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Abstract

Nonstationary, spherically symmetric solutions of the coupled field equations

Ruy=2¢ ¢ pand O¢ = 0, in which the coupling polarity is opposite to the orthodox,

are derived. The basic solution, termed the evolving, flowless drainhole manifold, has

these properties: (1) geodesic completeness; (2) a topological hole that shrinks to a point

at a singular event and immediately begins to expand back to infinite size; (3) multiple
branching of geodesics that arrive at the singular event; (4) asymptotic flatness at spatial
infinity, luminal infinity, and temporal infinity; (5) isometric symmetry under time reversal
and under space reflection through the drainhole; (6) conformal symmetry under space-
time dilatations that leave the singular event fixed, and also under space-time inversions that
interchange the singular event and a point at infinity. An earlier, static drainhole solution
of the same equations was able to represent an ordinary star’s external field or to serve as a
model of a simple gravitating or nongravitating particle, replacing in these capacities the
Kruskal-Fronsdal-Schwarzschild black-hole manifolds. The evolving, flowless drainhole

can be thought of as modeling the death and rebirth of a scalar particle that is infinitely
large in the infinite past and the infinite future. This particle does not gravitate, for the
“ether flow” whose spatial variations in the static drainhole solution are identified with
gravitation is removed from consideration in the evolving, flowless drainhole solution by
being turned off at the outset. What is left is space alone, evolving dynamically in accor-
dance with the field equations.

§(1): Introduction

Many are the ways to couple a scalar field to the geometry of space-time,
and various are the motivations that have precipitated the use of this one, that

Ipresented at the Seventh International Conference on Gravitation and Relativity (GR7),
Tel Aviv, Israel, 23-28 June 1974.
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one, or another one. Among the couplings that have found favor, perhaps the
simplest are those expressed by the variational principle

0=6I(R“K—K¢’K¢’K)dv (1.1)

in which ¢ is the scalar field, R, are Ricci tensor field components,? dv is the
metric volume element, and K is a constant. Because a factor [K| 1/2 can be
absorbed into ¢, there are essentially just two distinct couplings involved in
Equation (1.1), one corresponding to K > 0, the other to K <0. In one applica-
tion Hoyle and Narlikar, following up a suggestion of M. H. L. Pryce, introduced
the K > 0 coupling into the steady-state cosmological theory as a replacement
for the more involved coupling previously used by Hoyle [1] ; they identified ¢
with the matter creation field (the C-field) [2] . In another application Jordan,
in his theory aimed at formalizing Dirac’s cosmological hypothesis that the
gravitational scalar k varies with the age of the universe instead of remaining
constant, adopted a variational principle which was afterward shown to be
equivalent to Equation (1.1) under a conformal transformation of the metric,
with conformal factor k (= e‘i’);both K >0 and K <0 were admitted, with
perhaps some preference indicated for K > 0 [3] . Others have used one or both
of these simple couplings for less cosmical ends [4-7] . In this vein can be in-
cluded an application by Ellis of the K > 0 coupling in a search for manifolds
better adapted than black-hole manifolds, with their inscrutable, probe-
destroying singularities, to the modeling of collapsed stars, on the one hand,
and elementary particles on the other [8].

The manifolds resulting from the latter application and put forward as an
improvement over black-hole manifolds are static, spherically symmetric space-
time manifolds (termed *“drainholes”) that are geodesically complete and are free
of the curvature singularities and associated horizons found in black-hole mani-
folds. For representing an ordinary star’s external gravitational influences, these
drain-hole solutions of the variational principle of Equation (1.1) are as service-
able as the Schwarzschild solutions of the Einstein vacuum field equations. In
addition they have properties peculiar to themselves that make them in many
respects more rewarding of analysis than the Kruskal-Fronsdal-Schwarzschild
black-hole manifolds. A brief description of a static drainhole manifold is that it
consists of two unchanging three-spaces of asymptotically Euclidean topology,
connected to one another by a central topological hole through which drains an
“ether,” whose stationary but nonuniform flow into the “high” side of the hole
and out the “low” side produces a gravitational field that is attractive on the
high side and repulsive on the low side. The role of the scalar field is to allow

2The notational conventions and the computational framework used here are those given
in the appendix of [8]. In particular, Ry = RyM),, where Ry My, = {x”v},;\ - {K”A]’,v
+{Pu} (o} - {kPa} {o#p ), the {#2} being Christoffel symbols of the metric.
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(more accurately, to signify the presence of) the spatial curvatures that hold the
hole open so that the ether may migrate from the one side to the other.

