
COSMIC ACCELERATION, INFLATION, DARK MATTER, AND DARK`ENERGY' IN ONE NEAT PACKAGEHOMER G. ELLISAbstra
t. In 
reating his gravitational �eld equations Einstein unjusti�edly assumed thatinertial mass, and its energy equivalent, is a sour
e of gravity. Denying this assumptionallows modifying the �eld equations to a form in whi
h a positive 
osmologi
al 
onstantappears as a uniform density of gravitationally repulsive matter. Field equations withboth positive and negative a
tive gravitational mass densities in
orporated along with as
alar �eld 
oupled to geometry with nostandard polarity yield 
osmologi
al solutions thatexhibit a

eleration, in
ation, 
oasting, and a `big boun
e' instead of a `big bang'. Therepulsive matter is identi�ed as the ba
k sides of the `drainholes' (
alled by some `traversablewormholes') introdu
ed by the author in 1973, solutions of the same �eld equations, whi
hattra
t on their high, front sides and repel more strongly on their low, ba
k sides. Thefront sides serve as the unseen parti
les of `dark matter' needed to hold together the larges
ale stru
tures seen in the universe. Formation of 
osmi
 voids, walls, �laments, and nodesare attributed to separation of the ba
k sides of the drainholes from the front, driven bytheir mutual attra
tive{repulsive intera
tions. One 
an assert that all of these 
osmologi
alentities have been found wrapped in one neat pa
kage, namely, the �eld equations and thevariational prin
iple from whi
h they are derived.Keywords: Cosmi
 a

eleration; in
ation; dark matter; dark energy.Albert Einstein, in his 1916 paper Die Grundlage der allgemeinen Relativit�atstheorie [1℄that gave a thorough presentation of the theory of gravity he had worked out over thepre
eding de
ade, made an assumption that does not hold up well under 
lose s
rutiny.Stripped down to its barest form the assumption is that inertial mass, and by extensionenergy via E = m
2, is a sour
e of gravity and must therefore be 
oupled to the gravitationalpotential in the �eld equations of the general theory of relativity. The train of thoughtthat brought him to this 
on
lusion is des
ribed in x16, where he sought to extend his�eld equations for the va
uum, R�� � 12Rg�� = 0 as 
urrently formulated, to in
lude the
ontribution of a 
ontinuous distribution of gravitating matter of density �, in analogy tothe extension of the Lapla
e equation r2� = 0 for the newtonian gravitational potential �to the Poisson equation r2� = 4���, where � is Newton's gravitational 
onstant. Einsteinreferred to � as the \density of matter", without spe
ifying what was meant by `matter'.Invoking the spe
ial theory's identi�
ation of \inert mass" with \energy, whi
h �nds its
omplete mathemati
al expression in . . . the energy-tensor", he 
on
luded that \we mustintrodu
e a 
orresponding energy-tensor of matter T��". Further des
ribing this energy-tensoras \
orresponding to the density � in Poisson's equation", he arrived at the extended �eldequations R�� � 12Rg�� = 8��
2 T��, in whi
h, for a \fri
tionless adiabati
 
uid" of density �,pressure p (a form of kineti
 energy), and proper 4-velo
ity distribution u�, he took T �� tobe �u�u� + (p=
2)(u�u� � g��). The problem with this pro
edure is that it 
onfuses the`a
tive gravitational mass' of matter, whi
h measures how mu
h gravity it produ
es and is1
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ontributor to the \density of matter" in Poisson's equation, with the \inert mass"of matter, whi
h measures how mu
h it a

elerates in response to for
es applied to it, in
on
ept an e�e
t entirely di�erent from the produ
tion of gravity.These two 
on
eptually di�erent masses, along with yet a third, all o

ur in Newton'sgravitational equation miaB = FAB = ��mpMar2 ; (1)in whi
h Ma is the a
tive gravitational mass of a gravitating body A, mi is the inertial(\inert") mass of a body B being a
ted upon by the gravity of A, and mp is the passivegravitational mass of B, a measure of the strength of B's `feeling' of the gravitational �eldaround A. That in suitable units mi = mp for all bodies is another way of saying that allbodies respond with the same a

elerations to the same gravitational �elds, that, in 
onse-quen
e, the notion of a `gravitational for
e' is irrelevant, but the notion of a `gravitational�eld' is not. Simple thought experiments of Galileo (large stone and smaller stone tied to-gether) [2℄ and Einstein (body suspended by rope in elevator) [3℄ make it 
lear that theydo all respond alike | an observation now treated as a prin
iple, the (weak) `prin
iple ofequivalen
e', experimentally, if somewhat redundantly, well 
on�rmed. That this passive-inertial mass has any relation to a
tive gravitational mass is not apparent in Eq. (1), whereMa represents a property of A, not of B. But Newton's equation for the gravitational a
tionof B on A reads MiaA = FBA = ��Mpmar2 : (2)Appli
ation of Newton's law of a
tion and rea
tion allows the inferen
e that FAB and FBAhave the same magnitude, from whi
h follows that ma=mp =Ma=Mp, hen
e that the ratio ofa
tive gravitational mass to passive gravitational mass, thus to inertial mass, is the same forall bodies. It would seem likely that Einstein relied, either 
ons
iously or un
ons
iously, onthis 
onsequen
e of Newton's laws when he assumed that \inert mass" should 
ontribute tothe \density of matter" as a sour
e of gravity in the �eld equations. But the general theoryof relativity that Einstein was propounding is a �eld theory in whi
h gravitational e�e
tspropagate at �nite speed, whereas Newton's law of a
tion and rea
tion is appli
able to thebodies A and B only under the 
ondition that gravity a
ts at a distan
e instantaneously,that is, at in�nite propagation speed. Within his own theory of gravity there is, therefore,no obvious justi�
ation for Einstein's assumption that inertial mass (and therefore energy)is equivalent to a
tive gravitational mass. This, however, is not to say that there is norelation at all between the two kinds of mass. There is, for example, the seemingly universal
oin
iden
e that wherever there is matter made of atoms there are to be found both inertialmass and a
tive gravitational mass. Indeed, the fa
t that Newton's theory is a 
lose �rstapproximation to Einstein's would argue for some proportionality between ma and mp forsu
h matter in bulk | not, however, for ea
h individual 
onstituent of su
h matter. Ananalysis of lunar data 
on
luded that the ratio of ma to mp for aluminum di�ers from that ofiron by less than 4� 10�12 [4℄. An earlier, Cavendish balan
e experiment had put a limit of5� 10�5 on the di�eren
e of these ratios for bromine and 
uorine [5℄. But these results areonly for matter in bulk, that is, matter made of atoms and mole
ules. It is entirely possible
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trons, for example, do not gravitate at all, for no one has ever established by dire
tobservation that they do, nor is it likely that anyone will. There is in the literature anargument that purports to show that if the ratio ma=mp is the same for two spe
ies of bulkmatter, then ele
trons must be generators of gravity [6℄, but that argument 
an be seen on
areful examination to rest on an unre
ognized, hidden assumption, namely that, in simplestform, the gravitational �eld of a hydrogen atom at a distan
e 
ould be distinguished fromthat of a neutron at the same distan
e | another assumption no one has tested or is likelyto test, by dire
t observation.Einstein's assumption that energy and inertial mass are sour
es of gravity has survivedto the present virtually un
hallenged. It has generated a number of 
onsequen
es that havedire
ted mu
h of the subsequent resear
h in gravitation theory | indeed, misdire
ted it ifhis assumption is wrong. Among them are the following:� The impossibility, a

