

H is a normal subgroup of G.	There is only 1 group of order n if and only if n and $\varphi(n)$ are relatively prime. Note that φ is the totient function.
The group is abelian. Pf: Center of p-group is nontrivial, so suppose $\|Z(G)\|=p$. $Z(G)$ normal, so quotient $G / Z(G)$ has order p and is cyclic. Quotient is generated by element $a+Z(G)$ so all cosets are $n a+Z(G)$ for integer n. For $x, y \in G, x=n a+z_{1}$ and $y=m a+z_{2}$. Then $x+y=n a+z_{1}+m a+z_{2}=n a+m a+z_{1}+z_{2}=$ $(n+m) a+z_{2}+z_{2}=z_{2}+m a+n a+z_{1}=m a+z_{2}+n a+z_{1}=y+x$. Thus G was abelian.f	Method One: Let K be a cyclic group, H an arbitrary normal group, and φ_{1}, φ_{2} both homomorphisms $K \rightarrow \operatorname{Aut}(H)$. If $\operatorname{im} \varphi_{1}=\operatorname{im} \varphi_{2}$, then $H \rtimes_{\varphi_{1}} K \cong H \rtimes_{\varphi_{2}} K$ Method Two: Let K be an arbitrary group, H an arbitrary normal group, and φ_{1}, φ_{2} both homomorphisms $K \rightarrow$ $\operatorname{Aut}(H)$. If $\operatorname{im} \varphi_{1}$ and $\operatorname{im} \varphi_{2}$ are conjugate subgroups of $\operatorname{Aut}(H)$, then $H \rtimes_{\varphi_{1}} K \cong H \rtimes_{\varphi_{2}} K$
It is S_{3} because the three non-identity elements are all equivalent and can be shuffled freely while still preserving the group structure.	Yes, this is called Goursat's lemma.
Let G be a group acting on a set A. If distinct elements of G induce distinct permutations of the elements of A, then the action is faithful. If for every $a, b \in A$, there exists some $g \in G$ such that $g \cdot a=b$, then the action is transitive. The kernel of a group action is $\{g \in G \mid g \cdot a=a \forall a \in A\}$.	Let G be a group acting on set A. Then for $a \in A$, $\|G\| /\|\operatorname{stab}(\mathrm{x})\|=\mid \operatorname{orb}(x)=[G: \operatorname{stab}(\mathrm{x})]$
For groups (G, \times) and (H, \cdot), the map $\varphi: G \rightarrow H$ is a homomorphism if for all $x, y \in G, \varphi(x \times y)=\varphi(x) \cdot \varphi(y)$.	Let $g \in \operatorname{Stab}_{G}(a)$. Since G acts transitively, there exists $h \in G$ such that $h a=b$. Then $g b=g h a=h g a=h a=b$ and so $g \in \operatorname{Stab}_{G}(b)$ as well. By symmetry, the two groups are equal.

Groups What is the subgroup criterion? Algebra Prelim	Groups What are the normalizer and centralizer of a subset S of group G ? What is the relationship between the normalizer and the centralizer? Algebra Prelim
Groups State several equivalent characterizations of normality of a subgroup Algebra Prelim	Groups State and prove Lagrange's Theorem Algebra Prelim
Groups State Cauchy's Theorem Algebra Prelim	Groups Let G be a group with subgroups H, K. What is the order of $H K$? Algebra Prelim
Groups If H, K are subgroups of G, when is $H K$ also a subgroup of G ? Can you think of a sufficient (and easier to check) condition that makes $H K$ a subgroup?	Groups State the First Isomorphism Theorem for groups Algebra Prelim
Groups State the Second (Diamond) Isomorphism Theorem for groups	Groups State the Third Isomorphism Theorem for groups Algebra Prelim

normalizer: $N_{G}(S)=\left\{g \in G \mid g^{-1} S g=S\right\}$
The normalizer fixes the subset under conjugation.
centralizer: $C_{G}(S)=\left\{g \in G \mid g^{-1} s g=s, s \in S\right\}$
The centralizer fixes each element under conjugation.