The Euler-Lagrange equations of the variational principle of Equation (1.1)
are

Ry - 3 R 8w =K@ubp - 380 x8w) (12)
which come from varying the g, and are equivalent to
Ry, =K¢ 9, (1:3)

and the scalar wave equation
0=0¢=¢"*, (1.4)

which arises from varying ¢. To ensure that these equations have solutions that
are static, spherically symmetric, and nonflat but lack curvature singularities, it
is compulsory to take K > 0. In that case the Ricci tensor field is positive defi-
nite at every point at which the gradient of ¢ does not vanish, in the sense that
at each such point u”R ,u” > 0 for every tangent vector u, and u*R,,u” > 0 for
some tangent vector u. Because of this one can safely ignore the singularity theo-
rems of Penrose and Hawking [9], for these theorems have as essential hypoth-
eses the so-called null and timelike convergence conditions, which say that at
every point u*R,,,u” <0 for every tangent vector u that is, respectively, null or
timelike .2

The supposition that K > 0 causes concern in many quarters; it is thought
that taking K positive is tantamount to forcing the energy density of the scalar
field to be negative wherever it does not vanish, and this, it is said, causes diffi-
culties in the quantum domain, if not in the classical. Although that line of
reasoning is open to question, the issue is subsidiary here. Whatever one’s views
about the ‘“‘physicality” of choosing K > 0 in Equations (1.1)-(1.3), these equa-
tions do have in that case solutions that are in many ways more interesting than
the corresponding solutions for K < 0 and that can hardly be ignored in any
serious attempt to assess the relative merits of the two coupling polarities. It is
the purpose of this paper to present a derivation of a class of such solutions that
is supplementary to the class discussed in [8] and to mention briefly some of
their salient properties. A fuller treatment of these properties is reserved for a
later article.

The solutions to be derived are spherically symmetric but, unlike the earlier
ones, not static, or even stationary. They represent the evolution in time of a
three-space consisting, as in the static case, of two asymptotic regions connected
through a topological hole which, in contrast to its fixedness in the static case,

3Because the Ry, used here are the negatives of those of [9], these inequalities involving
R, must be reversed when comparisons with those of [9] are made.
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shrinks from infinite size down to point size, then immediately reverses the
process to expand back to infinite size. These space-time manifolds are, in a
sense to be made explicit, asymptotically flat, in the temporal and the null
directions as well as in the spatial: go where you will, faster than light, slower
than light, or neither, forward in time, backward, or sideways, your surroundings
will ultimately flatten out. What one has, in effect, is a (nonlinear) superposition
of a symmetric pair of diffuse curvature waves imploding from the two asymp-
totic regions, meeting in the middle of space and time, then exploding outward,
each into the asymptotic region from which the other came. A more graphic de-
scription is that a three-cylinder of infinite radius begins to contract in the
middle, develops an hourglass waist which becomes for an instant totally
pinched, then relaxes into its old, obesely cylindrical shape.

Such a manifold can be thought of as modeling the death and rebirth of a
scalar particle, albeit one that tends to giantism in the infinite past and the infi-
nite future. This particle is nongravitating: at every point of space a test particle
can sit permanently at rest, even as the space itself evolves in the manner de-
scribed. The ether flow whose spatial variations in the static case are identified
with gravitation is here turned off at the outset by design. It is this inactivity
of the ether that causes gravity to be absent even though space is curved.?

Ahead one will find a more thorough description of the evolving, flowless
drainhole (Section 2), formulas for its curvature tensor fields and the field equa-
tions specialized to the case in question (Section 3), a four-stage procedure that
solves these equations (Section 4), and a brief enumeration of interesting aspects
of the family of evolving, flowless drainhole solutions (Section 5). Apart from
the solutions themselves, the geometric method used in Section 4 to elicit them
from the field equations is thought to be novel and of some independent interest.

8(2): The Basic Evolving, Flowless Drainhole Line Element
The line element of the family of solutions sought is required to have the
spherically symmetric form
dr* =dt* - dp® - r*(t, p)[d¥? + (sin 9)? dy?) i
24
=dt? - dp? - r’(t, p) dQ?

in which r is a nonnegative function to be determined by the field equations.
The coordinate ranges are supposed given by

e sy, s at e PR CUSpEr (2.2)

4The terms in the metric and curvature tensor fields that correspond to Newtonian gravita-
tional potentials and forces are all zero when the ether flow velocity vanishes everywhere.
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The portion of the underlying manifold not covered by these coordinates is
presumed to consist of just those points at which lim ¥ =0 or 7 or at which
lim ¢ = +m. The metric is nondegenerate everywhere except at events
r(t,p)=0.

The shape of the manifold M that the line element (2.1) measures is most
easily visualized by examination of its cross sections. Consider first the spacelike
cross section X, of M on which the time coordinate has the fixed value ¢.° This
three-dimensional submanifold inherits from M the Riemannian line element
given by

do® =dp* +r*(t, p) dQQ? (2.3)

The cross section S; , of Z; on which the radial coordinate has the constant
value p is a geometrical two-sphere of radius r(¢, p); it is therefore the behavior
of the radius function r that determines the shape of Z;, hence the shape of M.
If, for example, (¢, p) has a positive minimum value as p varies with ¢ fixed,
then X, has a central hole whose radius is that minimum value. If, on the other
hand, r(¢, p) vanishes for some value of p, then Z, has a central hole of radius
zero, a pinhole. The hole in X, is unchanging in size if the minimum value of
r(t, p) is independent of ¢; otherwise it evolves.