ording to Penrose{Hawking singularity theorems, of avoiding sin-gularities in the geometry of spa
e-time without invoking `negative energy', whi
h isreally just energy 
oupled to gravity with polarity opposite to that of the 
oupling ofmatter to gravity.� The presumption that the extra, �fth dimension in Kaluza{Klein theory must be aspatial dimension rather than a dimension of another type.� The belief that all the extra dimensions in higher-dimensional theories must be spatial,
ausing the expenditure of mu
h e�ort in attempting to explain why they are notapparent to our senses in the way that the familiar three spatial dimensions are.Denying Einstein's assumption relieves one of the burden of these troublesome 
on
lusionsand opens the door to other, more realisti
 ones.If Einsteins's assumption is to be disallowed, then his sour
e tensor for a 
ontinuousdistribution of gravitating matter, T �� = �u�u�+(p=
2)(u�u��g��), must be modi�ed. Onemight think to simply drop the se
ond term and take T �� = �u�u�, the energy-momentumtensor of the matter. This would be in
onsistent, for the � in that tensor is the density ofinertial-passive mass, whi
h we are now not assuming to be the same as a
tive gravitationalmass. What to do instead?At the same time that Einstein was 
reating his �eld equations, Hilbert was deriving the�eld equations for empty spa
e from the variational prin
iple ÆRR jgj 12d4x = 0 [7℄. This is themost straightforward extension to the general relativity setting of the variational prin
ipleÆR jr�j2 d3x = 0, whose Euler{Lagrange equation is equivalent to the Lapla
e equationr2� = 0 for the newtonian potential �. Modifying it to ÆR (jr�j2+8����) d3x = 0 generatesthe Poisson equation r2� = 4���. The most straightforward extension of this prin
iple togeneral relativity is ÆZ (R � 8��
2 �) jgj 12d4x = 0; (3)for whi
h the Euler{Lagrange equations are equivalent toR�� � 12R g�� = �4��
2 �g��; (4)whi
h makes T�� = �12�g��, with � now the a
tive gravitational mass density, as it shouldbe. Equivalent to this equation is R�� = 4��
2 �g��, the 00 
omponent of whi
h redu
es in the
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isely to the Poisson equation. The vanishingof the divergen
e of the Einstein tensor �eld on the lefthand side of Eq. (4) entails that0 = T�� :� = �12(�:�g�� + �g�� :�) = �12�:�, hen
e that � is 
onstant. This would seemto be a 
omedown from the equations of motion of the matter distribution implied by thevanishing of the divergen
e of Einstein's T ��, but those equations are unrealisti
 in thatthey have the density of a
tive mass playing the role that properly belongs to the density ofinertial mass as the 
oeÆ
ient of the 4-a

eleration of the matter. The implied 
onstan
y of� will be seen not to be a harmful defe
t of the revised �eld equations.To in
lude 
ontributions of other suspe
ted determinants of the geometry of spa
e-time,su
h as s
alar �elds and ele
tromagneti
 �elds, one 
an in the usual way add terms tothe a
tion integrand of Eq. (3). In parti
ular, one 
an add a 
osmologi
al 
onstant term,
hanging the integrand to R � 8��
2 �+ 2� and the �eld equations toR�� � 12R g�� = �4��
2 (�+ ��) g��; (5)where 4��
2 �� = ��. A positive 
osmologi
al 
onstant � thus appears in this 
ontext to bea (mis)representation of a negative a
tive mass density �� of a 
ontinuous distribution ofgravitationally repulsive matter. An ex
ess of this negative density over the positive a
tivemass density � of attra
tive matter 
ould drive an a

elerating 
osmi
 expansion, and indoing so provide a solution to the vexing `Cosmologi
al Constant Problem'. Leaving asidefor the moment the question of where su
h a negative mass density might 
ome from, let usexplore the 
onsequen
es of presuming it exists, by studying 
osmologi
al solutions of �eldequations that in
orporate a positive mass density �, a negative mass density �� su
h that��� > �, and a minimally 
oupled s
alar �eld � (not the newtonian �). The variationalprin
iple ÆZ [R � 8��
2 (�+ ��) + 2�:
�:
℄ jgj 12d4x = 0 (6)
ombines these elements and generates the �eld equationsR�� � 12R g�� = T�� := �4��
2 (�+ ��) g�� � 2 (�:��:� � 12�:
�:
 g��) (7)and �� := �:
:
 = 0: (8)Noti
e that the polarity of the 
oupling of � to the spa
e-time geometry, as indi
ated by aplus sign in Eq. (6) and a minus sign in Eq. (7), is opposite to the usual polarity. This is
onsistent both with Einstein's assumption and with its denial, inasmu
h as the `energy' ofthe s
alar �eld in
luded in �:��:� � 12�:
�:
 g�� is of a nature entirely di�erent from that ofthe kineti
 pressure p in Einstein's \energy-tensor".For a Robertson{Walker metri
 
2dt2 �R2(t)ds2 (with t in se
onds, s in 
entimeters, and
 in 
m/se
) and a dimensionless s
alar �eld � = �(t) these �eld equations redu
e to3 _R2=
2 + kR2 = �4��
2 (�+ ��)� _�2
2 ; (9)2
2 �RR + _R2=
2 + kR2 = �4��
2 (�+ ��) + _�2
2 ; (10)
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2��� + 3 _� _RR� = 0; (11)where k = 1, 0, or �1 (stri
tly, k = 1, 0, or �1 
m�2), the uniform 
urvature of the spatialmetri
 ds2. Additionally, 
orresponding to the identity T��:� = 0, there is the equation4��
2 d(� + ��) = �2(��)d� = 0. If we de�ne the `a

elerant' A by A := �4��
2 (� + ��), thendA = 0, so A is a 
onstant with units 
m�2, positive under the assumption that ��� > �.This repla
es the previous 
ondition that � is 
onstant; it allows both � and �� to vary solong as their sum does not. Equation (11) yields _�2R6 = B
2, where B also is a positive
onstant with units 
m�2 if, as we shall stipulate, _� 6= 0. Equations (9) and (10), whi
hare repla
ements for the well-studied Friedmann 
osmologi
al equations, are then equivalenttogether to1
2 _R2R2 = �4��3
2 (�+ ��)� kR2 � _�23
2 = A3 � kR2 � B3R6 = AR6 � 3kR4 �B3R6 =: P (R)3R6 (12)and1
2 �RR = �4��3
2 (�+ ��) + 2 _�23
2 = A3 + 2B3R6 = AR6 + 2B3R6 : (13)Several properties of the s
ale fa
tor R as a solution of these equations 
an be inferred rathereasily, to wit:� For ea
h of k = 1, 0, and �1, R has a positive minimum value Rmin, the only positiveroot of the polynomial P (R) := AR6�3kR4�B, where _R = 0. (See Fig. 1.) This rulesout a `big bang' singularity. There is instead a `big boun
e' o� a state of maximum
ompression at time t = 0, when R(t) = Rmin.� R(t) is symmetri
 about t = 0, and R(t)!1 as t! �1.� �R is always positive, so the universal expansion is a

elerating at all times after theboun
e, and the universal 
ontra
tion is de
elerating at all times before the boun
e.� The `Hubble parameter' H (:= _R=R) behaves asymptoti
ally as follows:1
2H2 = A3 � 3kR4 +B3R6 ! A3 (from below if k � 0from above if k < 0) as R!1: (14)Consequently, R(t) � Ce�pA=3 
 t, for some 
onstant C, as t! �1.� _H = 
2(kR4 + B)=R6, so H(t) is ever-in
reasing if k � 0, but is at a maximum or aminimum when R(t) = 4pB=(�k), and is de
reasing for all larger values of R, if k < 0.� The `a

eleration parameter' Q (:= ( �R=R)=( _R=R)2) behaves this way asympoti
ally:Q = 
2 AR6 + 2B3H2R6 = 1 + 
2 kR4 +BH2R6 ! 1 (from above if k � 0from below if k < 0) as R!1: (15)
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R20 0�B

k = �1 k = 0 k = 1

R2min R2min = (B=A)1=3 R2min
Figure 1. Graphs of P (R) versus R2 for k = �1, 0, and 1, and generi
 valuesof the parameters A (> 0) and B. Only values of R for whi
h P (R) � 0 
m�2are admitted by Eq. (12).The general formula for R2min in Fig. 1 isR2min = kA�1 + 3p2 k� 3qA2B + 2k3 +pA2B (A2B + 4k3)+ 3qA2B + 2k3 +pA2B(A2B + 4k3)� 3p2 k�: (16)This redu
es to R2min = (B=A)1=3 when k = 0, and to R2min = (k=A) [1� 2 
os(�=3)℄, where� := �=2� tan�1�(A2B + 2k3)=pA2B(4(�k)3 � A2B)�, when k = �1 and A2B < 4(�k)3.When k = 0, so that spa
e is perfe
tly 
at, Rmin = (B=A)1=6 and it is straightforward tointegrate Eqs. (12) and (13), with the result thatR3(t) = R3min 
osh(p3A
 t); (17)from whi
h followH(t) = 
rA3 tanh(p3A
 t) = sgn(t) 
vuutA3  1� �RminR(t)�6! ; (18)Q(t) = 1 + 3sinh2(p3A
 t) = 1 + 3[R(t)=Rmin℄6 � 1 ; (19)and 
2A = H2(t)[Q(t) + 2℄ = 3H2(t) �1 + 1[R(t)=Rmin℄6 � 1� : (20)



