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The Schwarzchild manifold of general relativity theory is unsatisfactory as a particle model because the
singularity at the origin makes it geodesically incomplete. A coupling of the geometry of space—time to a
scalar field ¢ produces in its stead a static, spherically symmetric, geodesically complete, horizonless
space-time manifold with a topological hole, termed a drainhole, in its center. The coupling is

R,,=2d ,¢,; its polarity is reversed from the usual to allow both the negative curvatures found in the
drainhole and the completeness of the geodesics. The scalar field satisfies the scalar wave equation

¢ =0 and has finite total energy whose magnitude, expressed as a length, is comparable to the

drainhole radius. On one side of the drainhole the manifold is asymptotic to a Schwarzschild manifold
with positive mass parameter m, on the other to a Schwarzschild manifold with negative mass
parameter #1, and —m > m. The two-sided particle thus modeled attracts matter on the one side and,
with greater strength, repels it on the other. If m is one proton mass, then —#ni/m ~1+10""" or
1+107%, according as the drainhole radius is close to 10~ ¥cm or close to 10—'2 c¢m; the ratios of total
scalar field energy to m in these instances are 10'° and 10%. A radially directed vector field which
presents itself is interpreted, for purposes of conceptualization, as the velocity of a flowing “substantial
ether” whose nonrigid motions manifest themselves as gravitational phenomena. When the ether is at

rest, the two-sided particle has no mass on either side, but the drainhole remains open and is able to
trap test particles for any finite length of time, then release them without ever accelerating them; some it
can trap for all time without accelerating them. This massiess, chargeless, spinless particle can, if
disturbed, dematerialize into a scalar-field wave propagating at the wave speed characteristic of the

space~time manifold.

. INTRODUCTION

Ever since Schwarzschild presented his spherically
symmetric solution of the Einstein vacuum gravitational
field equations,? it has been a common practice to think
of space-time manifolds with “point singularities” as
the most appropriate models for mass particles within
general relativity theory. Such manifolds, however, are
unsatisfactory as models because they are not geodesi-
cally complete, failing to provide complete histories for
test particles and light rays that encounter the singulari-
ties. Einstein and Rosen attempted to do away with the
Schwarzschild point singularity by connecting together
two Schwarzschild exteriors by a “bridge” at the
Schwarzschild horizon.2 They hoped by thus picturing
elementary particles as topological holes in space to
explain the atomistic character of matter. They also
held out the possibility of explaining quantum phenomena
in the same way. The manifold that they constructed,
however, not only carried a degenerate metric, which
they were prepared to accept, it also suffered the defect
of being geodesically incomplete. In cutting away the
Schwarzschild interiors they had taken portions of geo~
desics whose remaining parts they had not subsequently
pieced out to completeness.

In more recent times Kruskal has shown,3 and Fronsdal
independently has shown,? that the maximal analytic
extension of the Schwarzschild manifold has in it a hole,
associated with the Schwarzschild horizon, that is topo-
logically but not metrically like the hole in the Einstein-
Rosen manifold. This hole Wheeler has termed a
‘““wormbhole’’ 5; it connects the two Schwarzschild
exteriors found in the maximal analytic extension. Some
of the geodesics that in the Schwarzschild manifold ter-
minate abruptly at the horizon are, in the maximal ex-
tension, completed through the wormhole. However,
there are others in the extended manifold that arrive at
one of its two point singularities without having exhaust~
ed their affine parameters. Hence the maximal analytic
extension is geodesically incomplete because of the
point singularities.
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To get a geodesically complete space-time manifold
with a hole in it by which to represent a mass particle,
one must find a way to force open the Schwarzschild
singularity and there to connect on an additional chunk
of space~time, taking care to preserve those features
of the original manifold that bring it into agreement
with the observable properties of the mass particle.
The main object of this writing is to show how that may
be done. The hole that replaces the singularity will
differ in important respects from the Einsten—-Rosen
bridge and from the Kruskal-Fronsdal wormhole. At
the risk of superadding coinage I shall refer to this hole
as a ‘‘drainhole.”’ The rationale for this name is that on
the space-time manifold containing the hole there is a
vector field that can be interpreted as a velocity field
for an ‘“‘ether’’ draining through the hole. The existence
of the hole permits this ether to be conserved in the
sense that its streamlines, which are timelike geodesics,
never abruptly terminate. It is intriguing that the mani-
folds that contain one of these drainholes have among
them not only reasonable models of mass particles,

but also novel models of massless particles with the
ability to hold test particles in close orbit for arbitrary
lengths of time without accelerating them. These par-
ticles, both the massive and the massless, could serve
as nuclear glue.

It is clear that these drainhole manifolds, if spheri-
cally symmetric, cannot satisfy Einstein's vacuum

field equations. Indeed, according to a theorem of Birk-
hoff, the only spherically symmetric space~time mani-
fold that does so is Schwarzschild's.® A “‘plumber's
friend’’ is needed to open up the Schwarzschild singu-
larity with. The device that will be used is a scalar
field. This field ¢ will satisfy the scalar wave equa-
tion 0 ¢ = 0 and will be coupled to the metric of the
space—time manifold through the field equations

R,, = 2¢ ,¢,,the R , being the components of the Ricci
tensor field. The polarity of the coupling, which is oppo-
site to the customarily accepted polarity, will be seen to
be fixed by the requirement that these field equations
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have a static, spherically symmetric, and geodesically
complete solution manifold.

It will be convenient to begin with a discussion of a
generalized drainhole line element and the geometrical
and physical entities that can be associated with it,
without at first imposing the field equations (Secs.II-
V). After an argument to motivate the choice of field
equations (Sec. VI), there will come a description of all
their solution manifolds that carry such a line element
(Sec. VII), a proof that some of these manifolds are
geodesically complete and a description of their geo-
desics (Sec. VIII), and a final discussion, devoted mainly
to the choice of coupling polarity in the field equations
and including a proof that every static and spherically
symmetric line element can be brought into the adopted
form (Sec.IX). The computational framework to be used
will be found outlined in the Appendix.

If. THE DRAINHOLE LINE ELEMENT

When referred to a certain nicely adapted coordinate
system, the general line element in question takes the
spherically symmetric form

dr2 =dt2 — [dp —f(p)dt]2 — r2(p)[ds2 + (sin 8)2d¢?]
=dt2 — [dp — f(p)dt]2 — r2(p)a2. (1)

The function / and the nonnegative function v are to be
determined by the field equations. The coordinate
ranges are given by

—0o<{<w, —olp<w 0<s<7, — < o7, (2)

and the additional stipulation that p € dmnf N dmn#7 —
#~1(0). The determinant of the metric tensor in this
coordinate system is — [72(p) sin #]2; it is, as a result,
independent of f. Because 7 1(0) is excluded from the
range of p, the line element is regular for all values of
the coordinates.

Once the functions f and » have been specified, the line
element may be considered to lie upon a manifold M
that is almost globally coordinatized by the coordinate
system [¢,p, 4, ¢ ], the points without coordinates being
those at which lim inf #(p) = 0,lim ¢ = 0 or 7, or lim ¢
=+ 7. Because the metric coefficients in Eq. (1) are
independent of {, all translations of 9N along the ¢ coor-
dinate curves are isometries; hence 3 /3¢ is a Killing
vector field. Inasmuch as [3/0¢]2 =1 —f2, 3/8¢t is
timelike, null, or spacelike according as f2< 1, f2 =1,
or f2 > 1, Consequently, those regions of 9 where /2 <
1 are stationary. Because 2f(p)dpd! is the only cross
term in 9N ’s line element, 3/9¢ is not everywhere orthog-
onal to the hypersurfaces of constant ¢ unless f = 0,

in which event N is static. Actually, M is static wher-
ever f2 < 1, This is established in Sec.V, where it

is shown that 3 /3¢ is orthogonal to other hypersurfaces.

Let Z, denote the cross section of M on which the time
coordinate has the constant value £.7 3, is spacelike
and inherits from 9N the Riemannian line element given
by

do? =dp? + r2(p)d2. 3)
If it were the case that »(p) = p, then this would be the

line element of Euclidean 3-space E3, cast in polar
coordinates p,#,and ¢ . In the general case %, may be
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thought of as a warped portion of E3. The warping,
caused by deviations of (p) from the Euclidean value

p, does not destroy the spherical symmetry. The cross
section S, , on which the radial coordinate has the con-
stant value p is simply a geometrical 2-sphere of radius
7(p). If r(p) has a positive minimum value, then £, has
a central hole of that radius, it being the radius of the
smallest such 2-sphere S, ; in Z,.