The centralizer is a normal subgroup of the normalizer.

Let G be a finite group and H a subgroup. Then $|H|$ divides $|G|$ and the number of left cosets of H in G is $|G| /|H|$.

Pf: Let $|H|=n$ and let the number of left cosets of H be k. Consider a map from H to a coset, $\varphi: H \rightarrow g H$ by $h \mapsto g h$ for some particular $g \in G$. This map is surjective by definition of left coset and injective by cancellation law. So every coset has size n. Since these left cosets partition G and there are k of them, $|G|=k n$.
Let G be a finite group and H a subgroup. Then $|H|$ divides
$|G|$ and the number of left cosets of H in G is $|G| /|H|$.
$P f:$ Let $|H|=n$ and let the number of left cosets of H be
k. Consider a map from H to a coset, $\varphi: H \rightarrow g H$ by
$h \mapsto g h$ for some particular $g \in G$. This map is surjective
by definition of left coset and injective by cancellation law.
So every coset has size n. Since these left cosets partition
G and there are k of them, $|G|=k n$.

For a group G and subset H, H is a subgroup of G if and only if

1. H is nonempty and
2. for all $x, y \in H, x y^{-1} \in H$.

If H is finite, it suffices to check that H is nonempty and closed under multiplication.

Let N be a subgroup of G. Then TFAE:

- $N \unlhd G$
- $N_{G}(N)=G$
- $g N=N g$ for all $g \in G$
- The cosets of N form a group
- $g N g^{-1} \subseteq N$ for all $g \in G$
- N is the kernel of some homomorphism of G

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

If G is a finite group and p is a prime dividing $|G|$, then G has an element of order p.

If $\varphi: G \rightarrow H$ is an isomorphism of groups, then $\operatorname{ker} \varphi \unlhd G$ and $G / \operatorname{ker} \varphi \cong \varphi(G)$.

HK is a subgroup if and only if $H K=K H$. Note that this does not mean that the elements of H and K commute.

If $H \leq N_{G}(K)$ then $H K$ is a subgroup. In particular if K is normal, then $H K$ is a subgroup.

Let G be a group and let H, K be normal subgroups of G with $H \leq K$. Then $K / H \unlhd G / H$ and $(G / H) /(K / H) \cong G / K$.

Let G be a group with subgroups A, B and $A \leq N_{G}(B)$. Then AB is a subgroup of $G, B \unlhd A B, A \cap B \unlhd A$ and $A B / B \cong A / A \cap B$.

Let G be a group. Then a composition series is a sequence of subgroups

$$
1=N_{0} \leq N_{1} \leq N_{2} \leq \cdots \leq N_{k-1} \leq N_{k}=G
$$

such that $N_{i} \unlhd N_{i+1}$ and N_{i+1} / N_{i} is a simple group. The quotients N_{i+1} / N_{i} are called composition factors of G.

A p-group has a normal subgroup for every divisor of its order, so we can form a chain of normal subgroups each of index p relative to the group above it. Then each quotient is of order p and thus abelian. This mean the p-group is solvable.

Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of G which contain N onto the set of subgroups $\bar{A}=A / N$ of G / N.

A group G is solvable if there is a chain of subgroups

$$
1=G_{0} \unlhd G_{1} \unlhd G_{2} \unlhd \cdots \unlhd G_{s}=G
$$

such that G_{i+1} / G_{i} is abelian.

Every group is isomorphic to a subgroup of some symmetric group. If G is a group of order n, then G is isomorphic to a subgroup os S_{n}.

1. True
2. H is the stabilizer in G of the point $1 H$
3. The kernel of π_{H} is $\bigcap_{x \in G} x H x^{-1}$. This kernel is the largest normal subgroup of G contained in H.