COSMIC ACCELERATION, INFLATION, DARK MATTER, AND DARK `ENERGY' 7If any two of the parameters A, t0 (the present epo
h), H(t0), Q(t0), and R(t0)=Rmin areset, the others are �xed. Of these the only one that is reasonably well determined byobservations is H(t0), whi
h 
urrently is estimated to be about 72 (km/se
)/Mp
. The `bigboun
e' presumably should look mu
h like a `big bang', so the ratio R(t0)=Rmin should bevery large, perhaps on the order of the Hubble radius 
=H(t0) (= 1:28 � 1028 
m = 13.6billion light years, the `radius of the observable universe') divided by the Plan
k length1:62�10�33 
m. With this 
hoi
e R(t0)=Rmin = 7:93�1060, whi
h makes Q(t0) = 1+10�365,
2A = 1:63 � 10�35=se
2 = 1:62 � 10�20=yr2, and t0 = 1:91 � 1012 years. This value for t0en
ompasses 140 of the 13:6�109 years predi
ted to have elapsed sin
e the `big bang' by the`standard' (or `
on
ordan
e') model based on the Friedmann{Robertson{Walker equations,an interval whi
h in the present instan
e would allow approximately only a doubling fromRmin to R(t).When k = 1 (stri
tly, k = 1 
m�2), so that spa
e is an expanding 3-sphere (
ontra
tingbefore the boun
e), R2min is bounded below by its limit as B ! 0, whi
h is 3k=A. Indeed,the �eld equations have a boun
e solution with B = 0 and Rmin =p3k=A, given byR(t) = Rmin 
osh �pA=3 
 t� : (21)This is a pure de Sitter model with Q(t) = 1,H(t) = 
rA3 tanh(pA=3 
 t) = sgn(t) 
vuutA3  1� �RminR(t)�2! ; (22)and 
2A = 3H2(t)1� [Rmin=R(t)℄2 : (23)Using H(t0) = 72 (km/se
)/Mp
 and R(t0)=Rmin = 7:93� 1060 as above, one 
al
ulates that
2A = 1:62� 10�20=yr2, t0 = 1:92� 1012 years, Rmin = 1:28� 1028, and R(t0) = 1:02� 1089.Thus in this model, where it is meaningful to speak of the `radius of the universe', thatradius at the time of the boun
e is Rmin=pk = 1:28� 1028 
m = 13.6 billion light years (theHubble radius), and the radius at the present epo
h is 1:01 � 1071 light years. For B 6= 0,the boun
e radius will be larger and, owing to the term 2B=3R6 in Eq. (12), the growth ratewill be somewhat faster.The remaining 
ase is the most interesting of the three. When k = 0 or 1, H is anin
reasing fun
tion of R and therefore, post boun
e, of t, rising leisurely to its asymptoti
value 
pA=3. When k = �1 (
m�2), the situation is quite di�erent, as the graphs in Fig. 2demonstrate. Here H(R) has a maximum valueHmax = 
sA3 + 2 (�k)3=23pB (24)atR = 4pB=(�k) =: RHmax , where dH=dR = 
2(kR4+B)=H(R)R7 = 0. NowH rises sharplyfrom 0 at Rmin to Hmax at RHmax , then reverses and tails o� asymptoti
lly to 
pA=3. One
an show that Rmin � 4pB=3(�k) as B ! 0. Thus as B ! 0, RHmax and Rmin are squeezed
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R

Hmax = 
sA3 + 2 (�k)3=23pB

H(1) = 
rA3RHmax = 4qB=(�k)R min0 0 lnR(t)
tslope = H(1) = 
rA3

lnRmin

0

Figure 2. Graphs of H(R) and lnR(t) for k = �1 and generi
 values ofthe parameters A (> 0) and B, showing early stage in
ation followed by ade
eleration-mimi
king de
line in H. The fun
tions are related by (lnR)_(t) =_R(t)=R(t) =: H(R(t)).
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R

Q(R)
Q(RHmax) = Q(1)1

R min RHmaxRQmin00Figure 3. Graph of the a

eleration Q(R) for k = �1 and generi
 valuesof the parameters A (> 0) and B, showing large early a

eleration followedby a de
eleration-mimi
king des
ent to a minimum a

eleration at RQmin andasymptoti
 rise to a de Sitter a

eleration Q(1) = 1.together, and Hmax grows without bound. This 
learly is a re
ipe for an explosive post-boun
e in
ation followed by a de
eleration-mimi
king de
line in H. That the de
line in Hmimi
s a de
eleration of the expansion is borne out by the behavior of Q as re
e
ted inFig. 3. Des
ending from 1 at Rmin, Q(R) passes through 1 at RHmax , bottoms out with aminimum value Qmin at RQmin, whereRQmin = 6rBAvuut 3q2 +p4� A2B=(�k)3 + 3pA2B=(�k)33q2 +p4� A2B=(�k)3 ; (25)then 
reeps slowly ba
k to 1 as R ! 1. One sees that, as B ! 0, RQmin � 6p4B=A =6p4(�k)=AR2=3Hmax , so RQmin goes to 0 along with RHmax and Rmin, but lagging behind some-what.Numeri
al investigation of the k = �1 model 
an be 
arried out by use of the Mathemati
aprogram des
ribed in the Appendix, whi
h takes as inputsH(t0), Hmax, andQ(t0) to �x A, B,and R(t0), then solves for the normalized s
ale fa
tor S := R=Rmin the equation, equivalentto Eq. (13), 1
2 �SS = A3 + 2B=R6min3S6 ; (26)with initial 
onditions S(0) = 1 and _S(0) = 0 at the boun
e. Solution in hand, one 
an
ompute various parameters of interest. In
luded in the Appendix is a sample run of the
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ating
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ExponentiallyA

eleratinglog2 S(t0) � 203

log 2(1+t
0)�59

0 0 (t = t0)
t0 = 5:34� 1017 s = 16:9 GyrS(t0) = 1:14� 1061 � 2203H(t0) = 72 km s�1 Mp
�1Hmax = (5� 1060)H(t0)Q(t0) = 0:5Figure 4. Graph of log2 S(t) versus log2(1+ t) for the sample solution of theAppendix. The early stage rapid in
ation, after produ
ing approximately 144doublings of the normalized s
ale fa
tor S in about one se
ond, gives way toa long period of uphill `
oasting' (where the graph is nearly linear), followedby a return to exponential a