A case that will arise later has 7(p) = (p2 +n2)1/2,
where n is a positive constant and is the radius of the
hole, a particular instance of the drainhole. In this case
the equatorial cross section of Z,, typical of all great-
circle cross sections of X,, may be pictured as in Fig. 1.
It is isometrically embeddable in E3 as {[x,y,2]| (x2 +
92)1/2 = » cosh(z/n)}, a catenoid. Z, itself is congruent
to {[x,y,2z,w]l (x2 +y2 + 22)V/2 = cosh(w/n)} in E4.

Z, is asymptotic to E3, in a sense that can be made pre-
cise, both as p » © and as p - — . This is primarily
because, in each instance, lim[r(p)/|p|] = 1.

I1l. THE ETHER FLOW
The vector field # on the manifold I, defined by

u =gy +7(0) 550 @

has many interesting properties. To begin with, it is
everywhere timelike, of unit length, and orthogonal to a
cross section Z,. Thus it may serve as the timelike vec-
tor field in an orthonormal frame system whose space-
like vector fields are tangent to these hypersurfaces

Z;. One such frame system is {e“} defined as follows:

0 d
o=u=L+fp) L, =2,
ot ap ap
JUNE St I W
2 r(p) 8¢’ y(p)sind d¢ (5)

The system coframe {w*} dual to {e,} is given by
w0 =dt, wl=dp—f(p)dt,

w2 =y(p)ds, w3 =7(p)(sins)dyp. (6)

Determining the unique torsion-free covariant differen-
tiation d that is consistent with the metric is made easy
by the use of this orthonormal frame system. The con-
nection forms are found to be expressed by8

FIG.1. The equatorial cross section of the typical spatial cross sec-
tion Z, of the space~time manifold M in a special case. The line ele-
ment of this surface is given by do2 = dp2 + (p2 + n2)dg2. The sur-
face is isometric to the catenoid {[x,y,2]1(x2 +52)1/2 = » cosh(z/x)}
in E3, The radius of the central hole, where p = 0, isn. The surface
is asymptotic to EZ,bothas p & ®© and as p = — w.
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[T
I 0 frwl r'/r)fw? r'/r)fw3 ]
flwl 0 r'/rw2 ' /r)w3
[O)K“] = . (7
o’ /r)fw2|—'/r)w2| 0 [(ctns)/7 w3
L(1"/1’)fcu3 — @' /r)w3| — [(ctns)/r]wd | O
Because # = ¢, " normal frame system {e.t,
LA =SB o)+ /NS g teiBe) (@) b = tey(p) + [p — f(p)iley(p)
an . . ,
duu = f"(wlegle; + 0'/r)f[w2egley + (w3egley] = 0. +7(p)sey(p) +7(p)(sins) dey(p), (12)
(9)  where by abuse of notation ¢,p,$, and ¢ stand for £(p),
Another property of the vector field # now becomes p(p), 3(p), and ¢ (p). If the path p is that of an observer
apparent: each of its integral paths is geodesic. If drifting with the ether, parametrized by his proper time,
p is an integral path of %, then then Eq. (12) must agree with Eq. (10). Therefore 3 =
. = 0, meaning that the drift is radial. Further,t =1,
p =u(p) = ¢(p); (10) which says that coordinate time elapses at the same
hence ?ate as the proper time of the drifting observer. Finally,
° . P =f(p), and it then follows that the coordinate 3-velo-
P = du(p)p = (duu)(p) = 0. (11)  city of the drifting ether is f(p)d/ap, and that the coor-

Thus p is geodesic and is parametrized by an affine
parameter, which is, because {$|2 = |u(p)|2 = 1, the
proper time along p measured from some initial point.
Therefore,u generates a congruence of timelike geodes-
ics parametrized by proper time, filling up the space-
time manifold M.

In attempting to understand gravity, I have found it
useful to accept as a working hypothesis the existence
of a more or less substantial ‘‘ether,”” pervading all of
space—-time. The ether that I imagine is more than a
mere inert medium for the propagation of electromag-
netic waves; it is a restless, flowing continuum whose
internal, relative motions manifest themselves to us as
gravity. Mass particles appear as sinks or sources of
this flowing ether. In the case of the space—time mani-
fold M under discussion here the velocity that I asso-
ciate with the ether flow is the vector field #. The geo-
desic property of # just now established I interpret as
saying that every observer or test particle drifting with
the ether, following its flow, is absolutely unaccelerated.
In this sense my hypothetical ether provides a universal
system of inertial observers, just as did the nineteenth-
century luminiferous ether, and as must every ether
worthy of the name.

It was in pursuing the consequences of this hypothesis
that I became convinced of the need to replace the
Schwarzschild singularity with a drainhole. Telling how
to do that is the principal aim here, and I shall therefore
make no effort to justify the ether-flow hypothesis.?.10
Although henceforth I shall refer to« as ‘‘the ether flow
velocity” and speak of “the ether” as if it really does
exist and flow about, I shall do so not because I expect
the reader to adopt this hypothesis, rather because the
concepts and terminology provide an expressive and
stimulating vehicle of thought that I am accustomed to
using. Whether there is such an ether is a question that
requires clarification if it is to be answered with
confidence.

Returning now to the discussion of geodesics associated
with the ether flow velocity u, let us first note that if p
is any path in the manifold 9, then, in terms of the ortho-
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dinate 3-speed is |f(p)].

For the discussion of horizons in Sec.V it will be re-
required that a little about the paths of light rays be
known. If p is any null path, then from Eq. (12) it follows

that
(2 - sp2)2 +r2o3)* = 1,

unless { = 0, in which case also;') =8 = @ =0andp is
not a path of a light ray. Inasmuch as the relative coor-
dinate 3-velocity of the path p with respect to the ether
flow is

(13)

(F-ro) Z o+ R Zm+%Lw, s

the import of Eq. (13) is that the square of the speed of
light with respect to the ether, as measured in the coor-
dinate system [¢,p,4,¢],is 1.

Each of the vector fields u + 2/0p generates a congruence
of null geodesics, for if

= eo(p) + e]_(p):
then p is null, and, in view of Eq. (7),
b = deg(p)h + de,(p)p
= (degey t dege, * deye, + deye)(p) (16)

=fp.

The coordinate 3-velocities of the null geodesics in
these two congruences, and their coordinate 3-veloci-
ties with respect to the ether flow, are, respectively,

a7

[fp)£1]2/3p and + 3/dp.
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Light rays following these paths are moving in the radial
direction if they are moving at all. Those in one group
move upstream in the ether, and those in the other group
go downstream.

IV. THE CURVATURE TENSOR FIELDS

It is a simple matter to calculate the curvature forms
© ¢ from the formulas (7) for the connection forms

4w . The result is that

g
k[0 + + + ]
l
<Z—2—)"<w°A wl) 0 — -
2
(TZ)'f (wo/\ w2> —7;,—”_7’(&)0/\ wz)
[e‘(”] = yrr ¥! fz ’ 34 0 - (18)
Xl 2 YIIZY ¥ 1 2
+y (w /\w>+[r(2) r]( Aw)
—(1— f2yr2
1__(__172_]_‘_2’__ (wz/\ wa) 0
r" 1 3 "'(f_z _rt ( 1 3)
+rf<wAw)+|:r 2) r]wl\w
The isolated + and — signs are meant to reflect the ar? =[1-~f2(p)dT2— [1 -~ f2(p)] 1dp2
m— 0 i =
O o o = g, 31 the anisymmetry 6, —r2p)anz. (i)
m b - 3 3 .

A brief additional calculation finds the nonvanishing
components of the Ricci curvature tensor field to be
given by
Roo =V 2(%)(2) + 2(7”/7)f2:
Ryy =Ry = 20r"/7)f,
Ryy =—V2(zf2) + 2r"/r,

Ry, =Ry, ={{(372)(1 — f2)) — 1}/r2.

(19)

Here V2 is the Laplacian for any one of the spacelike
hypersurfaces Z, orthogonal to «; it is determined by the
Riemannian line element (3). For a function % (p),

v2[k(p)] = [1/72(p)] (r2h")’(p).

The scalar field 2/2 that appears in these formulas is
3(1 — go0), as calculated in the coordinate system [¢,p,
$,¢]. As such, it is the conventional general-relativistic
analog, for the gravitational field described by the line
element (1), of the negative of the Newtonian gravitational
potential. By the same token — V(f2/2) is the analog of
Newton’s force of gravity. If the ether flow rate |f] is
constant, then this gradient is 0, and, following convention,
one has to say that in this case the gravitational field
exerts on test particles no force in the Newtonian sense.
It is this observation which provides the rationale to
identify ‘‘gravity’’ with the internal, relative motions of
the postulated ether, as distinguished from its overall
rigid motions.

(20)

V. HORIZONS

The line element (1) assumes a familiar form upon intro-
duction of a new coordinate T satisfying

dT =dt +f(p)[1 —f2(p)] 1dp.

