the level of cocycles Ch(®,) = Ch(C).

We now sketch a construction of a family of chains ¥, providing the cobordism
between &y and @, s € R. The algebra Q* = Q* ([0, s])@Q*(X) x I'. The homomor-

phism from A to Q° maps aU, € Q*(X) x T to au(g)'U,, where t is the variable on
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[0, s]. The connection is given by 1&V +d®1 where d is the de Rham differential, and
the curvature is 0 . The restriction map is given by the restriction to the endpoints
of the interval and the graded trace is given by

][a@%(ng):(—ndegw/a/w

[0,s] X

if deg o =1 and g =1 and 0 otherwise. This chain provides a cobordism between

®y and ®,. Its character is given by the formula

n+1
Ch(¥y) = Z slq; (4.56)
j=1
where ¢; is the cyclic cochain given by
( Ugoa alUgl, R ,anUgn) -
1
5 [ adapday el da

" 1<i<ig<--<ij<n
Eirsignsi; (V15 - )  (4.57)
for gogi...gr =1 and 0 otherwise, where we define as before v; = gog1 . .. g;—1, and
the j — 1-form Z;, 4, ., (71, .-, 7%) is given by
S i (Y15 ) =
- Z 6(9i,)"0(gi,)"2 .. log pu(gs, ) ... 6(gs,)" (4.58)
Comparing this formula Wlth (4.53) we obtain:

Proposition 38. Let p;, j =1,..., n be the chains defined in (4.53), (4.54), and g;,

j=1,...,n+1 be from (4.56), (4.57). Then for j =1,...,n we have

Bgj =pj andbg; =0 (4.59)
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Also
Bgui1 =0 and bg,1 =0 (4.60)

In particular all p; define trivial classes in periodic cyclic cohomology, and gn41 s a

cyclic cocycle.

The cocycle g,+1 should represent (up to a constant) the Godbillon-Vey class in

the cyclic cohomology (i.e. class defined by hyc}, while p; and g; represent forms ¢}

and hicl, j = 1,....n, see [Bot78].

4.5 Transverse fundamental class of the foliation.

The construction of the equivariant characteristic classes works equally well in the
case of a foliation. The new ingredient required here is the Connes’ construction of
the transverse fundamental (generalized) cycle. We now will write a simple formula
for the character of this cycle.

We start by briefly recalling Connes’ construction from [Con94]. Details can
be found in [Con94]. Let (V,F) be a transversely oriented foliated manifold, F
being an integrable subbundle of T'V. The graph of the foliation G is a groupoid,
the objects being the points of V' and morphisms being the equivalence classes of
paths in the leaves, with equivalence given by holonomy. Equipped with a suitable
topology it becomes a smooth (possibly non-Hausdorff) manifold. By r and s we
denote the range and source maps G — V. By Q};/Q we denote the line bundle on

V' of the half-densities in the direction of F. Let A = C§° <Q, s*(Q}T/Z) ® r*(Q¥2)>
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be the convolution algebra of G. We define a nonunital generalized cycle over the
algebra A as follows. The k-th component of the graded algebra Q* is given by
OF (g, 3*((2;/2) ® r*(Q;ﬂ) ® r*(A’%’*)). Here 7 = TV/F is the normal bundle, and
the product QOF ® O — Q! is induced by the convolution and exterior product.
The definition of the transverse differentiation (connection) requires a choice of
a subbundle H C TV, complementary to F. The choice of the complementary

subbundle H allows one to construct an isomorphism
J:C®(VNF* @ N 1") — C(V,A*TV™) (4.61)

and identify C*(V, A*T'V*) with C*°(V, A*F* @ A*7*) via this isomorphism.
We say that form w € C*(V, A*T'V*) is of the type (r,s) if it is in C®°(V,A"F* ®

A*7*) under this identification. For such a form we have
dw = dyw + dgw + ow (4.62)

where dyw, dgw, ow are defined to be components of dw of the types (r + 1,s),
(r,s+1), (r—1,s+2) respectively (our notations are slightly different from those of
[Con94)).

We will now derive more explicit formula for dy. If X is a section of the bundle
7, complementary subbundle allows to lift it to the horizontal vector field, which
we denote X#. Let w be of the type (¢,p), and let X1, Xs,..., X411 € C=(V,7),

Y1,Ys,...,Y, € C®(V,F). Let also my be the canonical projection TV — TV/F,
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and 7y be the projection TV — F', defined by the choice of H. Then
de(lesz"';Xp-ﬁ-l)}/vl?}/za"')}/q) =
d(jw) (X, X X YL Y, YY) =

S (0)TX Gy (XXX YY)

+ Y (DY ) (X X YY)
+ 3 (1R Gu) (X X X XE L XYY
i<k

—_

S ) (XL X X Y B )

+Z D) Gw) (Vi Vi), X X Ve, Y YY)
i<k

Since w is a form of the type (¢, p), we have
(o) (Ve Yal, XIT . X Y, Y YY) =0
and
o) (X, X Y, YY) =0
Also

G) (X, XE X YY) = w(X e X X, Vi

7 )

G (X, X, XX X, YY) =

—

w(ﬂH([XiPI?XIg{])?Xb'"7Xi7"-7‘5(\16---7Xp+171/17"'

—_ —~

Go) (X, Ve, XT . XY, YY) =

R

(—1)p(U(X1,...,5(\1',...,Wv([Xf,Yk]),m,...’ﬁm...
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So, finally we obtain

de(Xl,Xg, e ;Xp—‘rl;}/h}/Z; . ,Y:]) =
STD)TX WX, X X, YY)

o~

ST ol (X X)), X X X, X, Vi, Y) +
i<k

—~

S D) (X, X (XY Y YY) (4.64)

We now extend dy to half-densities. Writing locally p € C>(V, Q;/Q) as p =
flw]2, f e C®(V), we C®(V, A" FF*) we define

1/2 de

dip = (dy f)lw|'* + flo*=— (4.65)

Finally, dg can be extended uniquely as a graded derivation of the graded algebra

O (Q, S*(Q}/Z) ® r*(Q;/z) ® r* (A*T*)) so that the following identities are satisfied:

du (1"(p1) fs"(p2)) =
r*(dup1) fs*(p2) + 1 (p1)du fs*(p2) + 17 (p1) fs" (dup2)

for p1, p» € C(V, %), f € C¥(G)  (4.66)
and
dg(¢r*(w)) = du(d)r™(w) + ¢r*(duw)
for ¢ € O (g, (YY) @ r*(Q;/?)) we C®(V, A ") (4.67)

Now, for the form w d4w = —(dyo + ody)w. The operator § = —(dyo + ody)
contains only longitudinal Lie derivatives, and hence defines a multiplier (of degree

2) of the algebra C§° (g, 3*(9;/2) ® r*(Q;/Q) ® r*(A*T*)),
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Finally, the graded trace on C§° (g, s*(Q},/z) ® r*(Q}ﬂ) ® r* (Aqr*)), q = codim F

is given by ][w = [w, where we pull w back to V via the natural map V — G.
v

Lemma 39. ([Con94]) (Cgo <Q, s*(Q}/z) ® r*(Q}/z) ® r*(A%‘*)) ,dy, 0, ][) is a gen-

eralized cycle of degree q over the algebra A .
We can now write an explicit formula for the character of this cycle.