eleration after t = t0. In the 
oasting periodlog2 S(t) � 144 + ((203 � 144)=(59 � 0)) log2(1 + t) = 144 + log2(1 + t), soS(t) � 2144(1 + t), making the expansion essentially linear with time.program with inputs H(t0) = 72 (km/se
)/Mp
, Hmax = (5� 1060)H(t0), and Q(t0) = 1=2,whi
h produ
es the solution S(t) represented in Fig. 4. The program 
omputes algebrai
allythat A = 9:09�10�57=
m2, B = 1:94�10�131=
m2, Rmin = 1:59�10�33, R(t0) = 1:82�1028,R(t0)=Rmin = 1:14� 1061, and Qmin = 9:28� 10�82. Integration of Eq. (26) then shows thatt0 = 5:34� 1017 se
onds = 16.9 billion years and that the time t of one hundred doublings(when R(t)=Rmin = S(t) = 2100) is 6:74 � 10�14 se
onds. These times appear to be withinthe rough boundaries des
ribed by Guth in [8℄. In
reasing Hmax shortens the time from theboun
e to the end of in
ation and the transition to uphill 
oasting shown in Fig. 4, with littlee�e
t on t0 and the time of return from 
oasting to exponential expansion. Varying Q(t0), onthe other hand, alters t0 and the time of transition from 
oasting to exponential expansion,but has little e�e
t on the timing of the end of in
ation and the onset of 
oasting. The pre-boun
e evolution is a mirror image of the post-boun
e, 
omprising exponential 
ontra
tionand downhill 
oasting to rapid de
ation into the boun
e.The pre
eding models are predi
ated on the supposition that ��� > �, but ��� = � and��� < � are also possibilities to be 
onsidered. When ��� = �, so that A = 0, the polynomialP (R) has a positive root only if k = �1, namely, R = Rmin := 4pB=3(�k). The generi
behaviors of H(R) and R(t) are as shown in Fig. 2 with A = 0, ex
ept that the graphof lnR(t) has no linear asymptote, rather is asymptoti
 to ln(p�k 
 t) as t ! 1. Unlike
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R20 0�B R2min 2k=A R2max
A2B > 4(�k)3 A2B = 4(�k)3 A2B < 4(�k)3Figure 5. Graphs of P (R) versus R2 for k = �1 and generi
 values of theparameters A (< 0) and B. Only values of R for whi
h P (R) � 0 
m�2 areadmitted by Eq. (12).the behavior in Fig. 3, Q(R) has no minimum, instead de
reases asymptoti
ally to 0 asR !1. A sample run of a modi�ed version of the program in the Appendix, with A = 0,H(t0) = 72 (km/se
)/Mp
, and Hmax = (5� 1060)H(t0) as inputs, produ
es the same valuesfor B, Rmin, and the hundred-doublings time as in the previous sample run, and yieldst0 = 4:3� 1017 se
onds = 13.6 billion years, R(t0) = 1:3� 1028, R(t0)=Rmin = 8:1� 1060, andQ(t0) = 4:7� 10�244. The graph analogous to that of Fig. 4 looks the same ex
ept that the
oasting era goes on forever, with no return to exponential expansion.When ��� < �, so that A < 0, P (R) has a real root only if k = �1 and A2B � 4(�k)2.When A2B < 4(�k)2 there are two positive roots, Rmin and Rmax, given by R2min = (k=A)[1+
os(�=3) � p3 sin(�=3)℄ and R2max = (k=A)[1 + 
os(�=3) + p3 sin(�=3)℄, where � = �=2 �tan�1�(A2B+2k3)=p�A2B(A2B + 4k3)�. These redu
e to a single root R = R0 :=p2k=Awhen A2B = 4(�k)2, as seen in Fig. 5. In the latter 
ase, be
ause P (R) is negative for allpositive values of R other than R0, the solution of the �eld equations is simply R(t) = R0,whi
h makes a stati
, open universe, with negative spatial 
urvature k=R20.For the 
ase of two positive roots the behavior of H(R) and R(t) is shown in Fig. 6. Theuniverse modeled is a periodi
 universe, `breathing' mu
h as marine mammals breathe whendiving: inhaling by rapidly in
ating their lungs, holding the breath for a long interval, thenexhaling by rapidly de
ating the lungs to repeat the 
y
le. A sample run of a modi�ed versionof the program in the Appendix, starting from a boun
e with H(t0) = 72 (km/se
)/Mp
,Hmax = (5 � 1060)H(t0), and Q(t0) = 0, produ
es A = �8:1 � 10�300=
m2 and B = 1:9 �10�131=
m2, and yields results essentially the same as those of the sample run for A = 0,with the addition that Smax := Rmax=Rmin = 3:7 � 10182. A run starting from a `boun
eo� the 
eiling' (S(0) = Smax and _S(0) = 0) with the same inputs shows the length of
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R
Hmax = 
sA3 + 2 (�k)3=23pB

Hmin = �
sA3 + 2 (�k)3=23pB
4qB=(�k)R min R max0 0

!Expanding
Contra
ting 

R(t)

tRmin

Rmax

0Figure 6. Graphs of H(R) and R(t) for k = �1 and generi
 values of theparameters A (< 0) and B satisfying A2B < 4(�k)3, showing repetitive,identi
al periods of expansion and 
ontra
tion, ea
h beginning with a stage ofrapid in
ation from a boun
e at R = Rmin, whi
h is followed by a less rapidexpansion to R = Rmax, then a mirror-image 
ontra
tion to an ending stage ofrapid de
ation into the next boun
e at R = Rmin. The fun
tions are relatedby _R(t)=R(t) =: H(R(t)).
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y
le to be about 6:2 � 10139 se
onds, whi
h is 2:0 � 10132 years, the vast majority ofwhi
h is spent 
oasting: for 6:0 � 10139 of those se
onds S(t) > 1:7 � 10181 and jH(t)j <3:4� 10�119 (km/se
)/Mp
.Having examined all the 
osmologi
al models of Robertson{Walker type that obey themodi�ed �eld equations (7) and (8) with a negative a
tive gravitational mass density in
or-porated, let us turn now to the task of identifying a sour
e for that density. As it happens,there is ready to hand a 
andidate that �ts well into the present 
ontext. In 1973 I des
ribedin 
onsiderable detail a model of a gravitating parti
le alternative to the S
hwarzs
hild va
-uum solution of Einstein's �eld equations. This spa
e-time manifold, whi
h I termed a`drainhole', was dis
overed independently at about the same time by Bronnikov, has sub-sequently 
ome to be re
ognized as an early (perhaps the earliest) example of what is now
alled by some a `traversable wormhole', and has been analyzed from various perspe
tivesby others [9, 10, 11, 12, 13, 14, 15℄. The metri
 is a stati
, spheri
ally symmetri
 solution ofthe �eld equations (7) and (8) with � = �� = 0. (N.B. R�� and R here are the negatives ofthose in [9℄.) It has the proper-time forms (in units in whi
h 
 = 1)d� 2 = [1� f 2(�)℄ dT 2 � [1� f 2(�)℄�1 d�2 � r2(�) d
2= dt2 � [d�� f(�) dt℄2 � r2(�) d
2; (27)where t = T � Z f(�)[1� f 2(�)℄�1 d�,f 2(�) = 1� e�(2m=n)�(�) and r(�) =p(��m)2 + a2 e(m=n)�(�); (28)� = �(�) = na ��2 � tan�1���ma �� ; (29)and a := pn2 �m2, the parameters m and n satisfying 0 � m < n. (The 
oordinate � usedhere translates to �+m in [9℄.) The shapes and linear asymptotes of r and f 2 are shown inFig. 7. Not shown, but veri�able, is that f 2(�) � 2m=� as �!1.The 
hoke point of the drainhole throat is the 2-sphere at � = 2m, of radius r(2m), whi
hin
reases monotoni
ally from n to ne as m in
reases from 0 to n. Thus the size of the throatis determined almost ex
lusively by n, independently of m. Although the s
alar �eld � hasa nonkineti
 `energy' density that 
ontributes to the spa
e-time 
urvature through T��, thisenergy has little to do with the strength of gravity (as determined by m), rather is asso
iatedwith negative spatial 
urvatures found in the open throat, the negativity of whi
h mandatesthe nonstandard polarity of the 
oupling as expressed by a minus sign in T�� in Eq. (7).As a matter of perspe
tive, it is more insightful to 
onsider that the s
alar �eld does not
ause (i.e., is not a sour
e of) these spatial 
urvatures, but simply tells of their existen
eand des
ribes their 
on�guration. This perspe
tive helps disabuse one of the pe
uliar notionthat geometri
ally unex
eptionable spa
e-time manifolds su
h as the drainhole are somehow aprodu
t of `exoti
' matter just be
ause their Ri

i tensors disrespe
t some `energy 
ondition'.Moreover, it is not a great stret
h to surmise that, whereas the parameter m spe
i�es thea
tive gravitational mass of the (nonexoti
) drainhole parti
le, the size parameter n spe
i�esin some way its inertial rest mass. This spe
ulation is supported by two 
onsiderations: �rst,as shown in [9℄, the total energy of the s
alar �eld � lies in the interval from n=2 to n�=2,
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ne
n

slope = 1slope = �e m�=a

�

f2(�)