The evolving, flowless drainhole will be found (Section 4) to have its radius
function r of the simple, homogeneous form expressed by

r(t,p)=(@*1* + b*p*)"? 24

with @ > 0 and b > 0. For this r let the temporal cross section Z; be identified
by the more explicit symbol Z,(a, b). Then the radius of the central hole in
X(a,b)isa|tl;so, as time goes on, the drainhole shrinks from infinite size to
pinhole size (at time 0), then grows back to infinite size. If # # 0, then Z/(a, 1)
consists of two asymptotic regions joined through the central hole, these regions
being both geometrically and topologically Euclidean as p - *oo. The equatorial
(9 = m/2) cross section of Z(a, 1), as well as every other of its great-circle cross
sections, is a catenoid indistinguishable but for size from the corresponding cross
section of the static, flowless drainhole [8] ; a drawing of it is exhibited in Fig-
ure 1.0On the other hand X, (a, 1) consists of back-to-back copies of Euclidean
three-space £, joined at a common point. The equatorial cross section of
Yo(a, 1) consists of two copies of E?, joined at the same point; it is the double-
sheeted, degenerate limit, as ¢ = 0, of the catenoid of Figure 1.

If b < 1, the equatorial cross section of Zq(a, b) is isometric to a right cir-
cular cone of two nappes. This cone can be obtained by cutting out of the joined

5Thus, as a matter of convenience, ¢ (and soon p) will represent in some places a coordinate
function and in others a fixed value of that coordinate function. The contexts will make
clear which is intended.
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Fig. 1. The equatorial cross section of Z4(a, 1) for ¢ # 0. The
line element of this surface is given by

dao? =dp? + (p? +a%1?) de?.
The surface is isometric to the catenoid
(1%, 5, 211 (6% + y2)Y2 = 42| cosh (z/altD)}

in E'3. The radius of the central hole, where p =0, isa|t|.

copies of £2 mentioned before, imagined now as made of a flexible material,
back-to-back wedges of angular width 27(1 - b) and then pulling each remaining
sector’s edges together without stretching or shrinking the material. The tangent
of the angle between axis and generators of the resulting cone is b/(1 - 52)Y/2.
When b <1 and ¢ # 0, the equatorial cross section of Z,(a, b) can be similarly
constructed. One snips from the catenoidal equatorial cross section of 2, (a, 1)
(cf. Figure 1, with #/b in place of t) a wedge of angular width 27 (1 - b), and
pulls together the two edges of the remainder, again without stretching or
shrinking the flexible fabric.® The result of this alteration is a transcendental
surface that looks like (but is not) a hyperboloid of one sheet asymptotic to the
conical equatorial cross section of Z(a, b) constructed before.

When b > 1, to construct as before the equatorial cross section of X (a, b)
from that of Z,,(a, 1) it is necessary to insert in the latter an extra wedge, of
angular width 2m(b - 1). Though this operation is easy enough to imagine, it is
difficult to visualize, for it cannot be performed in Euclidean three-space while
the symmetry of revolution about an axis is maintained: only the central portion
of Z,(a, b) on which (dr/dp)* <1 (equivalently, on which (b2 - 1) b?p? <a?t?)
can be embedded in £? as a surface of revolution; this is a single point if # = 0,

6Technically, there is an isometry between the equatorial cross section of (e, b) and a
wedge of angular width 2#b (with its edges identified) in the equatorial cross section of
Z4/p(a, 1). One such isometry matches the point with coordinates (¢, p, 7/2, ¢] in Za,b)

with the point in Z,/,(a, 1) whose coordinates are [#/b, p, n/2, bp]. This holds for ¢ = 0
as well as for £ # 0.
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but it encompasses more and more of Z,(a, b) as |¢| grows larger. An isometry
between the equatorial cross section of Z,(a, b) and the augmented equatorial
cross section of Z,/,(a, 1) is given by the same formulas as for the previous case
(cf. footnote 6).

As will be seen (Section 4), in the evolving, flowless drainhole b = 1 + a2.
Thus only the latter construction, where b > 1, applies to it; but the construc-
tion when b <1, because it takes place in Euclidean three-space, helps in the
visualization. In either case one sees the evolution of the equatorial cross section
by juxtaposing in the mind’s eye the results of the construction for the various
values of ¢.

8(3): The Curvature Tensor Fields and the Field Equations

The space-time manifold M bearing the metric of Equation (2.1) possesses
an orthonormal frame system {e, } defined in this way:

a ! 1 o 1 a G.1)
eo=—, € =T, €= —, ez=E———— !
Y ) ’ r(t, p) 09 ’ r(t,p)sin ¢ dyp

The coframe system {w"} dual to {e,} is given by
W =dt, w!'=dp, wr=r(t,p)dd, w=r(t,p)Gind)de (3.2)

The unique torsion-free covariant differentiation d that is consistent with the
metric has connection one-forms w,* that satisfy de, = w,* ® e, and dw* =
-~w, M ® w"; these are given by

| - 0 0 (relr) o (relr) o
(o ] = 0 0 (rplr) o? (rplr) w?
(relr) ? | =(@rp/r) &? 0 [(ctn 9)/r] w?
| (/) w® | ~(rp/r) @® | -[(ctn 9)/r] 0o
(3.3)

where (), =0( )/0t,( ), =9( )/dp, and the omitted arguments ¢ and p are to
be treated as if present.