Proposition 40. The following formula defines a reduced cyclic cocycle x in the (b,

B)-bicomplex of the algebra A (with adjoined unit).

q—k

(-1)"
(5!

Here k =q, ¢q—2, ..., and ¢;, 7 > 1 are elements of A, while ¢¢ is an element of A

(o, b1, - .., dp) = > / dobdp (1) . .. dg(r)0* (4.68)

Z‘O+"‘+ik:% \%

with unit adjoined.

Recall, that for g even to define the cocycle over A with the unit adjoined we
extend ][ by requiring that ][Qq/ 2=0.

The results of the Chapter 3 imply that the class of the cocycle x is the transverse
fundamental class of the foliation as defined in [Con94].

The cocycle thus constructed depends on the choice of the complementary sub-
bundle H, but the class in the cyclic cohomology does not. This result of Connes (cf.
[Con94]) can be deduced from Theorem 16. Indeed, let H' be another complementary
subbundle. For X — section of the bundle 7 let X# denote its lifting to the horizontal

vector field corresponding to H, and X' — corresponding to H’. Let

a(X) = X" - xH (4.69)
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be the corresponding vertical vector field. Denote the Lie derivative along a(-) by
L., and consider it as a function of a section of 7. Also, we define a linear operator

T(X): F — F, depending on a section of 7 by
T(X)Y = —a(ry (X", Y])) (4.70)

Remark that T'(X)Y = —a(DyX), where D is the Bott connection (cf. [Bot78]),
but we will not use this fact. Then L, + %trT defines a multiplier of the algebra

Cge (g, s*(Q;ﬂ) ® r*(Q}w/Q)), as follows from the proof of the Lemma below.

Lemma 41.
1
dH — dH/ =ad (Ea + 5 tr T) (471)

Proof. First, we compute dy — dys on forms of the type (¢,p), using the formula

(4.64). Note that

!

ma (X, X)) — m (X, X)) =

Xi'D) = mu (X = o(X0), X — a(Xy)]) =

WH([XH

7

T (X a(Xp)]) + 7 ([0(X), Xi))

and

WV([XzHuy}f]) - W(/([XzHlayk]) = WV([XzHuy}f]) - W(/([Xf{7yk]) + [O‘(Xz)uifk] =

— a(mg (X, Ya]) + [a(X0), Yi] = T(X:) Vi + [o(X5), Vi
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Then we obtain

(du — dgr)w(Xy, Xa, . .. y Xpr1, Y1, Yo, oo »Yq) =
ST X)Xy, X X Vi Yy)
ST WXy, (a(X), X)), X X, YY) -

—~

D (Dw(Xy, o Xy Y [a(XG), YY)
S (-Dw(Xy, o X Ve T(X )Y, Y) =
Z(—l)"(ﬁam W)X Xi o X, Ve, Y) +
q w(Xl,...,E(\i,...,Yl,...,T(Xi)Yk,...,n))
k=1

In particular, for the form of the type (0, p) we have

(dH - dH/)w(X17 XQ, “e ,Xp+1) ==

—~

D (1) Lo @) (X, Xy Xp)

and for the form of the type (g,0)

(dH — dH/)W(X,}/i, Ce ,Y;l) =

(Laxyw)(Y1,...,Yy) +tr T(X)w(Y1,...,Y,)
Hence for the half-density w

1
(dH — dH/)w(X) = £a(X)w + 5 tr T(X)w
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and for w € Q}ﬂ ® AT

(dH — dH/)w(Xl, e 7Xp+1> =

Y (-1t (Ea(Xi)w(Xl, o X Xp) + S DX (X X ,Xp+1))

(4.76)

and the statement of the Lemma follows. O

The independence of the transverse fundamental class of the choice of H is now
immediate. Note also that from the Theorem 16 one also obtains explicit transgression

formulae.

4.6 Equivariant Chern character for foliations.

In this section we show how to construct a character of the holonomy equivariant
vector bundle on the foliated manifold with values in the cyclic cohomology of the
foliation algebra.

Let, in the notations of the previous section, E be a holonomy equivariant bundle
on V. This means that for any two points x and y of the same leaf and for any
path G from z to y there is a linear transformation F, — FE, depending only on the
holonomy class of G. Fix a connection V on E. We will now construct a generalized
cycle associated with this data (and a choice of the complementary subbundle H).

The k-th component of the graded algebra €2 are defined as

o (g, s (94 @ r(9Y?) @ r*(A*7*) ® End T*E)
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with the product given by convolution. We have a natural inclusion
A=C (g, S*(Q}/Q) ® r*(Q},/2)> C Cy° (g, s*(Q}!Q) ® r*(Q}!Q) ® r*(A*r*) ® End r*E)

The graded derivation on the algebra €2 is given by the horizontal component of
connection, defined as follows. The choice of H again provides us with (depending
on H) identification of C* (V,A*F ® A*r @ End E) with C* (V,A*T*"V @ End E).

Using this identification, connection defines an operator
V:C*®VNFRANTQEndE) — C*°(V,A"F @ A" ® End F) (4.77)

such that for a differential form w € C* (VA"F ® A*T ® End F) Vw has components
of the types (r +1,s), (r,s+ 1), and (r — 1,s + 2). We denote these components as
Vyw, Vyw and ow respectively; it is easy to see that ow is independent of the choice

of connection V (but clearly depends on the choice of H). We have
V=Vy+Vyg+o (4-78)

Vu then can be extended to half-densities by f € C*(V)

de

Vel = (Va2 + flu] 255

(4.79)

where now f € C*°(V, E). We now extend Vg to the algebra  exactly in the same
manner as dy was extended in the previous section. Let © be the curvature of the

connection V. We then have the following identity for action of Vg on forms:

V3 =0% — (Vyo +oVy) (4.80)
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where ©%2 is the 0,2 component of ©. The right hand side defines a multiplier of the
algebra €2, and we put § = %% — (Vo + oVy ). The graded trace ][ is defined by

][w _ V/trw (4.81)

for w of degree ¢ = codim F', where tr is the usual matrix trace, and w is again pulled

back to V' via the natural map V' — G. We then have the following

Theorem 42. 1) (Q, Vu,0, ][> define a generalized cycle over an algebra A.
2) The class of the character of this generalized cycle in cyclic cohomology is

independent of the choice of H.

Proof. The first part of the Theorem is clear. The proof of the second part uses the
analogue of the Lemma 41. Let H’' be another complementary subbundle, and let
V u be the coresponding derivation. Since the bundle E is holonomy equivariant we
have well defined Lie derivative of its sections along the vertical vector fields (which is
exactly covariant derivative with respect to the Bott connection). Let a(X) be defined
by the equation (4.69). Then we can again define a degree one multiplier V, + % trT,
where we define for the vertical field Y, s € C*(V, E), and w € C*(V, A*T ® Q}/Q)

Vy(sw) = (Vys) + sLyw (4.82)
1
Vg—Vg =ad (Va + 3 tr T) (4.83)
The statement of the Theorem now follows from the Theorem 19. O
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CHAPTER 5
CHARACTERS OF FREDHOLM MODULES AND
DUALITY MAP IN CYCLIC THEORY.

