
AN EXPANDING UNIVERSE OF SPINNING SPHERESHomer G. EllisAbstra
t. A novel but elementary geometri
 
onstru
tion produ
es on the seven-dimensionalmanifold of rotated spheres in Eu
lidean three-spa
e a �nslerian geometry whose geodesi
sare interpreted as the paths of free, spinning, spheri
al parti
les moving through de Sitter'sexpanding universe. A parti
le of nonzero inertial rest mass typi
ally follows a heli
al tra
kand exhibits behavior remindful of the phenomenon of \Zitterbewegung" of spinning ele
trons�rst dedu
ed by S
hr�odinger from Dira
's relativisti
 wave equation. Its velo
ity ve
tor andits spin ve
tor pre
ess about the axial dire
tion of the helix, with their proje
tions onto thatdire
tion at all times parallel or at all times antiparallel. Parti
les of zero rest mass followstraight tra
ks at the speed of light with their spin ve
tors parallel or antiparallel to theirvelo
ity ve
tors, thereby repli
ating behavior of spinning photons predi
ted by the quantumtheory of light.The four-dimensional manifold whose points are the spheres of Eu
lidean three-spa
eE 3 
an be 
oordinatized by [[R; s ℄℄, this designating the sphere S of radius R with its 
enterC at position s. If [[R + dR; s + ds ℄℄ designates a neighboring sphere S0, and d� is theradian measure of the angle in whi
h S and S0 interse
t, thend�2 = (ds2 � dR2)=R2= e2tds2 � dt2; (1)where ds := jdsj and t := � lnR (see Fig. 1). As this is pre
isely the metri
 of de Sitter'sexpanding universe, one 
an 
onsider that universe to be this manifold of spheres, the eventat [[ t; s ℄℄ in de Sitter's universe being then the two-sphere of radius e�t 
entered at positions in E3 . One gains thereby the advantage of redu
ing the ever mysterious notion of time(t) to a purely spatial 
on
ept (� lnR), along with the satisfa
tion of produ
ing a spa
e-time 
osmologi
al model out of the whole 
loth of Eu
lidean spa
e.(1) This satisfa
tion istempered, however, by the apparent absen
e of a way to extend the 
onstru
tion to a metri
for spheres that are \spinning" in a sense that makes sense. The diÆ
ulty lies in the fa
tthat neighboring spheres will interse
t in the same angle whether spinning or not.A plan of es
ape from this 
ul-de-sa
 grows out of the realization that radian measureof an angle is simply a ratio of ar
 lengths, whi
h suggests that some alternative 
hara
-terization of d� as a ratio of distan
es might admit the needed extension. Of several su
h
hara
terizations, the one that does the job is this: If ea
h point P of the sphere S ismoved radially, to produ
e a magni�
ation of S by the fa
tor 1 + dR=R, and subsequentlyis translated by the ve
tor ds, then P arrives at a point P 0 on the neighboring sphere S0.Generi
ally, there are only two su
h points P for whi
h the displa
ement ve
tor ��!PP 0 isorthogonal to S, namely, the two points where the line through C and the 
enter C 0 of S0interse
ts S. Of these two points P one has moved a distan
e dR + ds in the dire
tion of�!CP , the other a distan
e dR�ds in the dire
tion of �!CP . The produ
t of the ratios of thesedistan
es to R is exa
tly the negative of the d�2 of Eq. (1), even when, as in Fig. 2, S andS0 fail to interse
t, so that there is no angle to measure.1
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S S0C C 0R dRRd�d� ds(Rd�)2 + dR2 = ds2) d�2 = ds2 � dR2R2