0 2m

11� e�2m�=a

Figure 7. Graphs of r(�) and f 2(�) for generi
 values of the parameters mand n.thus is essentially proportional to n; se
ond, it would seem likely that the bigger the hole,the greater the for
e needed to move it.Be
ause r(�) � n > 0 and f 2(�) < 1, the drainhole spa
e-time manifold is geodesi-
ally 
omplete and has no one-way event horizon, the throat being therefore traversable
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les and light in both dire
tions. The manifold is asymptoti
 as � ! 1 to aS
hwarzs
hild manifold with (a
tive gravitational) mass parameter m. The 
owing `ether' (a�gurative term for a 
loud of inertial observers free-falling geodesi
ally from rest at � =1)has radial velo
ity f(�) (taken as the negative square root of f 2(�)) and radial a

eleration(f 2=2)0(�), whi
h 
omputes to �m=r2(�) and therefore is strongest at � = 2m. Be
ause theradial a

eleration is everywhere aimed in the dire
tion of de
reasing �, the drainhole attra
tstest parti
les on the high, front side, where � > 2m, and repels them on the low, ba
k side,where � < 2m. Moreover, the manifold is asymptoti
 as �! �1 to a S
hwarzs
hild mani-fold with mass parameter �m = �mem�=a, so the drainhole repels test parti
les more stronglyon the low side than it attra
ts them on the high side, in the ratio � �m=m = em�=pn2�m2 .The drainhole is a kind of natural a

elerator of the `gravitational ether', drawing it in onthe high side and expelling it more for
efully on the low side. To repla
e the somewhatdisreputable term `ether' with something more a

eptable in polite so
iety one 
an imaginethat it is spa
e itself that is 
owing into the drainholes and out the other end. This should
ause no alarm, for the very notion of an expanding universe already imputes to spa
e therequisite plasti
ity.The dis
overy of the drainhole manifolds was, in my 
ase, a result of a sear
h for a modelfor gravitating parti
les that, unlike a S
hwarzs
hild spa
e-time manifold, would have nosingularity. Geodesi
 
ompleteness and absen
e of event horizons followed naturally fromthat requirement. As shown in [9℄, a drainhole possesses all the geodesi
 properties thata S
hwarzs
hild bla
khole possesses other than those that depend on the existen
e of itshorizon and its singularity, having eliminated the horizon and repla
ed the singularity witha topologi
al passageway to another region of spa
e. Drainholes are able, therefore, toreprodu
e all the externally dis
ernible aspe
ts of physi
al bla
kholes that S
hwarzs
hildbla
kholes reprodu
e. That their ba
k sides have never been re
ognizably observed (butin prin
iple 
ould be), is no more troubling than the impossiblity of dire
tly observing theba
k sides of S
hwarzs
hild horizons. For these reasons drainholes are more satisfa
torythan S
hwarzs
hild bla
kholes as mathemati
al models of 
enters of gravitational attra
tion.Moreover, there is little reason to doubt that rotating drainhole manifolds analogous to theKerr rotating bla
khole manifolds exist and will prove to be better models than the Kerrmanifolds. (A re
ently derived solution of the �eld equations (7) and (8) perhaps des
ribessu
h a manifold [16℄.)A physi
al 
enter of attra
tive gravity modeled by a drainhole would qualify to be 
alleda `darkhole', inasmu
h as (as shown in [9℄) it would 
apture photons and other parti
lesthat venture too 
lose, but, unlike a bla
khole, must eventually release them, either ba
kto the attra
ting high side when
e they 
ame or down through the drainhole and out intothe repelling low side. Thus one 
an imagine that at gala
ti
 
enters will be found notsupermassive bla
kholes, but supermassive darkholes instead. This, however, is not the endof the story. A 
entral tenet of the general theory of relativity is that every elementaryobje
t that `has gravity' is a manifestation of a lo
al departure of the geometry of spa
e-time from 
atness. If su
h an obje
t has other properties as
ribed to it by quantum theory,these must be additional to the underlying geometri
al stru
ture. I therefore propose thehypothesis that every su
h elementary gravitating obje
t is at its 
ore an a
tual physi
al
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ts to in
lude not only elementary 
onstituents of visible matter su
has protons and neutrons, or, more fundamentally, quarks, but also the unseen parti
les of`dark matter' whose existen
e is at present only inferential. Those drainholes asso
iated withvisible matter I will 
all `bright drainholes', those not so asso
iated, `dark drainholes'.The pure, isolated drainhole des
ribed by Eqs. (27), (28), and (29) is an `Einstein{Rosenbridge' between two otherwise disjoint `subuniverses' ea
h of whi
h by itself would for itsdes
ription 
onsume all the resour
es of a Robertson{Walker metri
. Nonisolated drainholes
ould presumably exist not only as `bridges' between our subuniverse and another, but alsoas `tunnels', with both their entran
es and their exits in our subuniverse. Both types 
ould
ontribute to the negative mass density �� as well as to �, the bridge drainholes 
ontributing to�� if their gravitationally repulsive ba
k sides reside in our subuniverse, the tunnel drainholes
ontributing to �� by way of their gravitationally repulsive exits. Tunnel drainholes are easyenough to visualize in abundan
e as topologi
al holes into whi
h spa
e disappears, onlyto reappear elsewhere, in analogy with rivers that go underground and surfa
e somewheredownstream. Existen
e of an abundan
e of bridge drainholes with their ba
k sides all residentin our subuniverse requires a more 
omplex visualization. At one extreme ea
h of their frontsides might be resident in its own subuniverse distin
t from those of the others. At theother extreme their front sides might all reside together in one subuniverse. Between theseextremes there 
ould be groups of various sizes, those in ea
h group sharing a subuniverse.If one invokes these bridge drainholes to supply a part of the negative mass density ��, thenone is fa
ed with the question of how their various subuniverses got `
lose enough' to oursto allow the bridges to form. Moreover, the magnitude of the density �� that they produ
edwould seem to depend on 
ir
umstan
es in those other subuniverses, 
ir
umstan
es beyondour ken. Neither of these questions arises in the 
ase of tunnel drainholes. I shall, therefore,assume that no bridge drainholes 
ontribute to ��, that the only possible 
ontributors aretunnel drainholes.La
king for the present a full mathemati
al des
ription of these tunnel drainholes, let usnevertheless pro
eed as if they exist and are 
hara
terized by parameters m and n relatedas in an isolated bridge drainhole. We 
an then 
onsider our (sub)universe to be popu-lated with both tunnel drainholes and the high, front sides of bridge drainholes (
all them`bridgefronts'), bright ones asso
iated with visible, baryoni
 matter, dark ones not so asso-
iated, these drainholes to provide all the gravity, attra
tive or repulsive, to be found in ouruniverse. It then be
omes a question of sorting the bright and the dark into tunnels andbridgefronts. The simplest sorting that will suit our purposes is to identify the bright drain-holes with the bridgefronts and the dark drainholes with the tunnels. (An ex
eption mightbe required for gala
ti
 
enters. Their ba
ksides 
ould be made highly visible by light thatfalls into the front sides and out the ba
k. If they are bridgefronts, they would be visible,but only in the di�erent subuniverses their ba
ksides reside in; that would make them darkbridgefronts. If they are tunnels, their ba
ksides would be visible in our subuniverse; thatwould make them bright tunnels. Be
ause the masses at the 
enters of galaxies are onlya small fra
tion of the total masses of the galaxies, su
h drainholes at gala
ti
 
enters, ifextant, are ignorable for present purposes.)
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ussed above,populated with drainholes, the bright bridgefronts asso
iated with visible, baryoni
 matter,the dark tunnels not, and distributed with an attra
tive gravitational mass density � anda repulsive density ��, whi
h 
ombine to produ
e the a