5.1 Fredholm modules.

In this section we write formulae for the character of the generalized cycle associated
with a finitely summable bounded Fredholm module (cf. [Con85]) . In other words
we obtain a formula for the character of a Fredholm module. We show that this
definition agrees with Connes’ definition [Con85].

Let (H, F,~) be an even finitely summable bounded Fredholm module over the
algebra A. Here H is a Hilbert space, on which the algebra A acts, v is a Zs-
grading on ‘H, and F' is an odd selfadjoint operator on H. We assume that A is
represented by the even operators in H, and since we almost always consider only
one representation of A, we drop this representation from our notations, and do not
distinguish elements of the algebra and corresponding operators. We also suppose
that the algebra A is unital, and the representation of it on the Hilbert space H is
unital. Let p be a number such that [F,a] € £P and (F? — 1) € £%. We remark that
for any p summable Fredholm module one can achieve these summability conditions

by altering the operator F' and keeping all the other data intact. We associate with
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the Fredholm module a generalized cycle similarly to [Con85] where it is done in
the case when F? = 1. Consider a Z-graded algebra Q = @7°_, Q™ generated by
the symbols a € A of degree 0, [F,a], a € A of degree 1, and symbol (F? — 1) of
degree 2, with a relation [F,ab] = a[F,b] + [F,a]b. This algebra can be naturally
represented on the Hilbert space H, and we will not distinguish in our notations
between elements of the algebra and the corresponding operators. € is equipped with
a natural connection V, given by the formula V(§) = [F, ] (graded commutator) in

terms of the representation of €2, or on generators by the formulae

V(a) = [F,d] (5.1)
V([F.a) = (F* = 1)a—a(F*-1)) = [(F* - 1),4d] (5.2)
V((F*-1)=0 (5.3)

Notice that V(§) = [(F? — 1),£] for £ € Q. Hence we define the curvature 6 to be
(F? —1). Clearly, £ € Q" is of trace class if n > p. Here we need to choose n to be
even, n = 2m. Hence we can define the graded trace on Q2" by ][f = m!Tr~&. The

equality TryV(£) = 0 for £ € Q! follows from the relation
1 2
Tryw= §T7“ YFV(w) = Tr~(F* —1)w
which holds for w of trace class). Indeed, for £ € Q"1 V(&) is of trace class and
1

TryV(E) = S TryFVA(E) + Trav(6)

1
= STryF[(F? ~1),6) = Tro(F* ~ )[F. =0 (5.4)

Now we can apply the formula (3.24) to obtain a cyclic cocycle Chy,,(F') in the

79



cyclic bicomplex of the algebra A. Its components Chgm(F) k=0,2,4,....,2m are

given by the formula

_m Z Tr~yao(l — F?)°[F,a;](1 — F2)" .. [F,a](1 — F?)* (5.5)

iotirttig=m—%

Note that for the case when F? = 1 we get the formula from [Con85], normalized as
in [Con94].

We will now associate a generalized chain with homotopy between Fredholm mod-
ules. If the two Fredholm modules (H, Fy,v) and (H, Fy,7y) are connected by a
smooth operator homotopy ( meaning that there exists a C! family F; of operators
with [F},a] € £P and (F? — 1) € L%, t € [0,1] with F|—g = Fy, Flie1 = F ),
this generalized chain will provide cobordism between cycles corresponding to the
modules.

We start by constructing, exactly as before, an algebra (); generated by the ele-
ments a, [F}, a], (F?—1), with the connection V, and the curvature 6, = (F?—1). For
each t € [0, 1] one constructs a natural representation m; of this algebra on the Hilbert
space H. Let 2*([0, 1]) be the DGA of the differential forms on the interval [0, 1] with
the usual differential d. We can form a graded tensor product Q*([0,1])®€;. Choose
an odd number n = 2m+1 so that n > p+2; if in addition we suppose that % e LP,
we can choose n > p+ 1. In order to define the connection and the curvature we
will have to adjoin to our algebra an element of degree 2 dt@% and an element of
degree 3 dt®(F, dl? + %Ft). The algebra with the adjoined elements will be denoted

dt
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.. The homomorphism p, : A — €. is given by p.(a) = 1®a. We define the connec-

tion V. as % A dt + Vy, i.e. on the generators the definition is the following ( here
B e @ ([0,1])):
V.(3®a) = df&a + (—1)%P) B[ F;, a] (5.6)

V(GBIF, al) = SB[, a] + (~1)* O RI(FE ~ 1),a] + G AdB[ 0] (57

~ ~ ~, _dF, dF;
Vh@@@f—n):ﬂwwf—lywﬂummﬂﬁf+ziﬂ) (5.8)
~dF; ~, _dF, dF;
—) = —dt(F— + —F 5.9
V. (dt® dt) dt®( o + o t) (5.9)
~, dF, dF; ~r o dF,
L+ SR = dB|(F - 1), = 1
Ve (dt®(F 7 + 7 Fy)) = dt®[(F; ), dt] (5.10)
The curvature 6. of this connection is defined as
~ ~dF;
0, = 1&(F2—1) + dt®d—tt (5.11)

and the identity (V.)?- = [0, ] is verified by computation. One then defines the

graded trace ][ on (Q%([0,1])&)™ by the formula

C

(—1)* Ot [ (BTrym(€) if 6 € QL(0, 1)
][ B¢ = o
‘ 0

The restriction maps g : Q. — Qo and r; : . — €y are defined as follows.

if € Q0([0,1])

ro(B®E)) is 0 if B is of degree 1, and 3(0)&, where & is obtained from ¢ by replacing
F; by Fy if 3 is of degree 0 , and similarly for ;. One can check that the map r; & r
identifies 99, with Q! @ 00 and provides required cobordism.

Now we can use the Theorem 3 to study the properties of Ch(F') with respect to

the operator homotopy.
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Theorem 43. Suppose (H, Fo,7) and (H, F1,7) are two finitely summable Fredholm
modules over an algebra A which are connected by the smooth operator homotopy F;
and p is a number such that [F}] € L£P and (F? —1) € L% for 0 < t < 1. Choose
m such that 2m > p+ 1. Then Chy,(Fy) = Chy,(Fy) in HC?*™(A). If moreover

% € LP one can choose m such that 2m > p.

Proof. Let Tchh — denote the k-th component of the character of the constructed
above chain, providing the cobordism between the cycles associated with (H, Fy, )
and (H, F1,7), k=1,3, ..., 2m+ 1. It can be defined under the conditions on m

specified in the theorem. According to the Theorem 3
Chgm(F1> — Chgm(Fo) == (b + B) TCth
Now,

Tch%ﬂ“(ao, a1, .. Qomy1) = const][ pe(ag)Ve(pe(ar)) ... Ve(pe(aome1)) =0

[

(since the term under the ][ does not contain dt). Hence T'chy, can be considered
C

as the 2m — 1 chain (is in the image of S), and the result follows. O

Remark 44. Suppose we have two Fredholm modules (H, Fy,~y) and (H, Fi, ) such
that Fy — Fy € £P and F2 —1 € £%,i=0, 1. Then Chy,,(Fy) = Chy,,(FL), 2m > p.
Indeed, we can apply the Theorem 43 to the linear homotopy F; = Fy + t(Fy — Fp),
and need only to verify that F? — 1 € L. But

F?2—1=(F—1)+ t(FO(Fl — Fy)+ (F1 — FO)FO) +2(Fy — Fy)?
The first and the last terms in the right hand side are always in £2, and since the

left hand side is in £% for t = 1, (FO(Fl — Fy) + (F1 — FO)FO) e L5,
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Corollary 45. Let e be an idempotent in My (A), and (H, F,v) be an even Fredholm
module over A. Construct the Fredholm operator F, = e(F @ 1)e : HT @ CV —

H- @ CY (where HT and H~ are determined by the grading). Then
index(F,) =< Ch*(F), Ch.(e) >
Here Ch,(e) is the usual Chern character in the cyclic homology.