It is

(21)
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This is analogous to the usual orthogonal form of
Schwarzschild’s vacuum line element and reduces to it
when 7(p) = p and f2(p) = 2m/p, m being the mass para-
meter. It is clear from Eq. (1) that the translations
along the T coordinate curves are isometries, hence

that 8/27 is a Killing vector field. It is also clear that
9/9T is everywhere orthogonal to the hypersurfaces on
which T is constant. Therefore, wherever f2 < 1, so that
2/3T is timelike, the manifold is static. This was stated
in Sec.II to be the case; it was also said at that point

that 3 /8¢ is hypersurface orthogonal, and this now follows
from the determination that 3/3f =9/3T.

The Schwarzschild horizon, where p = 2m, corresponds
in the general case to 2-spheres S, , on which f(p) =

+ 1, The ether-flow picture includes a graphic inter-
pretation of such horizons. On each such sphere the
coordinate speed of the drifting ether, which is | f(p)!,
just matches the speed of light with respect to the ether.
From Eq. (13) it follows that if S, ; is intersected by the
null path p,then 0 = dp/dt < 2iff(p) =1,but— 2 =
dp/dt = 0 if f(p) = — 1; therefore, if p crosses S, , its
radial velocity component and that of the ether flow can-
not be oppositely directed at the crossing point. Thus
light rays can only cross a horizon in the downstream
direction of the flow. One can easily check that the only
paths of light rays that contact a horizon without cross-
ing it belong to the upstream member of the pair of
radial null congruences mentioned in Sec. III; these light
rays remain forever on the horizon, struggling to go no-
where. In regions where f2(p) > 1, such as Schwarz-
schild interiors, all light rays are swept along down-
stream, even those whose motion relative to the ether is
upstream. In regions where f2(p) < 1, such as Schwarz-
schild exteriors, some are able to progress upstream,
but only with difficulty when near the horizon. People in
light canoes should avoid ethereal rapids!

Another space—time manifold whose line element can
assume the forms (1) and (1), and that possesses a
horizon, is the de Sitter cosmological model,11.12 for
which »(p) = p and f2(p) = (p/R)2, R being a positive
parameter. It models a universe that is devoid of mat-

Downloaded 26 Dec 2006 to 198.11.27.71. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



108 Homer G. Ellis: Ether flow through a drainhole: A particle model in general relativity 108

ter yet exhibits gravitational effects, Test particles in
this universe cannot remain at rest with respect to one
another, for they have to share in a cosmological expan~
sion or contraction, which may be identified with a linear
expansion or contraction of the ether, reflected in the
form that f has. The 2-spheres S, , constitute a hori-
zon which is the edge of the field of vision for all observ-
ers on the upstream side of it. Here, again, gravity
corresponds to nonrigid motions of the ether.

VI. THE SCALAR FIELD AS PLUMBER'S FRIEND

We come now to the task of opening up the Schwarz-
schild singularity so that the ether may flow through
unimpededly. To discover the cause of the constric-
tion, let us refer to the formulas (19) for the compo-
nents of the Ricei curvature tensor field and observe
that the Einstein vacuum field equations Ryq = Ry, =
Ry, = 0 imply that »” = 0, hence that »(p) is a linear
function of p, which in view of the field equation Ryy = 0
cannot be constant, that » must therefore have a zero,
and that as p approaches this zero the 2-spheres S, ,
shrink to points, these points constituting the Schwarz~
schild singularity. In this way we may identify as the
cause of constriction an excess of strength in the Ein-
stein vacuum field equations. To weaken these equa-
tions and thereby to remove the constriction, an aid is
required, a plumber’s friend so to speak. Let us find
one.

The Ricci tensor field is w* ® R, , w*, where the R, are
given by Egs. (19). Look at the terms that involve r”.
Their sum can be factored:

200" /r)[f2(wO0® w0) +f(w0® w! +wl® wl) +wl® wl]
= 2(r"/7)(fw® + w1) & (fw0 + wl) (22)
= 2(r"/r)dp ® dp).

Now let @ be a nonconstant, differentiable, real-valued
function on the real line, and let ¢ = a(p). Then the
square of the gradient of the scalar field ¢ is given by

do ® do = a'2(dp ® dp). (23)
Upon comparing Eq. (23) with Eq. (22) we see that a
field equation of the form

Ricci tensor field = K(d¢ 8 d¢), (24)

with nonzero coupling constant K, will replace the un-
wanted condition v” = 0 with the less restrictive condi-
tion ¥” = 3 Ka'2r. This latter condition implies that the
radius function r is convex if K > 0,but concave if

K < 0. If r is concave, then it is impossible for the
space—time manifold 9N to have a central hole such as
the one that Fig.1 shows a cross section of. The reason
is that on each great-circle cross section of a typical
spatial cross section I, of 9 the induced Gaussian
curvature is given by the scalar field — »”/r. Concavity
of » renders this curvature everywhere nonnegative,
which in a hole of the kind envisioned it cannot be. To
enlarge the Schwarzschild singularity into a proper hole,
we must therefore take K > 0 so that » will be convex.13

As it happens, the coupling expressed by Eq. (24) is
known to derive from the simple variational principle

0=25[CgV2(Rx, ~ Ko~ Jd%. (25)
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Once K has been made positive in Eq. (25), it may be
replaced by the number 2, for this involves at most a
rescaling of ¢. Then the Euler equations that together
are equivalent to the variational principle are

R, — iR*. g, = 29,9, — 1¢0 g, (26)
and the scalar wave equation
O¢ = TrdG-1do) = ¢:%,, =0, (27

in which G is the metric tensor field. Equation (26) is
equivalent to

Rpu = 2¢,p ¢,y;

which in turn is equivalent to Eq. (24) with X = 2.

(28)

These are the field equations by way of which the scalar
field ¢ will be applied to the ethereal plumbing problem.
The next section will present all of their solution mani-
folds that have line elements of the form in Eq. (1), as
well as the analogous solutions for the equations that
would have resulted had K been taken negative. Of the
former, one will turn out to be geodesically complete
(also static and possessed of a central hole); of the
latter, none will.

VIl. THE ETHER-FLOW, DRAINHOLE, PARTICLE
MODEL

Under the assumption that ¢ = a(p), the wave equation
(27) is equivalent to

[r2(f2— a'] =0, (29)

and the field equations (28) are equivalent to the three
equations

r'/r =0'2, (30)
[r2(r2/2)') =0, (31)
[r2/2)(1—f3)) = 1. (32)

The last two yield, upon integration and rearrangement,

r2(1—f2)’ = 2m (33)
and

r2(1—52) = 2(p — m), (34)
where without loss of generality the zero point of p has
been adjusted to equalize the integration constants. Com-
bined, these equations produce, after integration,

r2(1 —f2) =p2 +C. (35)
Also, Eq. (29) integrates to

a' =—n/[r2(1 —f2)] = —n/(p? + C). (36)
From Eqgs. (34) and (35) it follows that

r'/r =(p—m)/(p?+C), (37)
hence that
vy =0 /r) + 0'/r)2 = (C +m?)/(p? + C)2. (38)

Thus Eq. (30) adds only the information that C =n2 —
m 2. Equations (36) and (37) now imply that
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72(p) = [p2 +n2 — m2| e @mmalp), (39)
provided a is made to absorb additively the integra-
tion constant, which it can do with no change in a’,
hence with no effect on the field equations.

At this stage Eq. (1) for the line element has been
specialized to
dr2 = sgn(p? +n2 — m2){ e~ @m/malp)dT?2

— e@m/maldp? + (p2 +n2—m2)dQ2]}, (1g.4)
and the only integration left to be done is that of Eq.
(36), which now reads

a'=—n/(p2 +n2 —m2), (36%)

This requires consideration of three cases: (I) n2 < m2;
() n2 = m2; (III) n2 > m 2, In each case n will be taken
to be nonnegative, for at the end only »2 will appear.
Also, the boundary condition that

lim ¢ = lim ao{p) =0 {40)
p—roo p—roo

will be applied. This limit always exists; requiring it to
be 0 is equivalent to requiring that the line element in the
form (15 ,) be asymptotic to a Schwarzschild vacuum

line element (with mass parameter m, it turns out).
Within isometric equivalence this boundary condition
does not reduce the set of solution manifolds, the reason
being that it has no effect on @/, and only a’ appears in
the field equations.