The curvature two-forms ©,* (=dw,* - w, ™ A wy*) are readily calculated
from Equations (3.3) and (3.2), with the result that
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5 0 + + + ]

0 0 - -

alr) (@° A w?) | =(pelr) (w° A w?) ’ )

[O1= |+ (@' Aw?) | ~(rpplr) (@' Ac?)

Culr) @ N | =) (O Ae?) | EE |
_+(rrp/r) (‘-‘-’l Aw3) "(rpp/r)(wl Aws) _(wz /\0.)3) |
(3.4)

The entries represented by the + and - signs can be read off from those shown
by use of the symmetry ©," =0,,° and the antisymmetry ©,”" = —@mk, which
hold fork,m=1,2,3.

The Ricci tensor field, defined as -2®, where & is the contracted curvature
tensor field w" ® O, e, is now computed from Equation (3.4); the result is
that

=20 = 2/P) [re(@® ® w0) + 715 (w® @ W)+ rpw! © W) +ry,(w! ® w!)]
= (12)[2+ () - (P)ppl (W @ 0? +w* @ w?) (3.5)

Having this, we can specialize the field equations (1.3) and (1.4) to the case in
question.

First let us observe that in terms of the coframe system {w*} the scalar field
¢ has the representation

do = ¢’ + ppw' +(1/r) pyw? + (1/rsin ¥) ¢, w>

From this and Equation (3.5) it follows that the 22,23, and 33 component
equations of Equation (1.3) with respect to the system {w"} imply that ¢4 =
¢, = 0. Hence ¢ may be expressed by ¢ = a(z, p), and then d¢ = @,w° + a,w’.
The remaining content of Equation (1.3) is incorporated in the equations

(3.6)

ralr=0ok, rplr=o0, =rylr,  rpplr=o} 3.7

and
() (rz)pp ==2 (3.8)

(Here, in accordance with remarks made in Section 1, it is assumed that K > 0
and that ¢ is normalized so that in fact K = 2.) A straightforward calculation
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shows that Equation (1 .4) is equivalent to

() - (rPay), =0 (3.9)

Equations (3.7), (3.8), and (3.9) are to be solved for r and , with r >0 and
with each of r? and « “maximally analytic” in the sense that it is analytic, its
domain is connected, and it cannot be analytically continued to a more exten-
sive (connected) domain.

It will suffice, actually, to solve Equations (3.7) and (3.8), for as Schiicking
noticed earlier [3, p. 208], Equation (1.4) is essentially redundant in the pres-
ence of the field equation (1.2). Indeed, if ¢ is twice- and the metric thrice-
continuously differentiable, then after equating the divergences of the two sides
of Equation (1.2) and dividing by K one has that 0 = ¢ ,[1¢, in other words that
0 = (O¢) d¢. If there is a point P such that O¢(P) # 0, then there is a neighbor-
hood of P on which [0¢ # 0, hence on which, according to this equation, d¢ = 0;
but this makes (¢(P) = 0, contrary to hypothesis. Thus O¢ = 0 everywhere if
Equation (1.2) holds and the smoothness requirements are met, as they will be
here, where the search is for maximally analytic solutions, out of which less
smooth ones can later be built.

§(4): Solution of the Field Equations

The process of finding all maximally analytic solutions of the field equation
equivalents (3.7), (3.8), and, redundantly, (3.9) will be divided into four stages.
The first stage will establish the Minkowskian nature of those solutions for which
dp = 0. The second stage will take up the solutions for which d¢ vanishes no-
where. From the four equations (3.7) will be extracted the following geometrical
facts about the functions aand r: (1) The two-dimensional surface that is the
graph of r has Gaussian curvature 0, is therefore developable, and hence is a ruled
surface. (2) The level curves of « are portions of straight lines in IR?; hence the
graph of « is horizontally ruled. (3) Along the (connected) components of s
(straight) level curves the gradient of 7 is constant and r itself is a linear function
of (Euclidean) arc length, so every horizontal ruling on the graph of a projects
vertically to a ruling on the graph of r. (4) The gradient curves of « (which are
also the orthogonal trajectories of the level curves of «) all have constant curva-
ture, hence are portions of straight lines or of circles. The third stage will utilize
the information gathered in the second stage to split the problem into several
cases and, in each case, to simplify the representations of @ and r by the intro-
duction of new variables in place of ¢ and p. The fourth and final stage will em-
ploy the representations provided by the third stage to solve Equation (3.8) for
r (or show that there is no solution) in each of the cases distinguished in the
third stage, whereupon « can be calculated by an elementary integration.
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The outcome of stages 2, 3, and 4 will be, for each case that yields a solution,
and after isometric equivalences are factored out, a one-parameter family of
maximally analytic solutions of the field equation equivalents (3.7), (3.8), and
(3.9). In each case r* will be analytic on all of IR?, a will be either analytic on
all of IR? or analytic (in the multivalued sense) on IR? minus a single point, at
which a will have an irremovable singularity, and d¢ will vanish nowhere. These
solutions, together with the Minkowskian solutions from stage 1, will exhaust
the list of maximally analytic solutions. A solution not in either group cannot be
maximally analytic, even if it is analytic and not analytically continuable. Such a
solution either has d¢ = 0 and thus is, if maximally analytic, a Minkowskian
solution from stage 1, or else comes with a point P for which d¢(P) # 0. In the
latter event there is a neighborhood of P on which d¢ vanishes nowhere, hence
on which the solution agrees with a solution from stages 2, 3, and 4; if maximally
analytic, it must be that solution. There do exist hybrid, nonmaximally analytic
solutions, flat in some regions and curved in others, but their treatment will be
deferred to a future date. Now let us begin.