Proof. By replacing A by My(A) we reduce the situation to the case when e € A.
Now we apply Connes’ construction, which uses the homotopy F; = F+t(1—2¢)[F| €]
which connects F' (obtained when ¢ = 0) with the operator F} = eFe+(1—e)F(1—e),

obtained when ¢ = 1. Note that 1 — F? € £%. Indeed,
F2—1=(F*=1) 4 (t(1 — 2¢)[F,¢])” + t([F, (1 — 2¢)[F, e]])

The first two terms are clearly in £%. As for the third one, it can be rewritten as
—2[F,e][F,e] + (1 — 2e)[F,[F,e]] = —2[F,e]* + (1 — 2e)[(F?> — 1),¢] € L5.

The operator F} commutes with e, and homotopy does not change the pairing.
Hence it is enough to prove the result in the case when F' and e commute. In this
case in the formula for the pairing all of the terms involving commutators are 0 ,
hence the only term with nonzero contribution is Ch®(F)(e) = Trye(l — F2)™ =

Tr~(e — (eFe)*)™ = index(F,) by the well known formula. O

In [Con85] Connes provides canonical construction, allowing one to associate with
every p-summable Fredholm module such that F? — 1 # 0 another one for which
F? -1 =0, and which defines the same K-homology class. This allows to reduce the

definition of the character of a general Fredholm module to the case when F? = 1.
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The construction is the following. Given the Fredholm module (H, F,~) one first

constructs the Hilbert space H = H & H with the grading given by ¥ = v @ (—7).

a -
An element a € A acts by . Then one constructs an operator F', such that
0 0
~ ~ F 0
F — F' € £P and F? = 1; here by F’ we denote . The character of the
0 —F

Fredholm module (H, F),~) is then defined to be the character of the (H, F',7).

Theorem 46. Let (H, F,~) be an even finitely summable Fredholm module over the
algebra A, and let p be a real number such that [F,a] € L and (F? —1) € LZ. Then
class of Ch*(F) defined in (5.5) in the periodic cyclic cohomology coincides with the
Chern character, as defined by Connes [Con85].

Proof. First, let us consider the Fredholm module (’F[, F',5) over the algebra A -
the algebra A with adjoined unit ( acting by the identity operator). Then Chsy,,(F")
defines a class in the cyclic cohomology of /T, where we choose 2m > p. Since
Try(1 — (F")*)™ = 0, it defines a class in the reduced cyclic cohomology of A, and
hence in the cyclic cohomology of A. It coincides with the class defined by the
Fredholm module (H, F, 7).

The Theorem 43 and the Remark 44 show that the classes defined by the Fredholm
modules Ch(F) and Ch(F") coincide. To finish the proof we note that Ch(F) coincides

with the Chern character as defined in [Con85].
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The proof of the Theorem 43 also provides an explicit transgression formula. We

just need to compute explicitly formula for

Tchgm(ao, ap,...ax) =

k-1

(_(i)ﬂlk;l(;l)! > ][Pc a0)00V o(pe(a1))02 ... Ve(pe(ar)bF  (5.12)

0+i1+Fig= m——

Since 6% = . > 1 dt@(F? — 1)L (F? — 1)7 one can rewrite this formula as
r+q=i;—

—1)™ 7 (m)! !
L NG SISl SR ST

i0+i1+-tig= m_gl 0 r+q=1,—1

L AFy

[Fy, ad] (FP = 1) [Fy @ (F7 — 1) o

CHF2 1)1 [F, a) (F2 — 1)"k>dt (5.13)

Finally we can write the answer as

Tchh (ag,an,...ax) =

1 k
Sk [ (X ST -y

io++ g tigy1=m—EEL =0

dF,

[Fy,aq](1 — FtQ) S F a(1 = F2>u - (1— Ft2>iz+1 R a](1 - th)ik“)dt

(5.14)
where £ is an odd number between 1 and 2m — 1.

All the considerations above can be repeated in the case of an odd finitely summable
Fredholm module (H, F) over an algebra A . Here as before we suppose that
[F,a] € £, (F? —1) € £3. We choose number m such that n = 2m + 1 > p.
The trace now is given by ][f = V2 (n/2 4+ 1)Tr¢.
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The corresponding Chern character Chy,, 1 (F) has components Ch¥ 4 fork =1,

3,...,2m+ 1, given by the formula
L(m + 2)v/2i
Chgm-ﬁ-l(a(}? aty . .- ’ak) = <7n+—’§il)'
2
D Trag(l — F2)°[F, ay](1 — F2)" .. [F,a,](1 — F?)* (5.15)

k—1
0+i1+Fig= =m—-5=

If the two Fredholm modules are connected via the operator homotopy F; one has

the transgression formula

Ch2m+1<F1) — Ch2m+1(F0> = (b + B) TCthJrl (516)

where T'chy,, 11 is a 2m cyclic cochain having components T'ch% =~ for k even between

0 and 2m, given by the formula:

Tch§m+1(a0, ai, ... CLk) =

/5
L(m+3)v2i (

C (m+E)

Z zk: D'Tr ag(F2 — 1)

1o+ +ig+igr1=m— % =0

[Fyyan)(1 = F2)" L [Fy (1 - Ff)”%(l — F2)m L F, a] (1 - Ff)’kﬂ)dt
(5.17)

The proof of the Theorem 46 works in the odd situation as well and shows that
Ch*(F') coincides with the Chern character as defined by Connes. In particular, this
allows to recover the spectral flow via the pairing with K-theory. More precisely, let

u € My(A) be a unitary. Let sf(F®1, (F®1)") be the spectral flow of the operators
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F®1land (F®1)*=u((F ®1)u* acting on the space H ® CY. The Chern character

of the class of w in K;(A) is the periodic cyclic cycle defined by

1
2/ 211

Then we have the following

Chy(u) =

(=Dl -Ditr (weu) - (' @w)) (5.18)

Corollary 47. Let u € A be a unitary, and (H, F) be an odd Fredholm module over
the algebra A. Then < Ch*(F'), Ch,(u) >=sf(F® 1,(F ® 1))

Remark 48. This is a finitely summable analogue of the result of Getzler [Get93]
In the finitely summable case analytic formula for the spectral flow was derived in
[CP]; use of the Theorem 46 allows to give a proof of the corollary 47 without using

this formula.