The number of conjugates of a subset S is the index of the normalizer of $S,\left|G: N_{G}(S)\right|$. In particular, the number of conjugates of an element S of G is the index of the centralizer of $s,\left|G: C_{G}(s)\right|$.
H is normal in G.

Let G be a finite group. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|
$$

where $Z(G)$ is the center of G and each g_{i} is a representative from a conjugacy class of G not contained in $Z(G)$.

Groups	Groups
Complete this sentence: Group H is isomorphic to a subgroup of group G if and only if there exists a \qquad homomorphism from H to G.	Name two different methods for writing (1234) as a product of transpositions.
	Algebra Prelim
Groups	Groups
State the definition of a characteristic subgroup.	Let G be a group and H be a subgroup. What is the relationship between H and gHg^{-1} for any element $g \in G$? What is the relationship if H is normal?
Algebra Prelim	Algebra Prelim
Groups	Groups
Let G be a group and H be a subgroup. Let G act on H by conjugation. What is the kernel of the permutation representation of G afforded by this group action?	If K is a characteristic subgroup of H and H is a normal subgroup of G. What can we say about K relative to G ?
Algebra Prelim	Algebra Prelim
Groups	Groups
What is the isomorphism type of $\operatorname{Aut}(G)$ if G is cyclic of order n ? What is the order of $\operatorname{Aut}(G)$?	What is the order of the automorphism group of $\mathbb{Z} / n \mathbb{Z}$ when n is a prime? What if n is not prime?
Algebra Prelim	Algebra Prelim
Groups	Groups
What is isomorphism type of the automorphism group of $(\mathbb{Z} / p \mathbb{Z})^{n}$?	What is the isomorphism type of $\operatorname{Aut}\left(D_{8}\right)$?
Algebra Prelim	Algebra Prelim

Head-to-Tail method: (1 4) (1 3) (1 2) Swap-the-Last-to-First method: (1 2) (2 3) (3 4)	injective
H is always isomorphic to gHg^{-1}. If H is normal, then conjugation by g is an automorphism of H.	A subgroup H of a group G is characteristic if every automorphism of G maps H to itself.
K is normal in G.	The permutation representation afforded by this action of g on H is a homomorphism of G into $\operatorname{Aut}(H)$ with kernel $C_{G}(H)$.
In both cases, the order of the automorphism group if $\varphi(n)$ where φ is the totient function. If $n=p$ is a prime, then $\operatorname{Aut}(\mathbb{Z} / p / Z) \cong \mathbb{Z} /(p-1) \mathbb{Z}$. If $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, then $\mathbb{Z} / n \mathbb{Z}^{\times} \cong\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{k}^{e_{k}} \mathbb{Z}\right)^{\times}$ by Chinese Remainder Theorem or structure theorem for modules over PIDs.	$\operatorname{Aut}(G) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$, which is of order $\varphi(n)$ where φ is the totient function. $\operatorname{Aut}(G)$ is isomorphic to the units of $\mathbb{Z} / n \mathbb{Z}$ because an automorphism of G is uniquely determined by mapping any generator to any other generator.
$\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$	$\operatorname{Aut}\left((\mathbb{Z} / p \mathbb{Z})^{n}\right)=G L_{n}(\mathbb{Z} / p \mathbb{Z})$ $\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\}$ is a basis for $(\mathbb{Z} / p \mathbb{Z})^{n}$ as a vector space. Take any $\left\{v_{1}, \ldots, v_{n}\right\}$. By Linear algebra we have that the mapping $T\left(e_{i}\right)=v_{i}$ extends uniquely to a linear transformation of V. Each such T is a group endomorphism from V to V and likewise any endomorphism of V is a linear map of V as a vector space. If we restrict our attention to automorphisms of V we have $\operatorname{Aut}(V)=\{T: V \rightarrow V \mid \operatorname{ker} T=0\}=G L_{n}(\mathbb{Z} / p \mathbb{Z})$.