Stage 1. 1f dp =0, then a; = a, =0, so Equations (3.7) imply that r, =r,, =
ot = rpp = 0 except where r vanishes. It follows that r depends linearly on ¢ and
p, hence that, if r? is maximally analytic, there exist constants ¢, ¢, and d such
that r(z, p) = |ct + ¢'p + d|. Equation (3.8) is satisfied by such an r only if ¢'? =
1 +¢?, so the family of solutions is given by

rt,p)=lct £ (1 +c®)Y2p +d| (4.1)

and a(t, p) = constant. The line in the ¢p plane along which r vanishes is timelike.
A Lorentz boost in this plane through the angle sinh ™ (+¢) can be followed by a
translation of the origin to make this line the new time axis. The effect of such
an isometry is more easily produced by taking ¢ =d = 0 in Equation (4.1), with
the result that (¢, p) = |p|. Thus each of the space-time manifolds M measured
by the line element (2.1) with r given by Equation (4.1) consists of two copies
of Minkowski’s flat space-time (when ¢ =d =0, one copy has all the points at
which p > 0, the other has those at which p <0). One may imagine these two
Minkowski space-times to be joined along their world-lines on which r(z, p) = 0,

but to do so is not forced by any previous supposition about coordinate ranges
and the like.

Stage 2. Here d¢ is presumed to vanish nowhere. The initiating insight is
this: Equations (3.7) imply that r,r,,, - 74,7, = 0; the geometrical significance
of this equation is that the graph of r (as a surface in £?) has Gaussian curvature
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0, hence is developable; because it is developable, this surface is ruled;’ Equa-
tions (3.7) obviously relate the rulings of the graph of r to the gradient curves of
a. The job is to determine this relationship precisely.

Because the field equations lose their sense wherever 7 vanishes, it will be
convenient to restrict attention for the present to the set ' (IR*), and to con-
sider the domain of « to be this set. Also, it will suffice for now to assume that
ais C'-smooth and that 72, hence r, is C3-smooth on this set; from Equations
(3.7) it then follows that a is C*-smooth. Upon differentiating the first of Equa-
tions (3.7) with respect to p and the second with respect to ¢, and eliminating
between them the equal terms 74, /r and ry,,/r, one obtains

Qo Qg = Q0 = Qprp = Q)7 (4.2)

The symmetric equation, derived from the third and the fourth of Equations
(3.7),is

00, — QpQp = (0T = Ty )1 (4.3)
From these follows
a0y — 000y + ) +aZ 0y, =0 (4.4)

Consider now a level curve of a, that is, a curve in IR? along which a is con-
stant. Let #(A) i+ p(N) j be a parametrization of some component of it by a
sensed Euclidean arc length parameter A. Then the velocity v of this parametriza-
tion is everywhere of unit length and normal to Va, so

vV={i+gj
= [, (t, )i - et p) j1 /(0 +02)/2(t, p)

(or else v is the negative of this, in which event reparametrization by -\ allows
us to work with Equation (4.5) anyway). A straightforward computation gives
as the acceleration

(4.5)

. (apan‘ - arapr) (t, p) e (Oftapp = apatp) (t,p) p
(F +a3)*(, p)

2
= QpQyp — apat(arp T apt) * 0‘% Qpp
(@ +a)

Va(t, p)

(¢, p) Val(t, p) (4.6)

=0

"Discussions of developable surfaces and ruled surfaces can be found in [10] and [11].
To accommodate surfaces that are graphs of functions we must here admit, as developable,
surfaces that are only portions of envelopes of one-parameter families of planes. A ruling
on such a surface might be only a piece of a line. An example would be one nappe of a
cone, which is ruled by half-lines; the envelope of its one-parameter family of tangent
planes is the whole two-napped cone.
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in light of Equation (4.4). Consequently, this (and every other) component of
a level curve of a is a portion of a straight line in IR?; the graph of a is ruled,
therefore, by (perhaps unbounded) segments of horizontal straight lines, which
are the components of its contour curves.

Next let us differentiate r, and r,, along this same, straight, parametrized
component of a level curve of a. We have that

[re(z, p)) = Vrt,0) - v
= ["rr(ta P) it rtp(ta ,0)_]] e

- (rag) (1, 9) [Vax(t, p) - ¥] .
=0
by application of Equations (3.7) and the orthogonality of v and Va. Similarly,
[ro(z,p)] =0 (4.8)

It follows that [Vr(z, p)] =0, hence that Vr is constant along the component.
This in turn, in conjuncticn with v = (, entails that

[r(z,p)]" = [Vr(z,p) - v] =0 (4.9)

Thus r varies linearly with distance along each component of a level curve of a.
Geometrically, this means that every horizontal ruling on the graph of ais a
vertical projection of a ruling on the graph of r.