5.2 Duality map

This section is devoted to the construction of the analogue of the Paschke-Voiculescu
duality (cf. [Pas81]) in the cyclic (co)homology context. This is achieved by repre-
senting Paschke-Voiculescu duality as Connes’ Poinare duality (cf. [Con94]) in K K-
theory. The formulae in cyclic cohomology thus obtained are related to the Cuntz
and Quillen explicit formulae (cf. [CQ95]) for the Godwillie’s isomorphism ([Goo85]).
There should also be a bivariant version of our construction, similarly with Valette’s

bivariant version of Paschke-Voiculescu duality [Val83].
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Let A be an algebra, acting on a Hilbert space H. Suppose that B is another

algebra, acting on ‘H and the following condition is satisfied:
[a,b] € LP.Va e AbeB (5.19)

The natural norm on B is given by

161l = [18l + ”SIH1£>1H[CL»b]|\p, beB,acA (5.20)
Here || - ||, is an £7 norm and || - || is an operator norm. Let B = B/(L£P N B). Let

p: B — B be a (C-linear and unital) section of a natural projection B — B (not

necessarily a homomorphism), and let

w(bo, b1) = p(bob1) — p(bo)p(b1) (5.21)

be its curvature. Clearly, w(bo, by) € LP, by, by € B. Consider then the following map

s: A® B — End(H):
s(a®b) = ap(b) (5.22)

This clearly is not, in general, a homomorphism, but it is a homomorphism modulo

LP. Indeed,

E(CLQ ® bo, aq ® bl) =
s(agar ® bobr) — s(ag @ bo)s(a1 @ by) = agaip(bobr) — aop(bo)aip(by) =
(aparp(bo, b1) — agaip(bo)p(br)) + (aoaip(bo)p(br) — aop(bo)aip(br))

= apa1w(bo, by) + apla, p(bo)]p(b1) (5.23)
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is clearly in LP.

This means that we have an extension
0L - A@B— A2 B — 0 (5.24)

To such an extension with a section Connes associated (cf. [Con85]) for every
odd n > 2p — 1 a class in the cyclic cohomology HC™(A ® B), represented by the

canonical cyclic cocycle Ch?.

Chi (o, @1, ..., %)

(—1)"F V2mi

= (nf <Tr =(zo, 11)Z (22, 23) . . . E(Xp_1, Tp)

[asy

|

2 ‘

— TrE(z,, 20)=(21, 22) ... Z(Tp_2, xn,l)) (5.25)

Here z; € A® B and Z is defined in (5.23). Connes shows that the class of the cocycle
Ch? is independent of the choice of the section s, and in particular, of the choice of
p: B — B, and also that SCh™ = Ch"*2, hence a class Ch: € HP'(A® B) is well
defined.

Now we have the natural products consistent via the Chern character with prod-

ucts in K-theory and K-homology.

HC;(A) @4 HC"(A® B) — HC"(B)

HC; (B) @ HC"(A® B) — HC"'(A) (5.26)

HPy(A) @4 HP!(A® B) — HP''(B)

HP,(B) @5 HP'(A® B) — HP'7'(A) (5.27)
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The products (5.26) can be constructed by composing the natural map
HC; (A) = HCT(C, A) 28 HC™(B, A® B) (5.28)
(here we use Jones-Cassel bivariant cyclic cohomology ), and the intersection product
HC'(B,A® B) x HC"(A® B,C) — HC"(B,C) = HC" *(B) (5.29)
The map (5.28) can be written explicitly as follows. We are given a chain {a; o},
k= 0,1,... in CC;(A). Using it we can construct an element in the bivariant
complex Hom® (Tot,(B), Tot,(A® B)) which maps a chain {3;} € Tot.(B) to the
chain {},.,_, Sh(ax ® B3;)}, n Tuns over even or odd numbers, depending on the
parity of @ and (. Here Sh = sh + sh’ (cf. [Lod92]).
Now we can define natural maps
Uiyt HC; (A) — HC™'(B)
Uyt HC; (B) — HC™/(A),n > 2p — 1 (5.30)
and
PV, s+ HP(A) — HP'(B)
Py 4 HP(B) — HP''(A),i=0,1 (5.31)

by taking products (5.26, 5.27) with Ch* from 5.25. So, for example

Vis({oi}) ({8}) = Ohe ( Y Sh(a® Bz))

— O ( Y shlan @ m) (5.32)

k+l=n
where the last equality is due to the fact that sh'(a ® () always starts with 1 ® 1,

but Ch vanishes on such elements. The similar formula holds for the periodic case.
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5.3 Explicit formula for the duality map.

To write an explicit formulae for the maps (5.30), (5.31) we first write down values
of the ”curvature” = on the tensors which appear in shuffles. All the formulas below

are the special cases of (5.23).

Z(a®b,d ®1) = ald, p(b)] (5.33)
Ela®b,1®1b) = aw(b,b) (5.34)
Ea®1,d @) =0 (5.35)
E1®b,d @) = dwb, )+ [d, p(b)]pt) (5.36)

We will now compute ChZ (sh(a ® 3)), witha = ay®@a; ®...ag, B =by®by...b
with £+ = n. Recall that n is an odd number greater than 2p — 1. We will compute
contributions of the two terms in C'h} separately.

We start with the computation of the contribution of the first term. Suppose first
that £ = 0 (and [ = n). Then there is just one term in the sh(a ® 3) — namely

(ap ® bo, by, ba, ..., by,). In this case the contribution of the first term is

Tr=Z(ao ® b, 1 @ b1)=E(1 @ by, 1 ®b3) ... E(1 @ by—1, 1 @ by)

=Tr aou)(bo, bl)w(b2, b3) ce Cd(bn_l, bn) (537)

where we have used identities (5.33)-(5.36)

Let now £ > 1. We need to evaluate the expression

Tr E(wo, 1)=(22, 23) - - - E(Tp—1, Tn) (5.38)
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where zg = ap ® by and x;-s are a shuffle of terms like a ®1 and 1 ®b. Observe that if
x; for j even has a form a ® 1, then (5.38) equals to 0, due to (5.35). Hence we need
to consider only the shuffles in which this does not happen. In particular we should
have £ < ”T“ (otherwise the corresponding term is 0). Also,the following observation
will be useful.

Suppose in some shuffle for some m x9,,, Tomi1, Tomeo are of the form 1 ® b, and
ZTomas 18 of the form a ® 1. Consider a new shuffle which coincides with the old one

in all places except

/
IZm = Tam
/ _
Lomi1 = L2m+3
/ —
Lomyo = T2m+1

Tomis = Tam+2 (5.39)

Then the sign of permutation in the new shuffle is the same as in the old one. Hence
if one shuffle can be obtained from the other by a sequence of such operations (or
their inverses) they signs coincide.

We will consider now two cases:

a) r1 = a; ® 1. Let a; ® 1 be in the place number 2i; + 1 (i; = 0, 3; < iy if
j < j', and iy < ”T’l ). Note that for all the shuffles of such a form the sign of the
permutation is the same, since all of them can be obtained one from the other by the
operations described in (5.39). Hence it is enough to compute the sign of permutation

for just one of them, say with i; = j — 1, in which case it is seen to be (—1)k(k2_1)
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Hence the contribution of such shuffles is

Cnk Z Trag|ay, p(bo)|w(by, bs) ...