elerant A. What 
an we say about� and ��? Split � into � = �B + �D (B for bright bridgefronts, D for dark tunnels). Then��B = 0 (in our subuniverse) and from A = �4��
2 (� + ��) = �4��
2 (�B + �D + ��D) follows���D=�D = 1 + �B=�D + 
2A=4���D. If we assume that at ea
h epo
h the dark tunnels allhave the same mass and size parameters m and n, then ���D=�D = � �m=m = em�=a, so thatm=pn2 �m2 = m=a = ln(���D=�D)=� = ln(1 + �B=�D + 
2A=4���D)=�. This entails that�mn �2 = [ln(1 + �B=�D + 
2A=4���D)℄2�2 + [ln(1 + �B=�D + 
2A=4���D)℄2 : (30)Be
ause it is only the 
ombination �4��
2 (�B+�D+ ��D) that remains 
onstant, it is possiblefor the densities �B and �D to 
hange over time in some arbitrary fashion if ��D 
hanges to
ompensate. Indeed �D might not 
hange at all, whi
h would require `
ontinuous 
reation' ofdark tunnels to hold that density 
onstant in the expanding universe. In that 
ase �D wouldbe the density of 
old dark matter at the present epo
h, whi
h is estimated to be about 22%of the 
riti
al density �
 of the FRW standard model: �
 = 3H2(t0)=8�� = 9:7�10�30 g/
m3.The density �B of gravitating nu
lear matter, on the other hand, would be expe
ted to havegrown from its pre-nu
leosynthesis value of 0 to its value at the present epo
h, estimated tobe about 4% of �
. Thus the ratio �B=�D would have in
reased from 0 to 4/22 in the intervalfrom t = 0 to t = t0. For all the models detailed above that have A > 0, H(t0) = 
pA=3 to avery 
lose approximation, whi
h makes 
2A=4���D = 3H2(t0)=4��(0:22�
) = 2=0:22 = 9:09 .Equation (30) then shows m=n in
reasing from 0.593 when �B=�D = 0 to 0.596 when�B=�D = 4=22. If n is the Plan
k length, then, rounded o�, m = 0:60 � (1:6� 10�33 
m),whi
h is 1:3 � 10�5 grams (= 0.60 Plan
k mass) in units in whi
h 
 = � = 1. This has thedark tunnel parti
les gravitating (not `weighing') mu
h more than protons and neutrons, andantigravitating ten times as mu
h as that �� �m=m = exp�(m=n)�Æp1� (m=n)2 � = 10:6�.To maintain the density �D these tunnel parti
les would have to be 
reated at a rate thatwould keep on average one of their entran
es in every 6� 109 
ubi
 kilometers, whi
h wouldkeep the entran
es on average about 1800 kilometers apart. A re
ently reported study ofdwarf spheroidal satellite galaxies of the Milky Way found that they have a maximum 
entraldark matter density of approximately 5�108M�=kp
3 = 3:4�10�23 g/
m3 = 1:6�107�D [17℄.This density 
orresponds to a dark tunnel entran
e distribution of one per 384 
ubi
 kilo-meters on average, and a mean separation of seven kilometers. To de
rease the mass mand thereby in
rease these number densities would require taking n smaller than the Plan
klength.Now 
onsider the other extreme, in whi
h instead of the density �D staying �xed, the totala
tive gravitational mass of the dark matter is un
hanging, so that �D de
reases in inverseproportion to the 
ube of the s
ale fa
tor R: thus �D = �D,t = t0 [R(t0)=R(t)℄3. Equation (30)now reads �mn �2 = [ln(1 + �B=�D + (
2A=4���D,t = t0) [R(t)=R(t0)℄3)℄2�2 + � ln(1 + �B=�D + (
2A=4���D,t = t0) [R(t)=R(t0)℄3)�2 : (31)
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leosynthesis onward the total a
tive gravitational mass of baryoni
matter stays �xed, then during that interval �B = �B,t = t0 [R(t0)=R(t)℄3, so �B=�D =�B,t = t0=�D,t = t0 = 4=22. Before nu
leosynthesis �B=�D = 0. Here the ratio of m to nin
reases as t goes from 0 to 1, and does so monotoni
ally in the post-nu
leosynthesis era.When t = 0, m=n = 4:6� 10�183. When t = t0, m=n = 0:596 as in the 
ontinuous 
reation
ase. As t ! 1, m=n ! 1 and � �m=m ! 1 (the 
ow of the `gravitational ether' throughthe tunnels grows asymptoti
ally to the maximum rate that the tunnels 
an a

ommodate).In 
ontrast to the 
ontinuous 
reation version, whi
h drives the a

elerating expansion by
ontinually produ
ing new tunnel drainholes of �xed size and mass, this version drives it by
ontinuously in
reasing the masses of a �xed population of tunnel drainholes of 
ommon sizeparameter n. A mixture of the two modes 
ould produ
e the same a

elerant and thereforethe same a

eleration. And in neither 
ase is it 
arved in stone that the sizes must be uniformor 
onstant in time | only the ratio of m to n is determinate. Indeed, for a �xed populationof tunnels n would presumably have to have been at the time of the boun
e mu
h less thanthe Plan
k length, for at that time all of the tunnels now present in the observable universewould have been 
on�ned to a region whose radius was the Plan
k length.For the model with A = 0, and the ratio �B=�D growing from 0 at t = 0 to 4/22 att = t0, Eq. (30) shows m=n growing from 0 to 0.0531 in both the 
ontinuous 
reation andthe 
onstant �D modes. If n is the Plan
k length, then at the present epo
h m = 1:2� 10�6grams, whi
h gives an overall parti
le number density of one per 6�108 
ubi
 kilometers, anda dwarf spheroidal 
entral number density of one per 35 
ubi
 kilometers, with� �m=m = 1:18.For the model with A = �8:1� 10�300=
m2 the numbers are essentially the same.From these 
onsiderations it is apparent that tunnel drainholes in and of themselves 
anserve simultaneously as the unseen `dark matter' and the mysterious `dark energy' whoseexisten
es 
urrent 
osmologi
al observations demand. But this raises another interestingquestion: If dark matter, whi
h has re
ently been 
on
lusively tied to the galaxies in gala
-ti
 
lusters [18℄, 
onsists of the gravitationally attra
tive entran
es of tunnel drainholes,where do the repulsive exits of these tunnels 
ongregate? To represent su
h tunnels thesimple model of Eqs. (27), (28), and (29) would need modifying to one in whi
h the entran
eand the exit both lie in our subuniverse. It ought also be dynami
al, to allow a tunnel toarise where none was before, and to let the ends of the tunnel migrate. Not having in handsu
h a mathemati
al model as a solution of �eld equations, one is redu
ed to qualitativespe
ulations based on the presumption that one exists, as follows. (A simple nongravitatingdrainhole with a dynami
al aspe
t is des
ribed in [19℄.) If at some point in spa
e a stronglo
al 
on
entration of spatial 
urvature (a `quantum 
u
tuation', say) should develop, atunnel drainhole might form, through whi
h might begin to 
ow the gravitational `ether'(or, one 
ould equally well say, as noted above, spa
e itself, inasmu
h as expansion of theuniverse imputes to spa
e a 
ertain degree of liveliness). The entran
e and the exit of thisnewly 
reated two-sided parti
le, if 
lose together in the ambient spa
e, would drift apart asthe exit repelled the entran
e more strongly than the entran
e attra
ted the exit. Apply thisto a multitude of su
h parti
les and you will likely see the entran
es being brought togetherby both their mutual attra
tions and the repulsion from the exits. The exits, on the otherhand, would repel one another and would tend, therefore, to spread themselves more or less
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h they had expelled the entran
es. Herein lies a me
hanismfor 
reating the voids, walls, �laments, and nodes of the observed universe, thus explainingthe `void phenomenon' des
ribed by Peebles without resorting to the \perhaps desperateidea . . . that the voids have been emptied by the growth of holes in the [a
tive gravitational℄mass distribution" [20℄. What is more, the walls, �laments, and nodes so 
reated would likelybe, in agreement with observation, more 
ompa
ted than they would have been if formedby gravitational attra
tion alone, for the repulsive matter in the voids would in
rease the
ompa
tion by pushing in on the 
lumps of attra
tive matter from many dire
tions witha nonkineti
, positive pressure produ
ed by repulsive gravity, a pressure not to be 
onfusedwith the negative pseudo-pressure 
onje
tured in the 
on�nes of Einstein's assumption to bea produ
er of repulsive gravity.Let us now summarize the essential points of the developments detailed above.� First, analysis of Einstein's argument for the proposition that energy is a sour
e ofgravity reveals a gap in the logi
, redu
ing the proposition from a 
on
lusion to anassumption.� Se
ond, denying that assumption prompts 
onstru
tion of a variational prin
iple thatis the most straightforward extension to the general relativity setting of the variationalprin
iple that yields the Poisson equation for the newtonian gravitational potential.� Third, addition of a 
osmologi
al 
onstant term to this variational prin
iple shows the
osmologi
al 
onstant to be a negative a
tive gravitational mass density in disguise.� Fourth, in
lusion of a s
alar �eld in the variational prin
iple along with positive andnegative mass densities yields �eld equations essentially di�erent from those of Einstein.� Fifth, these �eld equations have 
osmologi
al solutions that exhibit a

eleration, owedto the negative mass density, 
oasting, and in
ation, owed to the s
alar �eld and thenonstandard polarity of its 
oupling to the spa
e-time geometry, a 
oupling polarity
onsistent with the denial of the assumption that energy produ
es gravity.� Sixth, owing also to the nonstandard polarity of the s
alar �eld 
oupling, these solutionshave no singularity, thus no `big bang', only a `big boun
e' o� a state of maximum
ompression.� Seventh, the same �eld equations, with a time-independent, spatially varying s
alar�eld, have long-known, va
uum, drainhole solutions that, with modi�
ations, modelparti
les 
apable of serving both as the dark matter holding galaxies and gala
ti
 