Fig. 1. Interse
ting neighboring spheres S and S0 in Eu-
lidean three-spa
e, with angular separation d� | shownin 
ross se
tion through their 
enters.Now the means of es
ape is at hand. It is to in
lude a rotation with the magni�
ationand the translation, �nd the points P of S for whi
h ��!PP 0 is orthogonal to S, 
omputethe ratios to R of distan
es moved, as before, and use these to de�ne a measure of theseparation of S0 from S. A hurdle or two remain, however. The �rst is the need to spe
ifythe manifold that will take the role played by the sphere manifold in the nonrotating 
ase.Clearly, this will be the manifold of rotated spheres, a point of whi
h is a sphere with a
enter, a radius, and a rotational position relative to some standard position for all sphereswith the same 
enter. This seven-dimensional manifoldM, di�eomorphi
 to R�E 3�SO(3),
an be 
oordinatized by [[R; s; �; �;  ℄℄, where �, �, and  are Euler angles that togetherspe
ify the rotational position of the sphere with respe
t to the standard referen
e frameat s. With t := � lnR as before, a path in this manifold 
an be taken to represent aspheri
al parti
le, moving through spa
e and time, spinning as it goes.Let the rotated sphere S designated by [[R; s; �; �;  ℄℄ undergo the 
ombined in�nites-imal rotation, expansion, and translation represented by [[ dR;ds; d�; d�; d ℄℄. Let P bea point of S, and let u = �!CP , the position ve
tor of P relative to the 
enter C of S.Then the rotation moves P to a point whose position ve
tor relative to C is u + Æ � u,where Æ := [[ (
os �)d� + (sin�)(sin �)d ; (sin�)d� � (
os�)(sin �)d ; d� + (
os �)d ℄℄. Themagni�
ation multiplies this ve
tor by 1 + dR=R, and the translation adds ds. Thus therequirement that the �nal position P 0 of P be 
ollinear with C and P , equivalent to therequirement that ��!PP 0 be orthogonal to S, redu
es to the equation(1 + dR=R)(u + Æ � u) + ds = (1 + �)u; (2)for some number �. When the term of se
ond order in the in�nitesimals is dis
arded, thisequation simpli�es to (�� dR=R)u = Æ � u+ ds: (3)In the generi
 
ase that � := (��dR=R)[(��dR=R)2+Æ2℄ 6= 0, the solution of this equationis u = [(�� dR=R)2ds+ (�� dR=R)(Æ � ds) + (Æ � ds)Æ℄=�: (4)
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ause P lies on S, u�u = R2, whi
h is equivalent to(�� dR=R)4 + [Æ2 � (ds=R)2℄(�� dR=R)2 � [Æ � (ds=R)℄2 = 0: (5)The numbers � that satisfy this equation are the distan
e ratios with whi
h to build aseparation measure on M and make good our es
ape. Generi
ally, there are four su
hnumbers, two of them real, the others 
omplex. The remaining hurdle is to de
ide how bestto use them.