Case | (n* < m*)
Leta = (m2 —n2)1/2, Then

a'(p) =—n/(p2 — a2),
a(p) = (n/2a) log | (p + a)/(p — a)l,

41
r2(p) = |p2—a2l-|(p +a)/(p —a)| ™ “y

=|p +a| m)*1/|p — q| tria)-1,

f23(p) =1—sgn(p2—a?)|(p—a)/(p + a)| ma,

When n > 0, there is a separation of the space-time
manifold 9N to which these formulas apply into three
connected submanifolds, corresponding to the radial
coordinate rangesp < —a, —a<p<a, anda < p. If
m = 0, the formula for f2(p) implies that 72 > 0 on two
of these submanifolds, but that 2 < 0 on the other one,
namely, the one corresponding to p < — a, if m > 0, but
the one corresponding to a < p, if m < 0. Because f is
imaginary, the line element on this submanifold, though
real in the form (1), is complex in the form (1), and ¢
must be interpreted as a complex coordinate, related to
the real coordinates T and p by Eq. (21). The computa-
tions that have gone before all remain valid, but the
description of the geometry and the interpretation of the
vector field # must be modified. In particular the cross
sections Z, are two-dimensional instead of three-dimen~
sional, and # is complex instead of real. There is no
horizon of the Schwarzschild type on this submanifold,
for these occur only where f2(p) = 1,

In the two submanifolds of 9N on which 2 > 0 the typi-
cal spatial cross section Z, is three-dimensional, and
its shape is determined by the function », whose graph
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when m > 0 is shown in Fig. 2. (Reflection of this graph
through the vertical axis produces the graph of » when
m < 0.) If, let us say,m > 0, then in the submanifold on
which a < p the radius »(p) of the 2-sphere S, decreas—
es from ® to a positive minimum value 7 () as p
decreases from © to m, after which it returns to « as

p — a. Therefore, each cross section Z, in this sub-
manifold has a central hole of positive minimum radius
7(m). In the other submanifold, S, , undergoes infinite
expansion as g — g, but shrinks toward point size as

p — — a; the cross section I, thus has in its center only
a pinhole and not a hole of positive radius. Neither of
these two submanifolds has a horizon except in the
asymptotic sense that f2(p) > 1 as p - a. Whenm < 0,
their geometry is demonstrably the same.

The Schwarzschild manifold occurs when» = 0, in which
case a = |m| and m is the Schwarzschild mass. The
graph of v when m > 0 is included in Fig. 2. The
Schwarzschild singularity, where 7 (p) = 0, corresponds
to p = — m, and the horizon, where f2(p) = 1,top =m

An illumination is cast upon the Schwarzschild solution
by the observation that it is unstable as a solution of
the field equations (26) and (27) in that,asn — 0, » con-
verges pointwise to the Schwarzschild form, but not
uniformly. The two submanifolds on which f2 > 0 coa-
lesce, but only reluctantly, at the Schwarzschild hori-
zon. This phenomenon is another aspect of the be-
havior of the Schwarzschild horizon under perturba-
tions, discussed by Janis, Newman, and Winicour, 14 and
by Penney. 15 They have found and examined a solution
of the field equations used here, but with the coupling
constant negative rather than positive—for them

K < 0 in the variational principle (25). Their line ele-
ment is the same, but for choice of coordinate system
and parameter names, as the one given by Eqs. (41)

»

-m -a 0
FIG.2. The graph,for m > 0, of the radius function » in Case I

[s] m
(n2 < m2), Here r2(p) = |p + a {1*m/e{p — a |1"m/s and a = (m2—n2)V/2,
For m < 0, reflect the graph through the vertical axis.

rip) A
n=0

k.
E ut

-a ~-m O m a
FIG.3. The graph,for m > 0, of the radius function » obtained from
the Case I solution by replacmg n2 with — n2. Here 72(p) = |p +a|l*m/e
X|p—agli™e and a = (m2 + n2)1/2, The corresponding line element
satisfies the fxeld equations generated by the variational principal of
Eq. (26) with K = — 2,
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with a = (m?2 + n2)1/2, As such, it is the only solution
of the negatively coupled field equations that can take
the form of Eq. (1), except the solution, falling under
Case II, in which m =» = 0. The graph of the radius
function 7 for this solution is depicted in Fig. 3, again
under the assumption that m > 0. This v likewise con-~
verges pointwise but not uniformly to the Schwarzschild
v asn — 0. And here, also, there is, when n > 0, separa-
tion of M at — a and a into three connected submani-
folds, none containing a horizon. As was forecast in
Sec. V], 7 is concave; hence none of these submanifolds
has more than a pinhole at its center. This solution was
earlier discovered by Bergmann and Leipnik.16

Using Eq. (18), and assuming either coupling polarity,
one can easily see that if #» > 0, then at each of the
edges where pZ — a? some of the curvature components
become infinite, but that if » = 0, this happens only at the
edges where p > — m. Because the frame system {

is orthonormal, these apparent singularities in curva-
ture are real. Owing to their presence, it is impossible
to extend metrically across one of these edges any sub-
manifold of . For this reason neither M nor any pos-
sible metric extension of M will be geodesically com-
plete if there is a geodesic in O that arrives at one of
these edges without using up its affine parameter. That
there are such geodesics will be established in Sec.
VIII.

Case Il {n? = m?)

Here
a'(p)=—n/p2, alp)=n/p 42)
r2(p) =p22mlp, f2(p)=1— e2m/p,
rip}
m
-m 0 m i}

FIG.4. The graph,for m > 0, of the radius function » in Case Il
2 = m2), Here v2(p) = p2e2m/r, For m < 0, reflect the graph through
the vertical axis.

rip) 1}

SLOPE =-eM™7/0

m

py
.

-m O m P

FIG.5. The graph for m = 0, of the radius function 7 in Case IIl
(2> m?), Here r2(p) = (p2 + a2) e@m/?ald) a(p) = (0/a}n/2 —
tan"i(p/a)],and a = (12 — m?2)1/2, The minimum value of 7, namely
7(m), is the radius of the drainhole; it ranges from n up to ne— as m
goes from O to n—, and it always exceeds 2m. That the associated
manifold 9, , is asymptotically Schwarzschildean as p = « is ref-
lected in the relation »(p) ~p + m asp — ©,
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This is the limiting case of Case I as a > 0. The mani-
fold on which — a < p < @ has been squeezed out. The
two remaining manifolds, corresponding now to p < 0
and 0 < p, are in all qualitative aspects, including in-
finite edge curvatures, unchanged (unless m =n = 0,
which results in two copies of flat Minkowski space—
time). In particular, if m = 0, neither of them possesses
a horizon, is metrically extendible, or is geodesically
complete. The graph of » for m > 0 is shown in Fig. 4.
The line element has been exhibited by Yilmaz in the
form (15 ).17

Case U1 {n? > m?)

This is the case of greatest interest, for the line ele-
ment measures a connected and geodesically complete
space~time manifold with a drainhole. Leta =

(n2 — m?2)Y/2, Then

a’'(p) =—n/(p2 +a?), a(p) = @/a)[z7— tan" (p/a)],
yZ(p) — (pZ + az)e(ZM/ﬂ)u(p), fZ(p) =1 g‘(ZM/n)a(P)‘

(43)
Because 72 and 1 — f2 are everywhere analytic and
positive, these formulas determine an analytic line
element of the form (), which now becomes (15 ,) with
n2 —m?2 = g2, This line element fits a manifold on
which the coordinate p ranges from — ® to ©, as does
also the coordinate T. This manifold will be shown in
the next section to be geodesically complete. Let it be
denoted M, .

If m = 0,then 0 = f2 < 1, and the form (1) of the line
element of 9N, , is real. The relation between the time
coordinates ¢ and T, expressed by Eq. (21), depends upon
whether f = 0 or f < 0, but in either event ¢ is real and
ranges from — © to @, If m = 0, then f = 0 (the ether is
at rest). When m > 0, f2(p) decreases from 1 —

e ?2mr/atg 0 as p goes from — © to ®. There is no hori-
zon, because f2(p) is never 1.

Figure 5 displays the graph of the radius function »
when m = 0. The 2-spheres S, ; of constant ¢ and con-~
stant p are smallest when p = m;they undergo infinite
expansion both as p — «© and as p — — «, It follows
from Egs. (43) that the minimum radius 7 (), con-
sidered as a function of m, increases from n tone— as
m goes from 0 to n—. Thus the order of magnitude of
the radius of the drainhole is determined by #, the only
noticeable effect of m being to bound it below via the
first two of the inequalities m < n = v (m) < ne (actually,
as Fig, 5 shows,r(m) > 2m).

It is not difficult to establish that the following asymp-~
totic relations hold, whether m > 0, m = 0,0or m < 0:
as p — o,
a(p) = (n/p) + 0(1/p3),
r(p) = (p + m) + O(1/p), (44)
f2(p) = [2m/(p + m)] + O(1/p2?);

asp—— o,

a(p) = (nn/a) + (n/p) + O(1/p3),
r{p) = — (p + m)em™s + O(1/p), (45)
f2p)=1—e2mia[1 —2m/(p +m)] + O(1/p32).