Groups What is the isomorphism type of $\operatorname{Aut}(Q 8)$? Algebra Prelim	Groups Suppose n is a positive integer but $n \neq 6$. What is the isomorphism type of $\operatorname{Aut}\left(S_{n}\right)$? What is the index of $\operatorname{Inn}\left(S_{n}\right)$ in $\operatorname{Aut}\left(S_{n}\right)$? Algebra Prelim
Groups State Sylow's Theorem. Algebra Prelim	Groups Let P be a normal Sylow p-subgroup of G. What is the image of P under any element of Aut (G) ? How many other Sylow p-subgroups besides P are there? Algebra Prelim
Groups For what values of n is A_{n} a simple group? Algebra Prelim	Groups State the Fundamental Theorem of Finitely Generated Abelian Groups. Algebra Prelim
Groups Determine all possible abelian groups of order 180 by using invariant factors Algebra Prelim	Groups Describe the process of obtaining elementary divisors from invariant factors. Then describe the process of obtaining invariant factors from elementary divisors. Algebra Prelim
Groups Table of Groups of Small Order: List all groups of order n for $n \in\{1,2,3,4,5\}$	Groups Table of Groups of Small Order: List all groups of order n for $n \in\{6,7,8,9,10\}$
Algebra Prelim	Algebra Prelim

For all $n \neq 6, \operatorname{Aut}\left(S_{n}\right) \cong S_{n}$.
Symmetric groups aside from S_{6} have only inner automorphisms, so $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ and the index of $\operatorname{Inn}\left(S_{n}\right)$ in $\operatorname{Aut}\left(S_{n}\right)$ is 1.
$\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$

The image of P under an automorphism of G is just P itself. This is because normal Sylow p-subgroups are characteristic.

There are no other Sylow p-subgroups besides P. Conjugation by elements of G induces a transitive action on the set of Sylow p-subgroups, so if P is normal, there are no other Sylow p-subgroups.

Let G be a group of order $p^{\alpha} m, p \nmid m$. Let $n_{p}=\left|S y l_{p}(G)\right|$.

1. If $P \in S y l_{p}(G)$ and Q is any p-subgroup, then Q is a subgroup of some conjugate of P.
2. $n_{p} \equiv 1 \bmod p$.
3. $n_{p} \mid m$. This is because $n_{p}=\left[G: N_{G}(P)\right]$

Let G be a finitely generated abelian group. Then

1. $G \cong \mathbb{Z}^{r} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{s}}$ for integers r, n_{1}, \ldots, n_{s} such that $r \geq 0, n_{j} \geq 2$ for all j, and $n_{i+1} \mid n_{i}$ for all $1 \leq i \leq s-1$ and
2. the expression in (1) is unique

For $n \neq 4$.
Invariant factors to elementary divisors: Factor each invariant factor into prime powers. This list of prime powers are the elementary divisors.

Elementary divisors to invariant factors: Group together the elementary divisors that are powers of the same prime. The largest invariant factor is the product of highest power primes in each group. The second invariant factor is the product of second-highest power primes in each group, and so on.
$180=2^{2} \cdot 3^{2} \cdot 5$, so the possible invariant factors (and the corresponding abelian groups) are listed below:

Invariant factors	Abelian Groups
$2^{2} \cdot 3^{2} \cdot 5$	\mathbb{Z}_{180}
$2 \cdot 3^{2} \cdot 5,2$	$\mathbb{Z}_{90} \times \mathbb{Z}_{2}$
$2^{2} \cdot 3 \cdot 5,3$	$\mathbb{Z}_{60} \times \mathbb{Z}_{3}$
$2 \cdot 3 \cdot 5,2 \cdot 3$	$\mathbb{Z}_{30} \times \mathbb{Z}_{6}$

Order	Group
6	\mathbb{Z}_{6}, S_{3}
7	\mathbb{Z}_{7}
8	$\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}, D_{8}, Q_{8}$
9	$\mathbb{Z}_{9}, \mathbb{Z}_{3}^{2}$
10	\mathbb{Z}_{10}, D_{10}

All of these groups are cyclic.