S S0
C C 0 P P 0

PP 0 P P 0R dR ds
dsdR� ds dR+ ds

dR+ dsR � dR� dsR= dR2 � ds2R2
Fig. 2. Noninterse
ting neighboring spheres S and S0 in Eu-
lidean three-spa
e, separated by the \two-point" distan
ep(dR2 � ds2)=R2 | shown in 
entered 
ross se
tion.Inasmu
h as only the two real roots of Eq. (5) 
orrespond to real points of S, one mightthink it best to 
onstru
t the separation measure from their produ
t. Investigation shows,however, that this yields a measure with an in
urable degenera
y. If on the other hand one
hooses to build the separation measure from the produ
t of all four of these ratios, thensmooth sailing lies ahead, but no longer on the broad Sea of Riemann, rather on the vasterO
ean of �nslerian Geometry.A �nslerian geometry on a manifold su
h as M assigns to ea
h smooth path p : [a; b℄!M an integrated length I(p) := R ba L(p; _p), subje
t for present purposes essentially only tothe restri
tions that L be positively homogeneous of degree one in the velo
ity _p (so that I(p)will be independent of path parametrization) and that the metri
 tensor G, loosely des
ribedas dxM 
 gMNdxN , where gMN (x; v) := �2[(1=2)L2(x; v)℄=�vM�vN if x = [[ xK ℄℄ and v =vK(�=�xK ), be nondegenerate. The homogeneity allows the �nslerian metri
 fun
tion Lto be re
onstru
ted from G via the equation L2(x; v) = vMgMN (x; v)vN . Riemanniangeometries are those �nslerian geometries for whi
h gMN (x; v) is independent of v.(2;3)
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t of the four roots of Eq. (5) is expressible both asdt2(dt2 � e2tds2 + Æ2)� e2t(ds � Æ)2 (6)and as (dt2 + Æ2)(dt2 � e2tds2) + e2tjds� Æj2; (7)where again t := � lnR. With this produ
t we 
an now impress uponM a �nslerian geome-try by de�ning L as follows: Let [[ pK ℄℄ := [[ xK(p) ℄℄, = [[ t; s; �; �;  ℄℄ for short, and [[ _pK ℄℄ :=[[ dxK(p) _p ℄℄ = [[ (pK)_ ℄℄, = [[ _t; _s; _�; _�; _ ℄℄ for short. Let � := [[ (
os�) _� + (sin�)(sin �) _ ;(sin�) _� � (
os�)(sin �) _ ; _�+ (
os �) _ ℄℄. ThenL(p; _p) := �� _t2( _t2 � e2t _s2 + �2)� e2t(_s � �)2��1=4= ��( _t2 + �2)( _t2 � e2t _s2) + e2tj _s� �j2��1=4: (8)As is seen most 
learly in (7) above, this �nslerian geometry in
orporates the geometri
allyderived de Sitter spa
e-time metri
 of Eqs. (1) and envelops it in additonal stru
ture in-volving the rotations of the spheres. The geodesi
 paths of the �nslerian geometry will betaken to represent freely spinning spheri
al parti
les moving through de Sitter's universeunder the in
uen
e only of the gravitational e�e
ts attributable to the 
osmi
 expansion.Computing the Euler{Lagrange equations for stationary paths of I, and applying tothem the inverse of the metri
 tensor G to isolate the derivatives, one arrives at the followingequations for aÆnely parametrized geodesi
s:_E = C0; (9)_v = C1v + C2� + C3(v � �); (10)_� = C4v + C5� + C6(v � �); (11)in whi
h E := _t;v := et _s, andC0 = �(E2v2 �B2)=D;C1 = �E[(E4 +B2)(E2 � v2) + (E4 �B2)(E2 � �2)℄=D(E4 +B2);C2 = �2BE(E2v2 �B2)=D(E4 +B2);C3 = �B2=(E4 +B2);C4 = �2BE[(E4 +B2) +E2(E2 � �2)℄=D(E4 +B2);C5 = 2E3(E2v2 �B2)=D(E4 +B2);C6 = BE2=(E4 +B2); (12)
with B = v�� and D = 2E2 + v2 � �2.It is straightforward to show that �, d, and 
 de�ned as follows are 
onstants of themotion: � := E2(E2 � v2 + �2)�B2= (E2 + �2)(E2 � v2) + jv � �j2; (13)d := etB; (14)
 := et(E2v +B�): (15)



AN EXPANDING UNIVERSE OF SPINNING SPHERES 5(Choosing ar
 length for the path parameter when � 6= 0 restri
ts the values of � to 1, 0,and �1.) If d = 0, then the parti
le's s
aled velo
ity ve
tor v and spin ve
tor � are atall times orthogonal to one another. Ea
h, if not 0, maintains a �xed dire
tion in spa
e,v's dire
tion being that of the ve
tor 
. The parti
le's tra
k through spa
e is, therefore, astraight line in its own, unwavering equatorial plane. If 
 = 0, then v = 0, so the parti
lesits in one pla
e spinning (or not, if � = 0) and shrinking as time moves on (indeed, movingtime onward by shrinking). If d 6= 0, then 
 is a nonzero ve
tor around whi
h both v and� pre
ess, with, as in Fig. 3, v and either � or �� keeping 
 between them at all times(ex
ept, of 
ourse, when v, � or ��, and 
 are all parallel). We shall see that in fa
t theparti
le in question moves on a heli
al tra
k whose axis is aligned with 
.c cv v�

�B = v�� > 0 B = v�� < 0Fig. 3. Geodesi
ally spinning spheres with their s
aled ve-lo
ity ve
tors v and their spin ve
tors � pre
essing aroundthe fixed ve
tor 
. Be
ause etB is a 
onstant of the motion,the 
ases B > 0 and B < 0 do not mix on a single geodesi
.Resolving s, _s, and v into their 
omponents sk, _sk, and vk parallel to 
, and s?, _s?,and v? perpendi
ular to 
 allows us to express the 
urvature �? of the proje
tion of theparti
le's tra
k onto the plane through the origin perpendi
ular to 
 as follows:�? = j _s? � (_s?).jj _s?j3 = etjv? � _v?jjv?j3 : (16)Some 
al
ulating then shows thatR? := 1�? = (E4 +B2)jv � 
j
2jBj ; (17)and further that (R?)_ = 0. Thus the proje
tion, having 
onstant radius of 
urvature R?,is a 
ir
le, and the tra
k lies, therefore, on a right 
ir
ular 
ylinder whose axis is parallel to
. The 
enter of that 
ir
le, through whi
h the axis of the 
ylinder must pass, is lo
ated bythe ve
tor C := s? +R? 
� _s?j
� _s?j sgn(B); (18)another 
onstant of the motion.



6 HOMER G. ELLISWhen E2� v2 > 0; = 0; < 0 the parti
le is 
onventionally said to be traveling \slowerthan light, at the same speed as light, faster than light." In de Sitter's as in every ordinaryspa
e-time no free parti
le 
an be in one of these states now and another later. Here thatis not the 
ase: a single geodesi
 with � = 1, for example, 
an have E2 � v2 > 0 now, = 0later, and < 0 even later. The se
ond of Eqs. (13) 
learly implies, however, that if at anytime the parti
le is traveling \slower than light," then � must be positive. For this reasonthe geodesi
s on whi
h � > 0 will be taken to represent parti
les of nonzero inertial restmass. A pi
ture of su
h a parti
le's heli
al tra
k in E 3 , produ
ed by numeri
al integrationof the geodesi
 equations, is shown in Fig. 4.
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Fig. 4. A portion of a typi
al heli
al tra
k of a free spin-ning parti
le of nonzero inertial rest mass. The parameterinterval is [0; 70℄, sampled at intervals of .05. The parti
lemoves from lower left to upper right on a 
ylinder of ra-dius R? = 50, whose axis ve
tor 
 � :00045 � [[ 1; 1; 1 ℄℄. Someinitial 
onditions are t � �8:78, E � :13, v � [[:086;�:009; :038 ℄℄,� � [[ 5:000; 5:003; 5:001 ℄℄, vk=E = :5, v?=E = :5, and v=E = p:5 �:707 (speed of light = 1).The visible 
ompression of the 
oils of the helix re
e
ts the well-known phenomenonthat in de Sitter's universe all freely moving test parti
les 
ome asymptoti
ally to rest ata point in spa
e (though 
ontinuing to spread apart as spa
e itself expands).(4) The mereexisten
e of these 
oils, owed spe
i�
ally to the in
lusion of spin by way of the �nsleriangeometry, brings to mind the quantum me
hani
al phenomenon of \Zitterbewegung" of aspinning ele
tron. This \jitter motion," whose existen
e S
hr�odinger dedu
ed from Dira
'srelativisti
 wave equation,(5;6) is a \mi
ros
opi
" os
illatory perturbation of the \ma
ro-s
opi
" propagation motion of the ele
tron. The mi
ros
opi
 \zitterspeed" equals the speedof light, but the \ma
rospeed" is less. In one of the manifestations of Zitterbewegung theele
tron appears to follow a heli
al path that winds around a line representing its ma
ro-s
opi
 path of propagation through spa
e.(7) In the present development the quantitiesvk=E (ma
rospeed) and v?=E (mi
rospeed), s
aled so that lightspeed = 1, play roles some-what analogous to the ma
ros
opi
 speed and the mi
ros
opi
 (zitter)speed of the heli
al



AN EXPANDING UNIVERSE OF SPINNING SPHERES 7Zitterbewegung manifestation. The de Sitter phenomenon a�e
ts both the ma
rospeed,
ausing the 
ompression of the 
oils, and the mi
rospeed, 
ausing the 
ir
ulatory motion(but not the spinning) to stop. Figure 5 displays these e�e
ts expli
itly, along with thevariations of the angles that the velo
ity v and the spin ve
tor � make with the axis ve
tor
 of the helix, and of the parti
le's spinrate (2�)�1(�=E) (in revolutions per unit of time t).
0 10 20 30 40 50 60 70