The next step is to show that the gradient curves of « all have constant curva-
ture. Toward this end let 7(X) i+ 5(X) j be a parametrization of a gradient curve
of a by a sensed Euclidean arc length parameter A. Then, after a reparametriza-
tion by -, if needed, we have

v =7i+5j=Va( 5)/Va(, )l
= [T, p) i+ ap (T, 5) 1 (o +e3)'*(, 7)
A calculation like that for Equation (4.6) shows that v = Kn, where n is the unit

normal [a, (7, p) i - a7, 5)j]1/(e? + a2)/%(7, 5), and K, whose absolute value is
the curvature of the gradient curve, is given by

(4.10)

_ oo 0 — i 0ty) — 0 (0 0pp — 05 04p) . 7)

(a2 +0a2)¥? ’ 4.11)
= [(arrp - apre)ir(ed +op)'?1(F, p)
according to Equations (4.2) and (4.3) and because a,, = a,;.

If one now computes K from the second expression in Equation (4.11) and
applies Equations (3.7), (4.2), and (4.3), plus oy, = @, one learns that

K = [(a;r, - apr)?/r2 (a2 + a2)2) (T, p) [, (T, §) £ - af, p) P (4.12)

Substituting for 7 and p from Equation (4.10), one finds that K = 0, hence that
the curvature |[K|is constant. If |K| =0, then the gradient curve in question is

K
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straight; those components of level curves of « that intersect it do so orthog-
onally, hence are parallel to one another. If |K|> 0, then the gradient curve
must be part of a circle. In this case the level curve components that meet it are
portions of the radii of the circle; extended, they would all meet at the center of
the circle. The gradient curves of a nearby, being perpendicular to the same radii
necessarily lie on the circles concentric with this one. A mixture of these two
gradient curve configurations, the straight and the circular, can occur, but only
under the hybrid solutions to be examined at a future time, not under the maxi-
mally analytic solutions presently sought.

2

Stage 3. The results of stage 2 make it possible to distinguish two situations:
the “ladder case,” in which components of level curves of « are parallel to one
another, like rungs of a ladder, and the “wagon wheel case,” in which compo-
nents of level curves of «, if extended far enough, would all meet in a point, like
spokes of a wheel. Additionally, the ladder case splits into three subcases, accord-
ing to whether the parallel components (the “rungs’) are timelike, lightlike, or
spacelike in the zp plane with the Minkowski metric dt? - dp® (by present con-
vention 8/0t, 0/dt + 8/dp, and 8/dp are timelike, lightlike, and spacelike, respec-
tively). To get maximally analytic solutions it will suffice to suppose the level
curves of a connected, hence to study the wagon wheel case with open half-lines
for spokes, and the three ladder cases with whole lines for rungs. This is true also
of solutions for which r? is only required to be maximally C?-smooth, for C3-
smoothness of 7* entails not only C3-smoothness of  (on ™! (IR*)) and C?-
smoothness of a, but also analyticity of * and of a, as will become apparent.

In the case of timelike rungs a Lorentz boost in the tp plane can be carried
out (leaving the content of the field equations intact) to make the time axis
parallel to the level curves of a. The same effect is achieved by going back to the
beginning and supposing « to be a function of p alone, independent of ¢; Equa-
tions (3.7) then imply that r, also, depends only on p.

When the rungs are lightlike, either the null line given by ¢ + p = 0 or the null
line given by ¢ - p = 0 is parallel to every level curve of a. In the first instance «
depends only on 7 + p, and, as Equations (3.7) imply, so does 7. In the second
instance the dependence is on ¢ - p. Thus r(¢, p) = f(¢t + p) or (¢, p) = f(¢ - p)
for some C3-smooth function f of one variable.

If the rungs are spacelike, there is a Lorentz boost in the 7p plane whose
effect is equivalent to that of the supposition that «is a function of ¢ alone.
Then, much as before, one finds that r(¢, p) = g(¢), g being C-smooth.

Turn now to the wagon wheel case. Without affecting the geometry of M,
we can translate the origin of the #p plane to the center of the wheel. Suppose
that to have been done already, and introduce polar coordinates [s, £] such that
[t, p] = [s cos &, s sin £]. Then a, whose level curves are the spokes of the wheel,
has the representation

a(t, p)=7(%) (4.13)
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v being C?-smooth; on the other hand r, as a linear function of Euclidean arc
length along each spoke, has the representation

r(t, p) =sh(§) + k(&) (4.14)

each of 4 and k being C3-smooth.
In terms of the mutually orthogonal unit vectors § and f associated with the
polar coordinates s and £ we have that (in abbreviated notation)

Vr=rs+(1/s) "52
=h(g)§+ [H'(E) + (1/s) K'(©)1E

Because Vr is constant along each level curve of a, this expression must be inde-
pendent of s; therefore, k' = 0.
A routine calculation shows that

ree =% [(sin £)?ry - (sin §) (cos &) (rgp +1pp) + (cos £)%r,,] - 575

=raf - srg

(4.15)

(4.16)

in which the second step uses Equations (3.7). Substituting for a and  from
Equations (4.13) and (4.14), and remembering that k' = 0, we find that

sh”(8) = [sh(®) + k(O] 7> (&) - sh(®) (4.17)

Because this is an identity in s and £, and 7'(§) # 0 (a consequence of the sup-
position that d¢ vanishes nowhere), it follows that k(¢) = 0 and that

Y2(&) =" +h) (E)/n(E) (4.18)

wherever h(§) # 0.