Order	Group
1	\mathbb{Z}_{1}
2	\mathbb{Z}_{2}
3	\mathbb{Z}_{3}
4	$\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
5	\mathbb{Z}_{5}

Groups Table of Groups of Small Order: List all groups of order n for $n \in\{11,12,13,14,15\}$	Groups Table of Groups of Small Order: List all abelian groups of order 16. List 3 non-abelian groups of order 16. Algebra Prelim
Groups Table of Groups of Small Order: List all groups of order n for $n \in\{17,18,19,20\}$ Algebra Prelim	Groups Classify all groups of order $p q$ when p, q are distinct primes. Algebra Prelim
Groups Let G be a group and let $x, y \in G$. What is $[x, y]$, the commutator of x and y ? Why is it called a commutator?	Groups What is a commutator subgroup of a group G ? Is it a normal subgroup? If so, what can we say about the quotient of G by the commutator subgroup? Algebra Prelim
Groups What factoring property does the map $G \rightarrow G /[G, G]$ have ? Algebra Prelim	Groups What is the universal property of the abelianization?
Groups Prove that $[G, G] \unlhd G$ Algebra Prelim	Groups State the recognition theorem for the direct and semidirect product of groups. Algebra Prelim

Groups	Groups
True or False: Every group can be written as a semidirect product. Give a proof or counterexample.	List all groups of order p^{3}.
Algebra Prelim	Algebra Prelim
Groups	Groups
If every group of order n (for some particular n) can be expressed as a semidirect product, what steps do you take to classify all groups of order n ?	Suppose group G can be expressed as a semidirect product $H \rtimes K$. If $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in G$, what is $\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)$? (That is, how is the group operation defined in a semidirect product?)
Algebra Prelim	Algebra Prelim
Groups ${ }^{\text {List the properties of p-groups. }}$	Groups
	What is an upper central series?
Algebra Prelim	Algebra Prelim
Groups	Groups
What does it mean for a group to be nilpotent? What is the nilpotence class of a nilpotent group?	What is the nilpotence class of an abelian group?
Algebra Prelim	Algebra Prelim
Groups	Groups
Arrange the following types of groups in a chain of inclusions: cyclic groups, nilpotent groups, solvable groups, abelian groups, all groups	Let G be a finite group, let p_{1}, \ldots, p_{2} be the distinct primes dividing its order, and let $P_{i} \in S y l_{p_{i}}(G), 1 \leq i \leq s$. State 5 conditions that are equivalent to the nilpotence of G.
Algebra Prelim	Algebra Prelim

The three abelian groups are $\mathbb{Z}_{p^{3}}, \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$, and \mathbb{Z}_{p}^{3}.

$$
\operatorname{Heis}\left(\mathbb{F}_{p}\right)=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\} .
$$

If $p=2$, this last group is Q_{8}. If $p \neq 2$, the last group is some group of exponent p.

False. Q_{8} is not a semidirect product because no two subgroups have trivial intersection. Every subgroup contains the subgroup $\{1,-1\}$.

1. Show every group G of order n has proper subgroups H, K such that $H \unlhd G, H \cap K=1$ and $H K=G$
2. Find all possible isomorphism types for H and K
$\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1}\left(k_{1} \cdot h_{2}\right), k_{1} k_{2}\right)$ where $k_{1} \cdot h_{2}$ is the action of k_{1} on h_{2} as defined by φ, some automorphism of H.