0
1

3

5

7

9

11

0 10 20 30 40 50 60 70
0

15

30

45

60

75

90

Speeds and Spinrate Angles
Spinrate MicrospeedMacrospeedLightspeed c�c

v 71:5�18:4�
Fig. 5. Graphs of speeds, spinrate, and angles for the spin-ning parti
le following the heli
al tra
k of Fig. 4. Afterfalling to a lo
al minimum just above .1, the ma
rospeedrises to a maximum just under 2.4 as the mi
rospeed traversesits peak near 11.6 (lightspeed = 1). Initially the angles thatv and � make with 
 are 45�and approximately :01�, respe
-tively; at the end, approximately 71:5�and 18:4�. Their sum,the angle between v and �, tends asymptoti
ally to 90�.The falling of the ma
rospeed to a lo
al minimum produ
es the 
ompression of theheli
al 
oils seen in Fig. 4. Its subsequent rise to a maximum while the mi
rospeed istraversing its peak and the spinrate is de
reasing is responsible for the expansion of the
oils after the 
ompression. This interplay among kinemati
al variables 
an be interpretedas a subtle transfer of spin inertia and orbital (mi
ro)inertia to linear (ma
ro)inertia as theangle from 
 to � in
reases and the angle from 
 to v de
reases. For a 
lear understandingof these unusual behaviors it is essential to remember that we are not examining motion of apointlike parti
le. Instead, we are looking at e

entri
 motion of a 
enter of a spinning spherewhose radius, a

ording to the relation R = e�t, is about 6495 initially, when t � �8:78, andabout 1.47 at the end, when t � �:38. Moreover, the \four-point" derivation of the �nslerianmetri
 fun
tion of Eqs. (8) makes evident that the di�erential intera
tion of this spinningsphere with itself, 
aptured in the \stationarizing" of the �nslerian ar
 length integral, isan intera
tion taking pla
e on the sphere itself, far from its heli
ally moving 
enter.If a heli
al tra
k and pre
essing spin and velo
ity are typi
al for a free spinning parti
leof nonzero rest mass, what is typi
al for a free spinning parti
le of zero rest mass, de�nedas one traveling \at the same speed as light," thus on a geodesi
 on whi
h E2 � v2 = 0 atall times? For su
h a parti
le � must be 0 (one 
an show), and then the se
ond of Eqs. (13)implies that v � � = 0, hen
e that � must be parallel or antiparallel to v. Equations (15)and (17) then entail that R? = 0, thus that the tra
k is straight. This behavior repli
atessome of the behavior of spinning photons predi
ted by the quantum theory of light, anddoes so without the aid of a Hilbert spa
e, an operator, a bra, or a ket.



8 HOMER G. ELLISIt is both remarkable and highly suggestive that, departing from the very elementary
onstru
tion on Eu
lidean spheres presented here, we 
an a) arrive at a purely geometri
altheory of the kinemati
s of free, spinning parti
les in an expanding universe, b) upon arrival,look about and �nd that we have somewhat unintentionally modeled 
ertain exoti
 behaviorsof su
h parti
les, behaviors �rst en
ountered in the quantum me
hani
al study of spinningele
trons and photons, and 
) looking ba
k, 
ome to suspe
t that we have peered a littledeeper into the mystery of time. This short trip is perhaps in itself a good day's journey,but it only foreshadows the labor, the pleasure, and the satisfa
tion of many (maybe evenin�nitely many) days beyond to be spent sailing the high seas of the O
ean of FinslerianGeometry. For just as the 
onstru
tion of the Riemannian angle, or \two-point," metri
of Eq. (1) 
an be extended from the manifold of spheres in Eu
lid's spa
e to the manifoldof hyperspheres in Minkowski's spa
e-time to produ
e a theory of \spa
e-time{time" (as Ioutlined in Ref. 1 and have elaborated in Ref. 8), the 
onstru
tion of the �nslerian \four-point" metri
 fun
tion of Eqs. (8) 
an in dire
t analogy be extended from the manifold ofrotated Eu
lidean spheres to the manifold of Lorentz rotated Minkowskian hyperspheresto make a theory of spinning parti
les in spa
e-time-time, then further to the manifold ofrotated hyperspheres of spa
e-time-time, and extended yet again | time after time aftertime . . .IN MEMORIAM. Throughout the writing of this paper 
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