To summarize in the wagon wheel case: a(z, p) = y(£¢) and r(z, p) = sh();
v is C?-smooth and & is C*-smooth;y and A are related by Equation (4.18). No
more information is to be had from Equations (3.7), so it is time to go on to the
final stage.

Stage 4. In this stage the field equation (3.8) is to be applied. Let us con-
tinue with the wagon wheel case. Starting from r% (¢, p) = s> h?(£), one computes
(r*)s - (r*),, and then finds that Equation (3.8) is equivalent to

(cos 2¢) (h*)"(£) + 2(sin 28) (*)'(§) =2 (4.19)
This equation is easily integrated to yield
h*(§)=A +Bsin 2¢ - 1 cos 2¢ (4.20)

where each of 4 and B is a disposable constant. Equation (4.18) reduces to

Y2(§) = (4% - B* - DIr*(%) (4.21)
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This equation implies that 4> - B? > L, which in turn implies that |4| > 1 and
|IB/A| < 1.
From Equation (4.20) it follows that

r*(t, p) =s*h*(§)
=As?® + 2B(s cos £) (s sin £) - 3 [(s cos £)* - (s sin £)*] (4.22)
=(A- 1) +2Btp+ (4 +3)p?

The discriminant 4B? - 442 + 1 of this quadratic form in ¢ and p is negative, so
the form is definite; to have it be positive definite, it is necessary and sufficient
to take 4 > % Suppose this is done. Then a Lorentz boost in the #p plane
through the angle 3 tanh™ (B/A4) will serve to reduce the expression for r*(z, p)
to a sum of squares. Knowing this, one can take a short cut by setting B =0 in
Equation (4.22); the result is that

r*(t,p)=a*t* + (1 +a?) p? (4.23)

wherea =(4 - %)"'2 > 0. Setting B = 0 in Equation (4.21) and integrating it
gives 7(£) =y, * tan™! [(b/a) tan £] ; hence

a(t, p) =7, * tan"! (bp/at) (4.24)

where b = (1 +a?)"/2 and 7, is an integration constant. The graphs of the solu-
tions r and « thus arrived at are, respectively, a right elliptical cone and a helicoid
of variable pitch; they are depicted in Figure 2. Whereas r? is analytic on all of
IR?, r itself fails to be differentiable at the origin. Making allowance for the
multivaluedness of tan !, one finds that r and « satisfy Equations (3.7), (3.8),
and (3.9) at all points of the zp plane except the origin.

Let us return now to the ladder case, taking up first the ladder with lightlike
rungs. But having picked it up we can immediately lay it down, for when
r(t,p)=f(t+p)orr(t,p)=f(t - p),and fis C*-smooth, the field equation
(r)ee - (rz)p‘o = -2 reduces to 0 =-2; thus there is no ladder solution with light-
like rungs.

When the rungs are timelike, then, as noted in stage 3, both a and r may be
taken to depend on p alone. The solution in this case has already been found
and thoroughly examined [8] (see also [12]); the formula for r? is

r*(t,p) = p* + n? (4.25)

where n is a positive constant. The space-time manifold that goes with the line
element (2.1) for this ? is geodesically complete and represents a static, flowless
drainhole, which neither evolves nor gravitates.

If the rungs are spacelike, what then? As we have seen, we may suppose that
r(t, p) = g(t), g being C3-smooth, and that « also depends only on ¢. Equation
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Graph of r—/

\Groph of a

“Wagon Wheel"

P

Fig. 2. The graphs of r and a for the solution of the field equa-
tions in the wagon wheel case; here r2(t, p) =a*t? + b%p? and
al(t, p) = yo + tan"1 (bp/at), with b = (1 +a2)!/2. The graph of a
is a helicoid of variable pitch and that of r is a right elliptical
cone. Each “spoke” of the “wagon wheel” in the tp plane lies

directly under a generator of the helicoid and a generator of the
cone.

(3.8) reduces to (g?)" = -2, which yields 72 (¢, p) = -t + C (the disposable inte-
gration constant other than C has been eliminated by an immaterial adjustment
of the time origin). The first of Equations (3.7) now becomes -C/r* = a?; be-

cause a; does not vanish (d¢ = a, dt, and d¢ by hypothesis does not vanish), it
follows that C <0, hence that

r’(t, p)=-(t* +n? (4.26)
where n = (-C)"/2.