These relations imply that the manifold 9, , is,in the
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usual loose sense, asymptotic as p = © to the Schwarz-
schild manifold with mass parameter m. They also imply
that M, ., is asymptotically flat, both as p - © and as

p — — ©, because, as may easily be checked, the coeffi-
cients (12/2)", (r’f)f/r,etc.,in the expression (18) for
the curvature forms © .} are asymptotic to 0. (This
criterion for asym totxc flatness is acceptable because
the frame system ¢ {p } is orthonormal.) It is natural to
ask if 9N, , is also asymptotlcally Schwarzschildean as
p - — o, The answer is that Y, , is asymptotic as p -
— ® to the Schwarzschild manifold with mass parameter
— memva_ This somewhat surprising conclusmn is a
consequence of the observation that if m = — mem"= and
n =nemva then there is an isometry between‘m . and
M 5 wh1ch reverses the direction of increase of the
radlal coordinate and thus matches up opposed asymp-
totic regions. Such an isometry is obtained by identify-
ing the point of 91T, having S-type coordinates [T, p,

#, @] with the point of .- . whose S-type coordinates
are [Te m1r/a — pemﬂ’/a & (P]

Because these isometries exist, no physically useful

" distinction can be drawn between the manifolds with
positive mass parameters m and those for which m is
negative. On the other hand, in each such manifold there
is a clear physical distinction between the two sides of
the drainhole, for one side is asymptotic to a Schwarz-
schild manifold whose mass parameter is positive, while
the other is asymptotic to a Schwarzschild manifold
whose mass parameter is negative. In the study of the
geodesics of M, , it will appear that, when m > 0, test
particles are always accelerated in the direction of de-
creasing p. This is toward the drainhole when p > m,
but away from it when p < m. Thus if m > 0 (and like-
wise if m < 0), the manifold M, ., models a Janus-faced
particle that attracts matter on one side and repels it
(more strongly) on the other,

The curious asymmetry between the positive mass, say
m, and the negative mass m of the particle, expressed by
the equation

m/m = — exp[mn/(n2 — m2)/z2), (46)
is a facet of the model that is especially eye-catching, It
is even more so in light of the observation that certain
not unnatural specifications of m and » will cause the
equation to generate some of Dirac’s outsized, dimen-
sionless physical ‘‘constants’’, which are about 1020%)
where £ is some small nonzero integer.18 Speclflcally,
if m is of the order of a proton mass, 1.2 x 10-52 cm,
while n is of the order of Planck’s length, 1.6 x10°33 cm,
then —m/m = 1 + 10719, If insteadn = 2.8 X 1013 ¢m,
the classical electron radius, then — 7m/m ~ 1 + 10739,
A speculative extrapolation from the asymmetry be-
tween m and m is that the universe expands because it
contains more negative mass than positive, each half-
particle of positive mass m being slightly over-
balanced by a half-particle of negative mass 7 such
that —m > m.

The case where m = 0 is particularly interesting. The
ether is not flowing, because f = 0. However, the drain-
hole remains open, because »(p) = (p2 +n2)/2 =2 > 0.
The manifold is symmetric with respect to reflection
through the drainhole. The catenoid of Fig.1 is the
cross section of 9, , on which # = 0 and ¢ = /2.
Although massless, the particle modeled interacts with
test particles, as the study of its geodesics will show.
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The scalar field ¢ that holds the drainhole open satis-
fies the scalar wave equation. If in the flowless case
some disturbance were to cause the drainhole to pinch
in two, there would be left on each side a central bump
in a topologically and asymptotically Euclidean 3-space.
These bumps, being directly associated with ¢ via the
field equations (28), would radiate away with the funda-
mental speed of wave propagation. The particle would
have dematerialized from a drainhole to a ¢-wave.
When m = 0, the same thing presumably could happen,
but in addition there should arise a traveling gradient
in the ether flow, identifiable, one imagines, as gravita-
tional radiation. Such a picture of changing topology
and geometry provides a graspable basis for attempts
at understanding the wave-particle duality of matter.
VIIl. GEODESICS AROUND, ABOUT, AND THROUGH
THE DRAINHOLE

The starting point for the study of the geodesics of the
manifold O bearing the line element (1) is the earlier
equation

b =tey(p) + [p — flp)ile, (D)
+7(p)ey(p) +7(p)(sind)ges(p), (12)
which holds for every path p in 9. From Egs. (12),
(A3), (A1), (7), and (5) it follows that
b= [t eri—sie () 432 o)
r-. f2 r . . .
+ p—(f)[ﬂ—wp—ﬂw]
~a-ra(y)az] Lo
+ _5 + 277' D3 — (sins) (cos&)q}ﬂ:‘ %(p)
+ <2,} + 277' p@ + 2(ctns) é{p)é% (p), (47)
where
Q2 =32 + (sins)2 @2, (48)

Now let p be a maximally extended geodesic path, affine-
ly parametrized, so that p = 0. This equation is equiva-
lent to the four scalar equations that say that the com-
ponents of p in Eq. (47) are 0. For reference call these
the ¢-,p-,4-, and ¢-equations.

Reflecting the spherical symmetry of the metric, the -
and ¢ -equations entail that the orbit of the path p lies
in one of the great-circle cross sections of 9, which
are those hyperspaces typified by the equatorial cross
section, defined by # = 7/2. The angular-momentum
first integral of the ¥- and ¢-equations is

1’25'2 =h. (49)
The f- and p-equations have the first integral
(1—72)f +fp = k. (50)

Suppose next that the parameter on p is the proper time
along p if p is timelike, the proper distance along p if p
is spacelike. Then the #-,p-,4-, and ¢-equations have
the first integral

— (p— 12— 7202,

€=|pl2=t (51)
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where €, the indicator of p, is 1, 0, or — 1, according as p
is timelike, null, or spacelike. A consequence of Egs.
(49), (50}, and (51) is that

P2 = k2 — (1 — f2)(e + h2/72). (52)

When the first integral (51) is used in the p-equation,
there results

p=e(r2) + Hr2)Q —f2) — (r2)(1 — £2)']92. (53)

If we utilize the integrals (33) and (34) of the field equa-
tions, then Eq. (53) becomes

b =el—m/r2) + (p— 2m)Q2. (54)

This equation applies in each of Cases I, II, and III of
Sec.VII, It implies that, when m > 0, test particles on
radial paths are always accelerated in the direction of
decreasing p. In Case III this means that the drainhole
attracts matter on the side identified by asymptotic com-
parison to a Schwarzschild manifold as having positive
mass, and repels it on the side to which negative mass
has been ascribed.

Completeness

For a null, radial geodesic, € = % = 0, and Eq. (52) implies
that p =+ k. If & = 0, then p is constant, and Eq. (50)
allows two possibilities. One is that ¢ = 0, in which
case I, also, is constant; the geodesic is degenerate,
frozen at one point of space—time. The other possibility
is that f2(p) = 1, in this case the light signal whose

path is p is stuck on a horizon, but not frozen in time.

If on the other hand k = 0, then p is a nonconstant, linear
function of the affine parameter. From this it follows
that if M is any one of the nonflat space—-time manifolds
discussed under Cases I and II of Sec. VII, then 91U has
null radial geodesics that come up to an edge where
there are infinite curvatures without exhausting their
affine parameters in the process. As was remarked in
Sec. VII, this implies that none of those manifolds has a
geodesically complete extension.

Turning now to Case III, let us see whether the space~
time manifold 9%, , is geodesically complete. Denote
by p* that portion of the path  on which the parameter
is nonnegative. If p* is confined to a compact region of
the manifold, then p* includes all nonnegative numbers
in its parameter interval, for p is by hypothesis maxi-
mally extended. If p* is not so confined, then either
p(p*) or t(p*) is unbounded. Butf2(p) and 2(p) are de-
fined for all values of p, and both 1 — 72 and 1/72 are
bounded. Hence Eq. (52) implies that § is bounded. On
the other hand, 1/(1 ~ f2) is bounded, and, therefore, in
view of Eq. (50),¢ is bounded. No unbounded function
with bounded derivative is restricted to a bounded
interval, so that again the parameter of p consumes all
the nonnegative numbers. In the same fashion p’s
parameter uses up all the nonpositive numbers. There-
fore, M, , is indeed geodesically complete.

It is interesting to note that completeness depends only
upon these properties of /2 and 7 2 in addition to the
smoothness that they possess: (a) Each of f2 and 72 is
defined on the interval (— «, ®); (b) 2 is bounded away
from 0, so that there is in fact a hole in the manifold
that is bigger than a point; (c) f2 is bounded; (d) /2 is
bounded away from 1, which means that there is no

J. Math. Phys., Vol. 14, No. 1, January 1973

horizon, not even an asymptotic one at an edge of the
manifold.