0=iy <ig<-<ip <L

[az, p(b2ip—1)]w(baiy; baip11) - - - [aj, p(boi,—j41)] - (5.40)

where

(—1)"F " V2

2
Enk = (=01
-)!

(5.41)

The expression above is sum of the terms each of which is a trace of product of

expressions of the form w(b,t’) and [a, p(b)], and is obtained using (5.33)-(5.36).
b)zy = 1® by. Let again a; ® 1 be in the place number 2i; + 1 (but now i; > 0 ).

For all the shuffles of such a form the sign of the permutation is the same and equals

k(k—1)

(—1)"z . Thus for these shuffles the contribution is

Cnk Z Tragw(bo, b1) - .- [ar, p(bai, )Jw (b2, +1, bai +2) - - -

0<iy <ig <+ <ip < 2L

e [(lj, p(bQij—j—i—l)] e (542)

Adding the expressions (5.40) and (5.42) we obtain the formula for the first term:

Cnk Z Traow(by, ba) - . [ar, p(bai, )Jw (b2, +1, b2i +2) - - -

0<iy <ig<--<ip < 25L

[az, p(baiy—1)|w(baiy, b2igt1) - - - @z, p(b2i;—j41)] - (5.43)
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For example, let k = ”TH In this case there is no contribution from (5.42), and

only one term exists in (5.40), for which i; = j — 1, and it is equal to

cnk T aolay, p(bo)][az, p(b1)] - . - [ak, p(br—1)]

We will now compute the contribution of the second term in C'h. The computa-
tion is similar to the previous one.

First let £ = 0. In this case we get

()% vomi
ECOI

(1 X bn, Qo X bo)E(l X b17 1 X bg) . E(l X bn727 1 X bnfl)

3

= Tr (apw(bn, boy) + [ag, p(bn)]p(bo)) w(by,b2) ... w(bp_o,b,—1) (5.44)

Suppose now that £ > 1. Again zy = ag ® by. Notice that if z; has a form a ® 1
for an odd j, Z(z;,zj41) = 0 ( where 2,41 := z¢ ) according to (5.35). Hence we need
to consider only the shuffles in which terms of the form a ® 1 appear only in the even
places. Let a; ® 1 appear in the place number 2i; (i.e. xy;, = a; ® 1) . Here j > 1,
iy > 1, the sequence {i;} is increasing and i, < ”—_1. In particular, in this case the
result will be nonzero only for £ < *7=. Also, notice that x,, should always be equal
to 1 ® b;.

The same argument as before shows that all the shuffles of such form have the

same sign of permutation, which equals (—1)k(k2+l) = (—1)@(—1)’“

Using the formulas (5.33)-(5.36) we compute the expression for the second term,
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which equals

(=) *cpn Z Tr (agw(by, bo) + [ao, p(br)]p(bo)) w(by, ba) . ..

1<) <ig <o <ip < 5L

[av, p(bai,—1)]w(baiy, boiy 1) - - - [ag, bai;—5] .. (5.45)

For example for k = "1 (then [ = k + 1) this expression equals to

(=1)* (T (agw(brs1, bo) + [ao, p(bir1)]p(bo)) [ar, p(b1)] - - lax, p(bi)]))
= (=1) e p(Tr agw(brs1, bo)ar, p(br)][as, p(b))] . . - [ax, p(by)]

+ T p(bo)[ar, p(br)][as, p(b;)] - - [ax, p(bx)][ao, p(br11)])  (5.46)

Finally subtracting the results just obtained we get the following expression for
Ch? (sh(a® 0)) :
for k=0

n

(=12 V2rmi

+1
()

»

(TI' (Iow(bg, bl)W(bQ, bg) Ce w(bn_l, bn) —

Tr(aow(bn, bo) + [ao, p(bn)]p(bo))w (b1, ba) ... w(by—2,b,—1)

(1)
(5]

(Trag (w(bg,b1) ... w(bp_1,by) — w(bp,bo) ... w(by_2,b,_1))
— Tr p(bg)w(by, b2) ... w(by—2,by_1)[ao, p(b,)]) (5.47)

for k>1
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Cn,k( Z Tr aOW(bOa bl) cee [alv P(b%)]w(bzilﬂ, b2i1+2) S

0<iy <ig <+ <ip <Pyt
[a2, P(bmrl)]w(b%za b2i2+1) cee [%’7 ;0<b2ijfj+1)] ce

- (=" > Tr (aow(bi, bo) + [ao, p(br)]p(bo)) w(bi, b2) . ..
[a, p(baiy—1)]w(baiy s baiy41) - - - [ag, baij—s] ... ) (5.48)

n+1 , k(k—1)
1)z t—=z

where ¢, = =) V2mi

Now we can write explicit formulas for the maps (5.30) and (5.31). Consider, for

example, {a19,}52,, a l-cycle in the negative b + B bicomplex. Then

V({0 }i20) = ({n-1 2 ot o) (5.49)

where ¢,_;_o, € C"172"(B) is given by the formula

bni-ar(8) = CHZ (sh(ansa, ® B)) (5.50)

and the right hand side comes from (5.47), (5.48)

5.4 Another formula for the duality map.

We will now derive another formula for Ch? (Sh(a ® (3)). It is based on the identity
Ch? = BC"™!| where

C' (20, X1, -+ vy Ty Tt
~1)"5 \/2ni _ _ _
= (()Tll Trs(x0)ZE(x1, x2)2(x3, T4) . . . E(Tp, Tng1)  (5.51)
=)!
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These chains satisfy the equation
bC! + BC? =0 (5.52)
We will also need identities for shuffles (in the reduced complex):
Bsh(z ®y) — sh(Bx ®y) — (—1)**"sh(z ® By) =
— (bsh'(z®@y) — sk (bx@y) — (—1)**sh (z @ by)) (5.53)
Bsh'(z®y)=sh'(r®@ By)=sh/(Bx®y) =0 (5.54)
Hence we have
ChZ (sh(a® B)) = BCI (Sh(a @ B)) =
CoH (sh(Ba® B)) + (=1)*#°Ci™ (sh(a ® B B)) = bC™! (s (a @ B))
— I (sl (ba® B)) — (~1)* =0T (sh (a @ b §)) =
Ci (sh(Ba® ) + (=1)%#*Cr™ (sh(a ® B B)) — BCI (sh(a ® )
= CIT(sh (0 + B)a® B)) = (=1)*CH (sh' (a @ (b+ B) B))

But BC3 (sh'(a® () = CM3 (Bsh/(a® ) = 0, and hence the result of the

computation above is
CIM (sh(Ba® B)) + (—1)%*Cr (sh(a @ B 3)) —
— I (sl (b + B)a @ ) — (~1)"5C2¥ (sh! (@ (b+ B) §)  (5.55)

The last two terms are cohomologically trivial, so we need to compute the contribution

of the first two terms:

C™ (sh(Ba ® () + (—1)%*8*C"* (sh(a @ B j)) (5.56)
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Suppose a and 3 are homogeneous chains, &« = ag®a; Q- - Qay, 5 =byRb - - Rb;.

