HOMEWORK 3

1. Problems

(1) Describe the following quotient spaces:
(a) the cylinder with its boundary circles identified to a point
(b) the torus with the subset consisting of one meridianal and one longitudinal circle identified to a point
(c) the 2 -sphere with the equator identified to a point
(d) The plane \mathbb{R}^{2} with each of the circles center the origin and of integer radius identified to a point.
(2) Which space do we obtain if we take a Möbius strip and identify its boundary to a point?
(3) Let X denote the unions of the circles

$$
(x-1 / n)^{2}+y^{2}=1 / n^{2}, n=1,2,3 \ldots
$$

with the subspace topology induced from the standard topology in \mathbb{R}^{2}. Let Y be the quoitient space obtained from the real line by $(\mathbb{R}, S T)$ by identifying all of the integers to a point, with quotient topology. Show that X and Y are not homeomorphic. (You are allowed some hand-waving in this problem since we have not covered yet all the necessary tools for a totally rigorous proof)
(4) Give an example of quotient space in where the quotient map is neither open nor closed.