At first sight the presence of the minus sign in this formula for r(¢, p) seems
inconsistent. But it is not, for only by notational fiat has it been made to appear
that the last two diagonal coefficients in the line element (2.1) are definitely
negative—they could as easily be positive and the field equations would not care.
Let us then substitute the 7> we have into Equation (2.1). The resulting line ele-
ment is dt? - dp? + (1* + n?) dQ2%. Despite appearances there is nothing new
here. The manifold that this line element measures represents a static, flowless
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drainhole: switch the coordinate names ¢ and p, make an overall change of signs
(neither action alters geometry), and the result is the line element (2.1) with 7?
given by Equation (4.25) instead of Equation (4.26). The “new” turns out to be
old. Nor should this come as a surprise, for the formal invariance of the line ele-
ment (2.1) under interchange of ¢ and p and an overall change of signs is mani-
fest, whatever the choice of r%(¢, p). For example, under this symmetry opera-
tion the metric of the wagon wheel solution, which is given by

dr? =dt? - dp® - [a*t* + (1 +a?) p?] dQ? 4.27)

goes over into dt? - dp? + [(1 + a?) t* +a?p?] d2?. This is just the solution one
could obtain by taking the quadratic form for r%(¢, p) in Equation (4.22) to be
negative definite rather than positive and lettinga = (-4 - 1)/2.

The maximally analytic solution manifolds sought have now all been found.
They consist of the doubled Minkowski manifolds from stage 1, together with all
space-time manifolds isometric (for some value of »n) to the static, flowless drain-
hole of the ladder case or isometric (for some value of @) to the evolving, flowless
drainhole of the wagon wheel case. There remains here only to list some of the
more salient properties of the evolving, flowless drainhole. Let it be said in pass-
ing, however, that the partial interchangeability exhibited by these solutions of
the roles of the temporal and the radial coordinates suggests an answer to the
age-old question, What is time? That answer and some of its consequences appear
in [13].

8(5): Properties of the Evolving, Flowless Drainhole

The metric of the evolving, flowless drainhole in the form (4.27) is degener-
ate where ¢t = p = 0. The two-dimensional cross section of M on which this occurs
is metrically a two-sphere of radius 0 and can therefore be treated as a single
point. At all other points of M the metric is nondegenerate and the curvature
tensor field is regular, but this one event is a point of curvature singularity,
as is evidenced, for example, by the trace of the Ricci tensor field, which is
2a%b%(p? - t*) (@1 + b*p?»)7?, with b? =1 + 42.

There are geodesics that arrive at the singular event without having exhausted
their affine parameters. Although the geodesic equation breaks down at this
event, each such geodesic can be continued beyond it—not uniquely, but in un-
countably many ways.® The proverbial (pointlike) bug, approaching geodesi-
cally, from above, the collapsing central hole on the time-dependent catenoid
of Figure 1, passes uneventfully through to the lower sheet on its predestined

8 A simple surface that exhibits a similar phenomenon is the graph in £3 of the equation
z= (xy)lﬁ. This surface is smooth at each of its points except the origin. Most geodesics
that arrive there have uncountably many extensions.
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course, unless it arrives at the hole at the instant the hole pinches off. For arriv-
ing at just that moment it will be rewarded with an uncountable selection of
paths from which to choose a way into the future; some of these will take it to
the lower sheet, others will leave it in the upper sheet, and others will keep it
forever in the hole, stuck between the sheets, so to speak.

The evolving, flowless drainhole manifold M is thus geodesically complete,
in that every geodesic that approaches the singular event has such extensions,
each of which will serve to complete it, whereas every geodesic that misses the
singular event is complete in itself. The latter conclusion is a ready consequence
of the geodesic equation. It is also suggested by the fact that W is asymptotically
flat in every direction of recession from the singular event, whether the path of
recession be spatial, luminal, temporal, or a mixture of these. Specifically, with
respect to the orthonormal frame system {e, } defined in Section 3, every com-
ponent of the curvature tensor field © tends to 0 as r*(¢, p) > =, hence as 1* +
p* = oo, This implies that every scalar invariant that is polynomial in the compo-
nents of ® and algebraic in the metric components tends asymptotically to 0,
and that, for every distribution of two-planes that asymptotically do not ap-
proach the light cones too rapidly, the corresponding field of sectional curvatures
tends to 0, as % + p? - oo,

Besides the usual isometries associated with spherical symmetry and time
reversal, there is an isometry of reflection through the drainhole, the point with
coordinates [, p, ¥, ¢] exchanging places with the point whose coordinates are
[z, -p, 9, ¢]. In addition the evolving, flowless drainhole has some conformal
self-mappings that are not isometries. The more obvious of these are the dilata-
tions in which, formally, [¢', o', &', ¢'] = [kt, kp, 9, ¢] and d7'? = k? dr?, where
k is a positive number (distinct from 1). Less obvious are the inversions in
“spheres” (hyperboloids, really) represented by [¢', o', &', ¢'] = [kt|t? - p*|72,
kplt* - p?|72, 9, ¢], for which d7'? = k% (t? - p?)™% dr?, where again k is a
positive number. A full treatment of these inversions requires that M be aug-
mented with points at infinity, but that is a story for another time.
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