Compute first C"™ (sh ((1 ® ) ® 8)). In this case g = 1 ® by. Again, use of
the formula (5.35) shows that the terms of the form a ® 1 appear only in the even
places. Consider the shuffle in which z;, = a; ® 1 (here we must have 49 > 1). As
before, the sign of permutation for this shuffle is independent of the values of 7;, and

k(k—1)

= —(—1)" = . Using the formula (5.51), we obtain the following

(k+2)(k+1)
2

equals (—1)

expression:

bn,k Z Tr p(bo)w (b1, b2) - - - [ao, p(baig—1)]w (b2ig, b2ig+1) - - -

. . . n+1
1§ZO<Zl"'<ZkST

[a;, p(bai;—j—1)]w (b2, —j; baiy—je1) . (5.57)

where
nt+1 , (k+1)(k+2) -
(=) /2w
bpi = (n_+1)| (5.58)
5 )!
Hence

CiH (sh(Ba® f)) =
by i > sgn(A) Tr p(bo)w (b1, b2) - - - [ax), p(b2ig-1)]w (b2ig, b2ig+1)

1<io<iy - <ip <L
A—cyclic permutation

c. [CL/\(]'), p(bQij—j—l)]w<bQij—ja b2ij—j+1) N (559)
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The second term can be computed similarly, and we get

Cy (sh(a® B )

= —bp Z sgn(o) Tr apw(be(0), bo(1)) - - -

1<iy <3, < nTJ'_l
o—cyclic permutation

[al, ba(2i1—2)] . [CLJ‘7 bO’(Zij—j—].)] ce (560)

Combining this two terms we get the resulting formula:

b > sgn(\) Tr p(bo)w(by, bs) . . . [ariy, p(baig—1)]

1<ig<ig -+ <ip <L
A—cyclic permutation

w(baiy, b2ig+1) - - - [a,\(j), P(bzij—j—ﬂ]w(bmj—j, b2ij—j+1) -+
(—1)k+1 Z SgH(O') Tr aow(bg(g), bg(l)) Ce [al, bg(gil_g)]

1<iy < <
o—cyclic permutation

c. [CLj, bg(gij_j_l)] .. ) (561)

where

(_1)117+1+(k+1)2(k+2) \/2—7T'Z

bn,k’ =

5.5 Application to Fredholm modules.

We now apply the duality map to write the formulae for the character of a finitely

summable Fredholm module.
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Consider first the case of an odd Fredholm module. We suppose that the Fredholm
is over a unital algebra A, which is represented on a Hilbert space H, and the Fredholm

module is given by the operator F' such that

[F,a] € LP (5.62)

1—-F*ecrLp (5.63)

Consider a unital algebra E generated by an idempotent e. Consider a map

p: E — L(H) given by

p(1) =1 (5.64)

_F41

ple) = —— (5.65)

Then it is a homomorphism modulo £, and according to the results of the previous

sections we have a map
PV, 4+ HRy(E) — HP'(A) (5.66)

Now, in the periodic cyclic homology of E we consider an element

1
5) ® e®%k (5.67)

(2k)!
e

Ch(e) = e+ Y (~1)F

which is the Chern character of the K-theory class of e. Using the duality map we
construct an element PW, ,(Ch(e)) € HP'(A). We can write an explicit formula for

it , using the results of the previous section.
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Proposition 49. The following 2m + 1 cocycle with components ¢y (F) represents
the class of P¥Y, 4(Ch(e)), where 2m > p —1

or(F)(ag, a1 ... a;) =

. (Am +1—k)! "
27rl<(2m +1)!(2m — Egt)1gam-ks >, TP F)laxe, P

Jotjit..Jr+1=2m—k
A—cyclic permutation

(1—F?)7 ... lax), F](1 — F2ylk+1 4

Trag(1l — F*)'[aq, F]
| — k—1\|194m—Fk+2 Z 0 ’
(2m + 1)!(2m 2 )12 Jitjotetipr1=2m—k+1

(1— F2)% . [ay, F](1 — F2)jk+1) (5.68)

The same class can also be represented by the 2m — 1 cocycle with component ¢} (F),

where 2m > p

¢;c<F)(aO; ai, .. .ak) =

— v2ri( (m — 1 — k). 3 T F(1 — F2)i

(2m)!(2m — EEL)124m—k

Jotjit..Jrt1=2m—k—1
A—cyclic permutation

[a/\(())a F](]- - F2)j1 . [a,\(k), F](]_ — F2)jk+1 +

(4m — k)! . .
(2m)!(2m — EL)12im=k 2 Trao(l — F*)*ay, F)(1 = FF)...
' 2 Jitjottippr=2m—k

[, F](1 — F2)jk+1> (5.69)

Proof. We are going to apply the formula (5.61). Choose an odd number n > 2p — 1.

We do the computation in the case n = 4m + 1, which gives the first formula. The
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second formula appears in the case n = 4m — 1. We notice first that we can rewrite

the formula for Ch(e) as

e)=e+ Z(—l)k%(e _ %)@(2k+1)

since we are working in the normalized complex. We also have

o(-3) =%
o((=2) (-3)) =0

Then application of the formula (5.61) gives

¢k<a07a17 - 7Gk) =

2 (Y s T (L = F2 ay), F]

1<ip<ig - <ip<2m-+1
A—cyclic permutation

(1— F2yin=ioml (1= P2yt ay ) FJ(1 — F2)iaeii=t

(=DM 4m +2 — k) > Tral(l—F?)"ay, F]

1<iy <, <2m+1

(1= PR g F)(1 = PRl ) =

2_(4m_k+2)b4m+1,k (( Z sgn()\) Tr F(l — FQ)lo [a)\(o)y F]

lj >05lo+l1 4. g p1=2m—k
A—cyclic permutation

(1= F2 (1= F)layg, F](1— F2)l (1 -

(=D (4m +2 — k) > Trag(1
1;>05l1+Hlo+. Iy 1 =2m+1-k

F2)lk+1 +

— F)"ay, F]

(5.70)

(5.71)

(5.72)

(1 o F2)2m+17ik +

(1= F2)lay, FI(1 — F2)b+ .. (1 - F2)’k+1) (5.73)
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O

The map P\IJOE’ 4 depends only on the homomorphism p : £ — L(H)/LP, not on

the map p itself. This implies the following

Lemma 50. Let operator F define a p-summable Fredholm module over A and F’

be an operator such that F' — F € LP. Then F' also satisfies (5.62), (5.63) and

[6(F)] = [o(F)] = [¢'(F)] = [¢'(F)] (5.74)

where [-] denotes the class in the periodic cyclic cohomology.

Proof. 1t is immediate that F” satisfies (5.62), (5.63). Define the map p' : E — L(H)
by

p(1)=1 (5.75)
) F'+1
ple)=—

(5.76)

Then p and p’ clearly define the same homomorphisms E — L£(H)/LP, and hence the

maps PUY, 4, and (P, A)/ constructed using p and p’ coincide. O

We will now prove that the class of the cyclic cocycles ¢ and ¢ defined above is

actually the Chern character of the Fredholm module.

Theorem 51. Let the operator F' define a Fredholm module over an algebra A. Then
[6(F)] = [¢'(F)] = Ch(F) (5.77)

where Ch(F') is the character of the Fredholm module as defined by Connes.
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Proof. First, we notice that when F? = 1, our formulae are identical with the Connes
formula, and hence define the Chern character. The Theorem now follows from the

Lemma 5.5 exactly as the Theorem 46 follows from the Theorem 43. O

Formulas for the even case can be obtained by suspension. The final result is

given by

Proposition 52. Let (H, F,~) be a p-summable Fredholm module. Then the follow-
ing 2m cocycle with components ¢r(F') represents the class of its Chern character,

where 2m > p

¢k(F)(a0, a..., ak) =

(- 2 2_<§7f>!_ = > TryF(1 = F#)*[ax), F]

Jo+jit.grr1=2m—k—1
A—cyclic permutation

(1= F?)' . asg, F)(1 — F?)7ee 4

2m — k/2)!
( /2) 3

(2m)! Tryao(1 — F%) a1, F](1 — F?)2 ...