lus-ters together and as the 
osmologi
al-
onstant `dark energy' that, in its undisguisedform, is seen to be a repulsive gravitational mass density driving the a

elerating ex-pansion of the universe.� Eighth, the repulsive and the attra
tive sides of these drainholes would likely segregatethemselves into the great material voids of the universe and the dark matter 
lumpedaround the walls, �laments, and nodes that border the voids.One 
an with some 
on�den
e assert, on the basis of these eight points, that 
osmi
a

eleration, in
ation, dark matter, and dark `energy', not to mention 
oasting, voids, walls,�laments, and nodes, have been found wrapped in one neat pa
kage, namely, the variationalprin
iple ÆR [R � 8��
2 (�+ ��) + 2�:
�:
℄ jgj 12d4x = 0 and the �eld equations it implies.
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a program exhibited here with the outputs of a sample run takes asinputs H(t0), Hmax, and Q(t0), where t0 is the present epo
h, solves Eqs. (21), (15), and(24) for A, B, and R(t0), 
omputes Rmin, RHmax, RQmin, Qmin, RHmax=Rmin, RQmin=Rmin, andR(t0)=Rmin, then integrates Eq. (26) for the normalized s
ale fa
tor S := R=Rmin from 0se
onds to targettime se
onds (user spe
i�ed), subje
t to the initial 
onditions S(0) = 1 and_S(0) = 0 at the boun
e. The inputs H(t0), Hmax, and Q(t0) are set in the �le data.m as H0,Hmax, and Q0. The targettime is set in the �le IterateS.m.At the author's home page (http://eu
lid.
olorado.edu/~ellis/) one 
an link to and 
opythe �les data.m, solveABR0.m, Pro
EqS.m, and IterateS.m, along with a Mathemati
a note-book, SampleRun.nb, that runs the program and also produ
es the graph in Fig. 4. Alsoavailable there is a more elaborate, intera
tive Mathemati
a notebook, Cosmi
Evolution.nb,and asso
iated �les nbdata.m, nbsolveABR0.m, nbPro
EqS.m, and nbIterateS.m, with whi
hone 
an perform all the 
al
ulations for the k = �1 model with A > 0, A = 0, or A < 0.--------------------------------------------------------------------------------------------------- Sample run of the program ------------------------In[1℄:= <<data.m 10 20-1. 2.99792 10 Centimeter -8.98755 10k = -----------, 
 = -----------------------, 
^2 k = -------------2 Se
ond 2Centimeter Se
ond-18 -2972 Kilo Meter 2.33334 10 7.7832 10H0 = ------------------ = -------------, H0/
 = ------------Mega Parse
 Se
ond Se
ond Centimeter62 43 323.6 10 Kilo Meter 1.16667 10 3.8916 10Hmax = ------------------- = ------------, Hmax/
 = -----------Mega Parse
 Se
ond Se
ond Centimeter60Q0 = 0.5, Hmax/H0 = 5. 10Memory in use = 3.128159 megabytesIn[2℄:= <<solveABR0.m -57-3.02891 10
urvature of spa
e at present epo
h = k0 = --------------2Centimeter-57 -1319.08673 10 1.93778 10 28A = -------------, B = --------------, R0 = 1.81701 102 2Centimeter Centimeter



COSMIC ACCELERATION, INFLATION, DARK MATTER, AND DARK `ENERGY' 21-36 -21 -1108.16674 10 8.13311 10 1.74159 10
^2 A = ------------- = -------------, 
^2 B = --------------2 2 2Se
ond Year Se
ond-33 -33Rmin = 1.59421 10 , RHmax = 2.0981 10-13 -82RQmin = 4.52022 10 , Qmin = 9.28318 10 20 61RHmax/Rmin = 1.31607, RQmin/Rmin = 2.83540 10 , R0/Rmin = 1.13975 10Memory in use = 4.427139 megabytesIn[3℄:= <<Pro
EqS.mMemory in use = 4.480110 megabytesIn[4℄:= <<IterateS.m 19 11targettime in se
onds = 1. 10 ; targettime in years = 3.17098 1019lowtime = 0., hightime = 1. 1067 35Ssol[targettime℄ = 8.34272 10 , Rsol[targettime℄ = 1.33001 10-181.64992 10 50.9117 Kilo MeterHsol[targettime℄ = ------------- = ------------------Se
ond Mega Parse
 Se
ondMemory in use = 189.8900 megabytesIn[5℄:= troots = {FindRoot[Log[2, Ssol[t℄℄ == 100, {t, 10^(-15)}℄, \FindRoot[Rsol[t℄ == N[R0,6℄, {t, targettime/2}℄}-14 17Out[5℄= {{t -> 6.74097 10 }, {t -> 5.34191 10 }}In[6℄:= {t100doublings = t /. troots[[1℄℄, t0 = t /. troots[[2℄℄}-14 17Out[6℄= {6.74097 10 , 5.34191 10 }In[7℄:= Convert[t0 Se
ond, Year℄10Out[7℄= 1.69391 10 Year



COSMIC ACCELERATION, INFLATION, DARK MATTER, AND DARK `ENERGY' 22In[8℄:= {N[Hsol[t100doublings℄,6℄, Rsol[t100doublings℄, \Rsol[t100doublings℄/N[RHmax,1000℄}131.48347 10 29Out[8℄= {------------, 0.00202089, 9.63201 10 }Se
ondIn[9℄:= {Log[2, 1 + t0℄, Log[2, Ssol[t0℄℄, N[Log[2, Ssol[targettime℄℄,6℄}Out[9℄= {58.8901, 202.826, 225.630}In[10℄:= {Qsol[10^(-42)℄, Qsol[10^17℄}Out[10℄= {0.0000141076, 0.0267359}In[11℄:= N[Convert[10^17 Se
ond, Year℄℄9Out[11℄= 3.17098 10 YearIn[12℄:= {Qsol[t0/2℄, Qsol[t0℄, Qsol[2 t0℄, Qsol[targettime℄}Out[12℄= {0.171573, 0.5, 0.888889, 1.}In[13℄:= Exit--------------------- End of sample run of the program -----------------------------------------------------------------------------------------------------(**************************** filename: data.m *****************************)<<Mis
ellaneous`Physi
alConstants`<<Mis
ellaneous`Units`$MaxPre
ision = Infinity$MaxExtraPre
ision = InfinityUSimplify[x_℄ := Simplify[x, Assumptions -> {Meter > 0, Centimeter > 0,Se
ond > 0, Year > 0}℄(***************************************************************************)(***** Enter input data in rational number form (no de
imal points). *****)H0 = 72 (Kilo Meter/Se
ond)/(Mega Parse
) (* H0 := H(t0); t0 is the *)Hmax = (5 10^60) H0 (* present epo
h in se
onds. *)Q0 = 1/2 (* Q0 := Q(t0); Q0 must be *)(* between 0 and 1. *)(***************************************************************************)k = -1/Centimeter^2
 = Convert[SpeedOfLight, Centimeter/Se
ond℄H0se
 = Convert[H0, 1/Se
ond℄Hmaxse
 = Convert[Hmax, 1/Se
ond℄H0
m = H0se
/
Hmax
m = Hmaxse
/
Print[StringForm[" "℄℄Print[StringForm["k = ``, 
 = ``, 
^2 k = ``",N[k℄ , N[
℄ , N[
^2 k℄ ℄℄
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 = ``",H0, N[H0se
℄, N[H0
m℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Hmax = `` = ``, Hmax/
 = ``",N[Hmax℄, N[Hmaxse
℄, N[Hmax
m℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Q0 = ``, Hmax/H0 = ``",N[Q0℄ , N[Hmax/H0℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Memory in use = ``",N[MemoryInUse[℄/2^20,7℄ megabytes℄℄(*************************** End of file data.m ****************************)-------------------------------------------------------------------------------(************************** filename: solveABR0.m **************************)(*****************************************************************************)(* *)(* This Mathemati
a program take the inputs from data.m, 
omputes in terms *)(* of the input parameters H0, Q0, and Hmax the parameters A, B, and R0 *)(* that satisfy the equations *)(* *)(* 2 *)(* H0 A 3 k B *)(* --- = - - --- - --- , *)(* 2 3 2 6 *)(* 
 R0 R0 *)(* *)(* 2 3/2 *)(* Hmax A 2 (-k) *)(* ----- = - + --------- , *)(* 2 3 1/2 *)(* 
 3 B *)(* *)(* 2 4 *)(* 
 (k R0 + B) *)(* and Q0 = 1 + -------------- , *)(* 2 6 *)(* H0 R0 *)(* *)(* and 
omputes from them other parameters of interest. *)(* *)(*****************************************************************************)(*t0 := present epo
h in se
ondsH0 := H(t0)Q0 := Q(t0)R0 := R(t0)X := H0/
Y := Hmax/
Z := Q0