Goedesics of &mo’n

In describing the geodesics of the manifolds 9, , of
Case III it will be easiest to treat I, , separately. The
condition m = 0 is equivalent to f = 0; the first part

of the discussion will apply merely if f = 0, irrespective
of whether any field equations are satisfied. The line
element (1) decomposes into a purely temporal part

and a purely spatial part; this shows up in Eq. (51), which
now reads

€ =202, (55)
where
02 =p2 +72(p)§ 2, (586)

Because of this decomposition the Killing vector field
d/9t is orthogonal to the spatial cross sections Z,, and
the projection of the geodesic path p on any one Z, via
translation of its points along the ¢ lines is a (perhaps
degenerate) geodesic curve of Z,. This curve isalsoa
spacelike (or else degenerate) geodesic curve of the
full space-time manifold M, and ¢ measures proper
distance along it.

From Egs. (50) and (55) it follows that 62 = k2 — ¢,
hence that ¢ = 0. Thus test particles undergo no
accelerations of the classical Newtonian kind that are
associated with forces. In this sense the manifold 91
produces no gravitational effects on test particles (or
on light rays, for that matter), and 9N can therefore be
said to be devoid of gravitating mass. This, however,
is not to say that 9 is free of all matter. The reason
for not ruling out massless matter is that in 91, , all
nonradial test particle or light ray paths bend toward
the drainhole, even to the extent that many of them loop
around it again and again. This will become apparent as
next the geodesics of M, , are described in detail.

It is sufficient to consider in 9, , those spacelike
geodesic paths p for which { = 2 = 0, inasmuch as all
geodesics project onto them in the manner described
above; these are just the geodesic paths of Z, with re-
spect to the inherited Riemannian line element (3), para-
metrized by arc length, It is further sufficient to con-
sider the case where ¢ = 7/2, and then p will lie on the
catenoid depicted in Fig.1. On some of these geodesics
p =0 and ¢2 = 1/22, On all others any zero that p has
must be isolated, and for these Egs. (49) and (52) can
be combined into the orbital equation

d(p 2_ (.P 2 N h2 _ h2
w) “\7) T —1 " (T TnBpZ +n2R2Y

(5T)

valid except at isolated points of the path p.

The geodesics fall naturally into three classes, corre-
sponding to (a) A2 > n2,(b) h2 = n2,and (c) k2 < n2,
Typical and atypical geodesics in these classes are
shown in Fig. 6. Each of them reflects through the
drainhole onto a geodesic of the same class.

A typical geodesic satisfying 22 > n2 spirals in from
infinity to a2 minimum distance (#2 —n72)¥/2 from the
neck of the drainhole (where p = 0), and then spirals out
to infinity again. The smaller the distance of closest
approach to the neck of the drainhole, the greater the
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number of revolutions around the drainhole. A test
particle on such an orbit can be trapped for any length
of time (whether coordinate time ¢ or proper time 7),
but ultimately it will escape. There are no atypical
geodesics in this class.

If k2 =n2, a typical geodesic orbit starts from infinity
and spirals in asymptotically to the center circle,
which itself is the lone atypical geodesic orbit for this
case. A test particle on one of these orbits will be
trapped forever, or, if it follows the orbit in reverse,
has been trapped forever but is gradually escaping.

In case k2 < n2, a typical geodesic spirals in from
infinity, passes through the drainhole, and spirals out
to infinity on the other side. The atypical geodesics
trace out the p lines, which pass through the hole but
do not spiral. Test particles following these orbits are
lost forever to observers on the initial side, who would
be able, however, upon looking toward the drainhole, to
see them slowly fading away, like scintillations in a
crystal ball.

The capturing of test particles and of light rays by the
flowless drainhole for various lengths of time ranging
upward to infinity would seem to warrant thinking of
the manifold M, , as at least a rudimentary model of
what a massless nuclear binding particle might be like.
One’s inclination in this direction is reinforced by the
observation that the capture effect is of short range.
For example, if the distance of closest approach is 10
times the drainhole radius », then the total bending of
the geodesic amounts to less than 0.5°. For the total
bending to be 180° (half a loop), the distance of closest
approach must be about 0. 27, which puts the point of
closest approach on a sphere of symmetry whose
radius is about 1.02#; for a full loop the corresponding
numbers are about 0.03z and 1.0006#%.

Geodesics of My p (m > 0)

The discussion will proceed mainly from Eq. (52},
rewritten as

p2 = 2E +F. (h2,p), (58)
where E = $(k2 — ¢) and

F (r?,p) = &2 — h2(1 — f2)/r?
=¢fl—e (2m/n}a (0] — p2/e@mmdalod p2 + g2)1, (59)

An adequate qualitative description of the geodesics can
be easily read off from the graphs, for ¢ = 0,1,— 1, of
the functions of the family F_(22,p). Because p =

1 F_’ (h2,p), the turning points of orbits will occur where
F, (r2,p) = — 2E and F."(h2,p) = 0, and circular orbits
will occur where F, (k2,p) = — 2E and F,'(h2,p) = 0.

The circular orbits will be stable if £”(k2,p) < 0, un-
stable if F”(h2,p) > 0.

Null geodesics

Here 2E = k2 = 0. The graphs of the functions F,(22,p)
appear in Fig.7. Adding 2E to F,(k2,p) to get p2 shifts
the graphs upward (unless 2E = 0); only those points

of the graphs that are shifted to the upper closed half-
plane correspond to points of geodesics, For various
ranges of E and k2 the possibilities can be summa-
rized as follows:

i) E=0:
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(a) k2 = 0; degenerate geodesic at each point
of M,, ,.

{b} k2> 0;no geodesic.
(ii) E> 0:

(@) 0=hn2<2Er2(2m){1— f2(2m)]1; geodesics
beginning at «, passing through the drainhole, ending at
— @, and vice versa.

(b) k2 = 2Er2(2m)[1 — f2(2m)] 1; geodesics with
unstable circular orbit at 2m; geodesics beginning at ©

(c) h¥<n?
FIG. 6. Typical and atypical orbits of test particles (a) around, (b)
about, and (¢) through the drainhole of Case III (#2 < m2) when m = 0.
The surface to which the orbits are confined is the catenoid of Fig. 1.
It is isometric to every great-circle cross section of the spherically
symmetric space surrounding the drainhole. The orbits fall into the
three classes according to the amount # of angular momentum. The
only atypical orbits are the central circle in (b) and the radial lines
in {c). Every reflection of an orbit in the drainhole is again an orbit
of the same class.,

Fo(h?, p)

h2=0

\\,

h2x oo

FIG.7. The graphs of the functions F (#?,p) for various values of k2,
Each function has a minimum at 2m. From the equation p% = 2E +
Fy{h?,p)} one can find the turning points of null geodesics of 9N ,, , by
referring to this picture. '
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and ending by spiraling down to the circular orbit, and
vice versa, spiraling up from the circular orbit to «;
geodesics beginning at — «, passing through the drain-
hole, and ending by spiraling up to the circular orbit,
and vice versa.

{(c) h2>2Er2(2m)[1 — f2(2m)] 1; geodesics begin-
ning and ending at ®, reaching lowest points (p a mini-
mum) which move up from just above 2m to ® as E
decreases or k2 increases; geodesics beginning and
ending at — o, reaching highest points {(p a maximum)
which move down from just below 2m to — « as E de-
creases or h2 increases.

Timelike geodesics

In this case 2E = k2 — 1 = — 1, Figure 8 exhibits the
graphs of the functions ¥, (k2,p). Their critical points
occur where 22 = mr2(p)(p — 2m) ! = y(p), which is on
the upper side of 2m. The locus of critical points has a
maximum where p = 3m + (4m?2 +n2)1/2 = py,and a
zero, p;, between 2m and py. The catalog of timelike
geodesics reads as follows:

(i) —1=2E=1+ e (2m7a) no geodesic.
(i) — 1 + e @mu/a) < 2E < — Fy(y(py), Pp):

(a) 0= k2 < y(py); geodesics beginning and ending
at — ©, reaching highest points (p a maximum) which
move from above p, down to — ® as E decreases.

(b) k2= 4{py); geodesics beginning and ending at
— ©, reaching highest points below p, which move down
to — © as E decreases or h2 increases.

(i) 2E =— F,(y (po),po):

(a) 0= h2<.y(p,y);geodesics beginning and ending
at — o, reaching highest points above p,.