Jit+ge++ier1=2m—k
lag, F](1 — F2)jk+1) (5.78)

The same class can also be represented by the cocycle with component ¢} (F)

2m — k/2)! ,
¢;(F>(a0’al,_“ak) — (—W Z TI"’)/F(l _FQ)]O[CL)\(O)7F]
© jotiitder1=2m—k

A—cyclic permutation

(1= F2) . ag, F](1 — F2)f 4
(2m — k/2+ 1)! 5

(2m +1)!

Tryao(1 — F?)*[ay, F)(1 — F?)72 ...
Jitge+tikr1=2m—k+1

la, F](1 — F2)jk+1) (5.79)
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Appendix A
CHARACTERISTIC MAP FOR WEAK ACTIONS OF LIE
ALGEBRAS.

In [Con80], [Con86] Connes constructed characteristic map for the action of the Lie
algebra on an associative algebra, equipped with a trace. These results where further
extended in one direction by Nest and Tsygan in [NT95a, NT95b, NT99| where
they construct operations on the cyclic complex, and in another direction by Connes
and Moscovici [CM98, CM], to the case of Hopf algebra action. Here we extend
Connes original construction to the case of the weak actions of the Lie algebra. This
construction should also admit generalizations along the lines of Nest, Tsygan and
Connes, Moscovici.

Let g be a Lie algebra, and A be an associative algebra. We suppose for simplicity
that A is unital, but everything in this section extends to the nonunital case along
the lines of Section 3.3.

Suppose we are given a linear map
A:g— Der(A) (A.1)
where Der(.A) is a space of derivations of A and a bilinear sqewsymmetric map

6:ANg— A (A.2)
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satisfying
(A1), Al2)] — A([lh, o)) = ad 0(11, 1) (A.3)

and

A(11)0(l2, 13) + A(l2)0(13,11) + A(13)0(11, 12) —

O([l1,la],l3) — O([ls, 1], o) — 6([l2,l3], 1) =0 (A.4)

If the conditions above are satisfied, we say that g weakly acts on A.

Suppose also we have a trace 7 on A satisfying
T(Al)a) = 6(1)7(a) (A.5)

where 0 : g — C is some character of the Lie algebra g.

Then to this data one associates a generalized chain C(X') of degree n to every
polyvector X = X7 A Xs... X, € A"g.

Indeed, let Q* be the space of polylinear sqewsymmetric maps A¥g — A with the

product (wy € QP, wy € Q9)

wlwg(ll, ey lp+q) = Z sgn le(la(l), la(g), Ce >lo(p))w2(la(p+1)7 lg(p+2) Ce 7la(p+q))
(A.6)

whre summation is over all the permutations o satisfying o(1) < 0(2) < --- < a(p),
ocp+1)<olp+2)<---<olp+q)

We define 0€2 = (), and the restriction map r is the identity map.
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The graded derivation V is defined by (w € Q)

Vo(ly, . dp) = > (=17 Nw(l, oy ) +

S (0 ([l L) by g L) (A7)

i<j
The fact that V is a derivation is verified by the standard computation.
We can take 6 defined above as the curvature of our chain, as the following two

propositions show.
Proposition 53.
Vo =0 (A.8)
Proof. We have
Vo(ly,ls,l3) =

A1)0(la,13) — A(12)0(l1, 13) + M(13)0(11, l2) — O([l1, 2], Is) + O([l1, I3], I2) — O([l2, 5], 11) =

A1)O(1a, 13)+M(12)0(ls, 1) +A(13)0(11, 1) —0([lh, 1o, 13)— O[3, 1], o) —60([ls, 13), 1) = O
(A.9)

(]
Proposition 54. Consider 0 from above as an element of Q2. Then V? = ad 6.

Proof. We again verify this equality by a direct computation.
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V2W(l1, . e lp+2) -

S (1N Vb, ) +

~

Z(—l)iJ“ij([li,lj], ll, ce ,li, ce ,lAj, ce ,lp+2) =

1<J
S (UG, AW w (DL ) +
1<J
DDA DD (0wl Ll e Dpye)
1<j, i,j7#k
Z(—l)z—’—])\([ll, lj])w(ll, PN 7Zi7 PN ,Zj, N ,lp+2) +
1<J
S (=0 (DRIl L) by Ly Dpre)
i<j k#i,j
S (=0 R (L G ) b e L)
1<J
S (=0 (0 s w (L, ] e L) b L )
1<j k<r
(A.10)
Here we used the following notations
i if i <k j if j <k
ik = s ]k = and
i—1 ifi>k j—1 ifj>k
4 (
k ifk<i r if r<u
kij = k-1 ifi<k<j Ty = \r—1 ifi<r<j Itiseasy tosee that
k—2 ifj<k r—2 ifj<r
\ \




ik + Jjr +k =1+ j + ki; and this implies that

>
>
>

DDA D> (Ul Ll e Dpye)
1<j, i,j#k
S (=0T (DM@ ([l ) by iy Lpye) = 00 (AL
i<j k4,5

Next, Jacobi identity implies that
S (0wl ] ] T ) = 0 (A12)
i<j
Finally, the last term is 0 due to the antisymmetry property of w. So we are left with
S DA AW i T ) +
i<j

Z(-l)l—w/\([ll, lj])w(ll, ey ZZ‘, ey Zj, ey lp+2) =

i<j
= (=0 ad 0l Lw(ly, i Ly lpye) = (0,01 L) (AL13)
1<J
O
The graded derivation V'’ coincides with V.
Finally, the graded trace ][ is given by
X
][ W = (WX, Xor - X)) (A.14)
X

Proposition 55. Let OX denote the boundary of X considered as an element of the
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complex of the Lie algebra homology of g with coefficients in the module C with the
action given by 0:

n

X AKXy ANXy) =D (1) O(X)X A Xy Xy A X+

=1
S DXL X AKX AKX X A X, (AD)
i<j

Then (degw =n —1)

Proof. We have

][ Voo = 7(Va(Xi A Xo- o A X)) = (3 (1A w(Xe, . X, Xo) +
Z(—niﬂ—lw([xi,xj],xl, XX LX) =

D (1T (X ) r(w(Xy, L X X)) +

S () (WX X)L X, X X X)) = ][axw (A.17)

i<j
O
We immediately have the following Corollaries:
Corollary 56.
JC(X) =C(0X) (A.18)

Corollary 57. Let X be a cycle in the Lie algebra complex. Then C(X) is a gener-

alized cycle.

110



Corollary 58. Let Xy and Xy be homologous. Then the cycles C(X;) and C(AXs) are

cobordant.
Consideration of the character of the cycle C(X) gives the following:

Theorem 59. The map X — Ch(C(X)) is a map of Lie algebra homology complex

to the periodic bicomplex of the algebra A.
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