COSMIC ACCELERATION, INFLATION, DARK MATTER, AND DARK `ENERGY' 24k0 := k/R0^2 (* k0 = 
urvature of spa
e at present epo
h. *)B0 := B/R0^6X^2 = H0^2/
^2= A/3 - k/R0^2 - B/(3 R0^6)= A/3 - k0 - B0/3Y^2 = Hmax^2/
^2= A/3 + 2 (-k)^(3/2)/(3 Sqrt[B℄)= A/3 + 2 (-k0)^(3/2)/(3 Sqrt[B0℄)Z = Q0= 1 + k/((H0^2/
^2) R0^2) + B/((H0^2/
^2) R0^6)= 1 + k0/X^2 + B0/X^2*)Clear[X, Y, Z, A, B, k0, R0, B0℄X = H0se
/
; Y = Hmaxse
/
; Z = Q0;R0 = Sqrt[k/k0℄B0 = X^2 (Z - 1) - k0A = 3 X^2 + 3 k0 + B0B = B0 R0^6(* The formula below for k0 was obtained by solving the X^2, Y^2, and Z *)(* equations in an an
illary Mathemati
a session. *)k0 = USimplify[(3 X^2 (Z + 2) - 3 Y^2)(X^2 (Z - 2) + Y^2) +Sqrt[3℄ Sqrt[(X^2 (Z + 2) - 3 Y^2)^3 (X^2 (3 Z - 2) - Y^2)℄)/(24 (X^2 - Y^2))℄Print[StringForm[" "℄℄Print[StringForm["
urvature of spa
e at present epo
h = k0 = ``",N[N[k0,1000℄℄ ℄℄RHmax = (B/(-k))^(1/4)Q[R_℄ := 1 + 
^2 (k R^4 + B)/(H[R℄^2 R^6)H[R_℄ := 
 Sqrt[(A R^6 - 3 k R^4 - B)/(3 R^6)℄Print[StringForm[" "℄℄Print[StringForm["A = ``, B = ``, R0 = ``",N[N[A,1000℄℄, N[N[B,1000℄℄, N[N[R0,1000℄℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["
^2 A = `` = ``, 
^2 B = ``",N[N[
^2 A,1000℄℄, N[N[
^2 A (31557600 Se
ond/Year)^2,1000℄℄,N[N[
^2 B,1000℄℄ ℄℄(* The formula below for Rminsqr was obtained by solving the equation *)(* (1/
^2) H^2(R) = (A R^6 - 3 k R^4 - B)/(3 R^6) = 0 *)(* for R^2 in an an
illary Mathemati
a session. *)Rminsqr = If[USimplify[(A^2 B + 4 k^3) Centimeter^6℄ >= 0,USimplify[(k/A) (1 + 2^(1/3) k/(A^2 B + 2 k^3 + Sqrt[A^2 B (A^2 B + 4 k^3)℄)^(1/3) +(A^2 B + 2 k^3 + Sqrt[A^2 B (A^2 B + 4 k^3)℄)^(1/3)/(2^(1/3) k))℄,(k/A)(1 - 2 Cos[theta/3℄)℄
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Tan[(A^2 B + 2 k^3)/Sqrt[-A^2 B (A^2 B + 4 k^3)℄℄℄Rmin = Sqrt[Rminsqr℄Print[StringForm[" "℄℄Print[StringForm["Rmin = ``, RHmax = ``",N[N[Rmin,1000℄℄, N[N[RHmax,1000℄℄ ℄℄(* The formula below for RQminsqr was obtained by solving the equation *)(* dQ/dR = -2 
^4 (A k R^6 + 3 A B R^2 - 4 B k)/(R^6 H^4(R)) = 0 *)(* for R^2 in an an
illary Mathemati
a session. *)RQminsqr = USimplify[(B/A)^(1/3)((2 + Sqrt[4 + A^2 B/k^3℄)^(1/3) +(2 - Sqrt[4 + A^2 B/k^3℄)^(1/3))℄RQmin = Sqrt[RQminsqr℄; Qmin = Q[RQmin℄Print[StringForm[" "℄℄Print[StringForm["RQmin = ``, Qmin = ``",N[N[RQmin,1000℄℄, N[N[Qmin,1000℄℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["RHmax/Rmin = ``, RQmin/Rmin = ``, R0/Rmin = ``",N[RHmax/Rmin,6℄, N[RQmin/Rmin,6℄, N[R0/Rmin,6℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Memory in use = ``",N[MemoryInUse[℄/2^20,7℄ megabytes℄℄(************************* End of file solveABR0.m *************************)-------------------------------------------------------------------------------(******************** filename: Pro
EqS.m (S := R/Rmin) ********************)term1[t_℄ := USimplify[
^2 A/3 Se
ond^2℄ S[t℄term2[t_℄ := (N[USimplify[2 
^2 B Se
ond^2℄,1000℄/N[(3 Rmin^6),1000℄)/S[t℄^5state = First[NDSolve`Pro
essEquations[{Sdot'[t℄ == term1[t℄ + term2[t℄,S'[t℄ == Sdot[t℄,S[0℄ == 1, Sdot[0℄ == 0},{S, Sdot}, t,A

ura
yGoal -> 50, Pre
isionGoal -> 50,WorkingPre
ision -> 100, MaxSteps -> Infinity℄℄Print[StringForm[" "℄℄Print[StringForm["Memory in use = ``",N[MemoryInUse[℄/2^20,7℄ megabytes℄℄(************************** End of file Pro
EqS.m **************************)-------------------------------------------------------------------------------(******************* filename: IterateS.m (S := R/Rmin) ********************)<<DifferentialEquations`InterpolatingFun
tionAnatomy`targettime = targettimese
 = 10^19targettimeyr = targettimese
/(60*60*24*365)Print[StringForm[" "℄℄Print[StringForm["targettime in se
onds = ``; targettime in years = ``",N[N[targettimese
,1000℄℄ , N[N[targettimeyr,1000℄℄ ℄℄
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essSolutions[state℄Ssol = S /. solSdotsol = Sdot /. solRsol[t_℄ := N[Rmin Ssol[t℄,1000℄term1sol[t_℄ := N[N[USimplify[
^2 A/3 Se
ond^2℄,1000℄℄ Ssol[t℄term2sol[t_℄ := (N[USimplify[2 
^2 B Se
ond^2℄,1000℄/N[(3 Rmin^6),1000℄)/Ssol[t℄^5Sddotsol[t_℄ := term1sol[t℄ + term2sol[t℄Hsqrsol[t_℄ := USimplify[
^2 (N[A/3,1000℄ - N[k/Rsol[t℄^2,1000℄- N[B/(3 Rsol[t℄^6),1000℄)℄Hsol[t_℄ := USimplify[Sqrt[Hsqrsol[t℄℄℄Qsol[t_℄ := (Sddotsol[t℄/Ssol[t℄)/(Sdotsol[t℄/Ssol[t℄)^2{lowtime, hightime} = InterpolatingFun
tionDomain[First[S /. sol℄℄[[1,1℄℄Print[StringForm[" "℄℄Print[StringForm["lowtime = ``, hightime = ``",N[lowtime℄ , N[hightime℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Ssol[targettime℄ = ``, Rsol[targettime℄ = ``",N[Ssol[targettime℄℄ , N[Rsol[targettime℄℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Hsol[targettime℄ = `` = ``",N[Hsol[targettime℄℄,N[Convert[Hsol[targettime℄,(Kilo Meter)/(Mega Parse
 Se
ond)℄℄ ℄℄Print[StringForm[" "℄℄Print[StringForm["Memory in use = ``",N[MemoryInUse[℄/2^20,7℄ megabytes℄℄(************************* End of file IterateS.m **************************)-------------------------------------------------------------------------------Referen
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