(b) h2 = y(py); geodesics with semistable circular
orbit at p, [small perturbations satisfying 2(E + AE) +
Fy1(h2 + An2,p) < 0, where p is the lesser root of y(p} =
k2 + AR2, change the orbit but little, and all other small
perturbations result in orbital decay to — w]; geodesics
beginning at — « and ending by spiraling up to the
circular orbit, and vice versa, spiraling down from the
circular orbit to — o,

(¢) k2> y(py); geodesics beginning and ending at

1} Fi(h2,p)
—— b _etemme
——
=
h2=0
\\ nZ=y{po)
h2=y(p,)
% riey
= =
4 ~
\// —
Filylpo}, po) s S
0 i
h: e
———F,(y(p), )

FIG.8. The graphs of the functions F,(k2,p) for various values of 22,
The dashed curve is the locus of critical points of the functions, which
are minima to the left of, maxima to the right of pg[ = 3m +

(4m?2 + n2)1/2]. F,(y(p,),p) has a horizontal inflection point at p,.

As p > —w,F (hZ,p) > 1 — e (2m7/2), Asp > 2m+, Fily(p),p) = —.

As p > w,F (h2,p) > 0 and F(y(p),p) — 0. From the equation
p2 = 2E + F(h2,p) one can find the turning points of timelike geo-
desics of IM,, , by referring to this picture.
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— ©, reaching highest points which move from just below
pg down to — « as E decreases or k2 increases.

(iv) — FyG(pg), pp) < 2E < 0. Let p* and p** denote the
two roots of 2E + Fy(y(p),p) = 0, with p* < p**; let o*
denote the root of 2E + F,(y{p*), p) = 0 distinct from p*,
and define §** analogously. Then p** < p* < p, < p** <
p*,and, as E increases, p* moves down from po— to

py+, while p** moves up from py+ to .

(@) 0= h2<y(p*);geodesics beginning and ending
at — o, reaching highest points above p*.

(b) 72 = y(p*); geodesics with unstable circular
orbit at p*; geodesics beginning at — ®, passing through
the drainhole, and ending by spiraling up to the circular
orbit, and vice versa; geodesics beginning by spiraling
up from the circular orbit to highest points at p*, end-
ing by spiraling back down to the circular orbit.

(c) y(p*) < h2 < y(p**); geodesics beginning and
ending at — o, reaching highest points between p** and
p*; geodesics having stable bound orbits and periodic
radial motions, with lowest points between p* and p**
and highest points between p** and p*.

(d) h2 =y (p**); geodesics beginning and ending
at — o, reaching highest points at p**; geodesics with
stable circular orbit at p**.

{e) k2> (p**); geodesics beginning and ending at
— o, reaching highest points below p** which move down
to — © as k2 increases.

(v) 2E = 0. Let p* be the root of 2E + F,(y (p),p) = 0.
As E increases, p* moves down from p, to 2m+.

(a) 0= h2<y(p*);geodesics beginning at ®, pass-
ing through the drainhole, ending at — ©, and vice versa,

(b) h2 =y(p*); geodesics with unstable circular
orbit at p*; geodesics beginning at «, ending by spiral-
ing down to the circular orbit, and vice versa; geodesics
beginning at — ©, passing through the drainhole, ending
by spiraling up to the circular orbit, and vice versa.

(¢) h2>+(p*); geodesics beginning and ending at
0, reaching lowest points which move up from just
above p* to ® as 12 increases; geodesics beginning and
ending at — ©, reaching highest points which move down
from just below p* to — « as k2 increases.

Spacelike geodesics

When one examines the graphs (not presented here) of
the functions F_, (k2, p), taking into account that 2E =
k2 + 1= 1, he sees that the spacelike geodesics fall
into three classes analogous to the three classes of
timelike geodesics on which 2E = 0. The principle
observation of interest is that, as E increases, the cir-
cular orbits move up from m, where the drainhole is
narrowest, to just below 2m.

Capture of light rays and test particles

With good enough starts both light rays and test par-
ticles can coast upstream all the way to ©, even if they
begin as far down as — ® and procrastinate by spiral-
ing as they go. The drainhole, then, is no ‘‘black hole”
like the Schwarzschild singularity, surrounded by its
one-way horizon. On the other hand, the drainhole does
absorb many of the light rays and test particles that
approach it from the upper side, by either capturing them
or letting them pass through to the lower side. Per-
haps the drainhole would qualify as a ‘‘gray hole.”
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For the Schwarzschild model with positive mass m’
Darwin has established that no test particle orbit can
have its pericenter as low as 3m’.19 The analogous
proposition is true for the drainhole model: No such
orbit has its lowest point or points as low as 2m.
Another aspect of the drainhole geodesics is that, al-
though there are unstable, bound (actually circular),
test particle orbits at p, and below, every such orbit
that is stable must have its highest points above p,,
and its energy E greater than — 3 F,(y(p,),p,). This
property, reminiscent of a salient feature of quantum
mechanical models of the hydrogen atom, also finds an
analog in the Schwarzschild model.19 It is worth
noting that neither of these common properties depends
upon the presence of a horizon, as the Schwarzschild
manifold suggests it might.

In the Schwarzschild model the spatial cross sections
%, are flat, and the capture effects can be attributed to
the gravitational field alone. In the drainhole model,
however, some of the credit must go to the curvature
of space around the drainhole, for, as we have seen, the
effects persist, at short range, even when the gravita-
tional field vanishes. Thus the drainhole with the flow-
ing ether can be thought of as a first approximation to
a geometrical model of a massive nuclear binding par-
ticle. On the other hand, one can use it in place of the
Schwarzschild manifold to model the gravitational field
of, for example, the sun. In this connection one can cal-
culate that at large distances from the drainhole the
bending of orbits caused by the curvature of space re-
sults in an increase in the precessions of orbital peri-
helia that is of higher infinitesimal order than the pre-
cessions themselves. This correction to the preces-
sions differs both in order of magnitude and in sense
from the corresponding correction in the Brans-Dicke
scalar—tensor theory.20

IX. DISCUSSION

In the field equation (26), which the ether-flow, drain-
hole, particle model satisfies, the polarity of the coup-
ling between the geometry of space—time and the scalar
field is reversed from that which most physicists
accept. I shall therefore review here some arguments
in support of it, as well as one argument against it.

Justification of the coupling must rest ultimately on the
reasonableness and usefulness that the space-time
manifolds derivable from it possess as models of the
physical world. The ether-flow, drainhole model de-
rived from it has in common with the Schwarzschild
manifold the useful ability to reproduce to within cur-
rent observational tolerances the external gravitational
field of a massive, nonrotating, spherically symmetric
body. It does not have the Schwarzschild manifold’s
useless point singularity or the associated and equally
useless incompleteness of geodesics. It also, reason-
ably if not usefully, has no horizon. In place of these
dubious endowments it has several novelties of its own,
whose reasonableness or unreasonableness, usefulness
or unusefulness are yet to be determined. It ties to-
gether as two aspects of one entity the concept of nega-
tive (active) gravitational mass and that of positive,21
at the same time hinting at a universal excess of the
negative over the positive, in a ratio involving

Dirac’s outsized numbers. It stands as a clear indica-
tor that within geometrodynamics, to use Wheeler’s
descriptive term for general relativity theory,5 there
is room at least for classical models of nuclear binding
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particles, with mass and without, if one will but relax
the field equations enough to allow static negative cur-
vatures of space. Finally, the drainhole suggests a
dynamically topological mechanism for the dematerial-
ization of such particles into traveling ripples in the
fabric of space and also, because of time reversal
symmetry, for their materialization out of these ripples.

Historically, Einstein took the coupling constant K in
his field equations

R,, —tRg, =KT,, (60)
to be negative in order to satisfy the requirement that
in the quasistatic, weak-field approximation these equa-
tions should approximate the content of the Poisson
equation for the Newtonian gravitational potential V, an
equation which reads V2V = 4n(p,, + pg), where p,, is
the density of mass and p, the density of any other
forms of energy that are thought to cause gravitational
phenomena.22 Einstein carried through his argument,
however, only for the case in which the energy—momen-
tum tensor components T, arise solely from slowly
moving dust of small but nonzero proper density, for
which case p, # 0 and py = 0. If in the other extreme
{py; = 0,05 # 0) the only energy present is embodied in
a scalar field ¢ of rest mass zero, associated with the
Lagrangian density (—g£)V/2¢:<¢ ,, then

T,=0,0,— 0%, 8, (61)

and Eq. (60) is equivalent to
R[.H/ = K¢,p ¢,u' (62)

In the quasistatic, weak-field approximation V = 3(gy —
1), Ry ™ — V2V, and ¢ o¢ o ¥ 0. Thus the Poisson equa-
tion whose content is approximated by Ryg = K¢ ¢ ¢

is actually the Laplace equation V2V = — K - 0, The
other field equations approximate to 0 = K-0. There-
fore, the requirement of correspondence with Newtonian
theory yields in this case no information about K.

The failure of the correspondence requirement to fix
the polarity of the scalar-field coupling leaves one free to
apply other criteria to the task. It has seemed to me
quite reasonable to eschew singularities and aim at a
theory that will provide as a model for a mass particle
at rest and alone in the universe a static space—time
manifold that is geodesically complete and is asymp-
totic to a Schwarzschild manifold with nonzero mass
parameter.23 This criterion forces K to be positive in
the variational principle (25), by way of the following
argument.

Let us first take notice that every static and spherically
symmetric line element is a special case of the line
element (1). Indeed, every such line element can by a
coordinate transformation be brought locally into the
form

dr2? = A(R)dT2 — B(R)R?2 — C2(R)df2, (63)

with A, B, and C positive. Then a further transforma-
tion, changing only the radial coordinate, will take it to
the form (15). The latter transformation is obtained by
solving the differential equation dR/dp = [A(R)B(R)]¥/2
for R as an increasing, therefore invertible function of
the new coordinate p. Finally, by using Eq. (21) in re-
verse, we can arrive at the form in Eq. (1).
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Now let us recall that the discussion in Secs. VII and
VIII established that if ¢ = o(p), then the Euler equa-
tions associated with the variational principle (25) have
the drainhole manifold as their only solution manifold
that has a line element of the form (1), is geodesically
complete, and is asymptotic to a Schwarzschild manifold
with nonzero mass parameter, and, further, the drain-
hole is a solution only if K > 0. Finally, if ¢ =

o(t,p, ¥, ¢), then one can without great difficulty see
that the Euler equations imply that in fact ¢ depends
only upon p, hence that the foregoing conclusion applies
also in this case. To summarize, then, if and only if

K > 0 does there exist a static, geodesically complete,
and spherically symmetric space~time manifold that is
asymptotic to a Schwarzschild manifold with nonzero
mass parameter and that satisfies the variational prin-
ciple (25) for some choice of the scalar field ¢, and the
drainhole manifold, with its numerous interesting and
useful features, is the one.

Against the advantages that I have set forth for the non-
standard choice of coupling polarity one must array
whatever implications it has that seemto be in disagree-
ment with established theory. The only such implica-
tion that I have met is this: According to conventional
interpretation, the scalar field, when coupled with non-
standard polarity to the geometry of space—~time, must
be accounted as having negative energy, contrary to the
usual requirement of general relativity theory.24 Spe-
cifically, with K > 0 one would say, following the usual
convention, that the energy density of the scalar field

is — Tyq as given in a physically significant reference
frame by Eq. (61). Because Ty is positive definite in
physically significant reference frames, such as local
Lorentz frames, the energy density — 7, hence also

the total energy of the scalar field, would be negative
definite, Perhaps this interpretation is correct. I have
to confess that I have been unable to conclude or to be
persuaded that the polarity of the coupling between a
nonmaterial field and the geometry of space—time should
determine or be determined by the positiveness or
negativeness of the energy of that field. I prefer to post-
pone the question, looking forward to the day when we
shall have a satisfactory, nonphenomenological unified
field theory in which there appear no coupling constants
whose polarity has to be assigned.

1t is instructive to compare the scalar-field energy Eg
in the drainhole model, be it positive or be it negative,
with the energy E; of the gravitational field. I take E;
to be the mass m, thereby remaining consistent with the
view expressed in Sec. Il and again in Sec. VIII that
true gravity is generated only by internal motions of
the ether and therefore vanishes when f = 0 (equiva-
lently, when m = 0). For definiteness let us assume
that Eg = 0. Then, after normalization by the conven-
tional factor (47)1,

By = (1/4n) Too(— detg,,, )"/ %%, (64)

where T is a hyperspace orthogonal to the timelike
Killing vector field 3/3T, and [x*] =[T,p, ¥, ¢], the
form of the line element being therefore that in Eq.
(15). Upon calculation of Tj4 and subsequent applica-
tion of Eqgs. (43), we have

B= LT [T a2y

x ¥2(sin#)(1 — f2)V2dpd sd ¢
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nn ifm =0,
2

=\ nz _ (65)
21— exp( —"T )| itm >0,
2m (n2 — m2)V2

One sees that, as m increases from 0 ton, Eg decrea-
ses continuously from nw/2 to 2/2. Hence the amount of
energy in the scalar field is essentially proportional to
n, regardless of the amount m of gravitational energy,
and it actually varies inversely with m. If m < #, then
Eg/E;~ nn/2m. In the case of the numbers mentioned
in Sec. VII, where m was approximately the mass of a
proton, Eg/E; ~ 1019 if # is of the order of Planck’s
length, and Eg/E, ~ 1039 if # is near the classical elec-
tron radius. Here are two more occurrences of the
ubiquitous Dirac numbers.18 The large sizes of these
ratios demonstrate that the scalar field (more gener-
ally, the curvature of space) is a promising agent for
representing within general relativity theory natural
phenomena much more energetic than gravity and hav-
ing to do with particles of subatomic size.
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APPENDIX

This is a brief outline of the computational framework
used in the body of the paper. The approach is that of
Cartan.25

On the differentiable manifold M the tangent vectors

at the point P are thought of as those local differential
operators on the scalar fields differentiable at P that
for some coordinate system }x#] at P are linear com-
binations of the operators (@ /0x*)(P). The tangent space
at P is denoted by 77 and its dual, the space of tangent
covectors at P, or cotangent space at P,by 7. The
basis of T dual to the basis {3 /2x#)(P)} of Tp is de-
noted by {dx# (P)}. After an obvious pattern the ele-
ments of the various tensor product spaces, such as
Tp® 5, Tp® TP, T,8 T,® TP, are distinguished
among by use of the names cocotensor, cocontensor,
cococontensor, and so on. The elements of 7,,7, A Tp,
TpATp A Tp,--- are the 1-,2-,3-, - -~ forms.

The connection forms of the covariant differentiation
(affine connection) d on 9N, with respect to the frame
system {e } and its dual {wﬂ}, are the 1-forms {wp“} de-
termined il)y either of the equations

de, = w,*® e, (A1)
and

dwt =— w H® wk, (A2)

If p: 7 —>M is a path in M, I being its parameter inter-
val, and # is a vector field on p (that is to say,u is a
function on I, and u(t) € T#® for each ¢), then #, the
covariant derivative of #,is computed from

u = [ube, (p))'= ke, (p) +urde, (p)h
=[x +urw, < (p)ble, (p). (A3)

Let d, be the exterior covariant differentiation based on
d, defined by saying that, for every co...co- or co...
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cocontensor field V on 9, d,V is the totally skew-
symmetric part of dV. Then the torsion of d is the
skew-symmetric cococontensor field T uniquely deter-
mined by the requirement that if v is a covector field,
then

dv —d,v =T, (Ad)

where d stands for (noncovariant) exterior differentia-
tion and where juxtaposition means composition, e. g.,
@T)y,u,) = v(T(uy,%,)). The curvature tensor field
is the unique cococontensor field © that is skew-sym-
metric in the second and third slots and satisfies

d2u = Ou — (du)T (A5)
for every vector field «. In terms of {e,} and {w+},

O=uwrE® e e, (A6)
the curvature 2-forms © * being given by

- — W
O F =dot —wrAw,H

=— 3R, (w’Awh), (A7)

where the R *,  are the components of the Riemann-
Christoffel curvature tensor field = — 20). If dw* =
CHlwrrwr),and w# =T, w?, then

RK”)\II = Z(FK“[U,A] + Fxp[urlplpx) + kapc[up Al )' (AB)

Here Cp, *,; = 3(C#, — C,*,), and similarly for other
square-bracketed pairs of indices. Contracting © in the
second and fourth slots produces the contracted curva-
ture tensor field &:

® =wt® O, ke, = wk ® (— iR, wY, (A9)

where R,;, = R, ¥, , the components of the Ricei curva-
ture tensor field (= — 2&).

If d is required to be consistent with a metric G (any
global, nondegenerate, symmetric cocotensor field on
9N), in the sense that dG = 0, and to have torsion T (any
global, skew-symmetric cococontensor field on 9,
given a priori), then d is uniquely determined. With re-
spect to an orthonormal frame system {eu and its dual
{wﬂ}, the connection forms of d are easy to calculate
using an algorithm of Misner.26 It consists in solving
for [w,*] the matrix equation

fwelnfw ] = [(CH, — T HorA w9, (A10)
where T' = T, #, (W Aw* ® ¢,), utilizing the symmetries
and antisymmetries implied by w *gy, + W, Xgy =
dgy, = 0, It is easiest to do this individually for each
nonzero term on the right and then add the results,
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