The upper central series for a group G is the chain of subgroups

$$
Z_{0}(G) \leq Z_{1}(G) \leq Z_{2}(G) \leq \cdots
$$

where the subgroups are inductively defined as $Z_{0}(G)=1$, $Z_{1}(G)=Z(G)$, and $Z_{i+1}(G)$ is the subgroup of G containing $Z_{i}(G)$ such that $Z_{i+1}(G) / Z_{i}(G)=Z\left(G / Z_{i}(G)\right)$
3. For each pair H, K found in (2), find all possible homomorphisms $\varphi: K \rightarrow \operatorname{Aut}(H)$
4. For each triple H, K, φ found in (3), form the semidirect product $H \rtimes_{\varphi} K$ and determine which ones are isomorphic

Let P be a group whose order is p^{a} for prime p.

1. The center of P is nontrivial.
2. If H is a nontrivial normal subgp, then it intersects the center nontrivially.
3. P has a normal subgp of any order dividing p^{a}.
4. Every proper subgp of P is a proper subgp of its normalizer in P. (i.e. nilpotent)
5. Every maximal subgp has index p and is normal in P.
6. P is nilpotent of nilpotence class at most $a-1$.

It is 1 , since $Z_{1}(G)=Z(G)=G$.

1. If $H<G$, then $H<N_{G}(H)$ ("normalizer grows")
2. $P_{i} \unlhd G$ for $1 \leq i \leq s$ (every Sylow subgroup is normal)
3. $G \cong P_{1} \times P_{2} \times \cdots \times P_{s}$
4. Every maximal subgroup of G is normal
5. Its central series (or lower/upper central series) terminates after finitely many steps.

A group G is called nilpotent if $Z_{c}(G)=G$ for some $c \in \mathbb{Z}$. The smallest such c is the nilpotence class of G.
cyclic groups \subseteq abelian groups \subseteq nilpotent groups \subseteq solvable groups \subseteq all groups

Groups	Groups
What is a lower central series?	What is the derived series or commutator series of a group G ?
Algebra Prelim	Algebra Prelim
Groups	Groups
For a group G, what condition on the groups in the derived series of G is necessary and sufficient for G to be solvable?	State Burnside's theorem on groups of order $p^{a} q^{b}$
Algebra Prelim	Algebra Prelim
Groups	Groups
(Techniques for producing normal subgroups in groups of order n)	(Techniques for producing normal subgroups in groups of order n)
Describe the technique known as "counting elements."	Describe the technique known as "exploiting subgroups of small index."
Algebra Prelim	Algebra Prelim
Groups	Groups
(Techniques for producing normal subgroups in groups of order n)	(Techniques for producing normal subgroups in groups of order n)
Describe the technique known as "permutation representations."	Describe the technique known as "playing p-subgroups against each other for different primes p."
Algebra Prelim	Algebra Prelim
Groups	Groups
(Techniques for producing normal subgroups in groups of order n)	
Describe the technique known as "studying normalizers of intersections of Sylow p-subgroups."	What is the universal property of the free group $F(S)$ on a set S ?
Algebra Prelim	Algebra Prelim

The derived or commutator series of a group G is the following sequence of groups, defined inductively $\forall i \geq 1$.

$$
G^{(0)}=G \quad G^{(1)}=[G, G] \quad G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right]
$$

For a group G, the lower central series is the chain of subgroups

$$
G^{0} \geq G^{1} \geq G^{2} \geq \cdots
$$

where the subgroups are defined inductively as $G^{0}=G$, $G^{1}=[G, G]$, and $G^{i+1}=\left[G, G^{i}\right]$.
G is solvable if and only if $G^{(n)}=1$ for some $n \geq 0$.

Use this technique when for $P \in S y l_{p}(G),|P|=p$.
Suppose by contradiction the group is simple so that the number of Sylow p-subgroups is greater than 1 (i.e. $n_{p}>$ 1). Since each Sylow p-subgroup intersects only at the identity, count the number of elements in each subgroup. If the total elements counted is greater than n, then at least one n_{p} must be 1 and the unique Sylow p-subgroup is normal.

Let $|G|=n$ and H a subgroup of index k. Let $\varphi: G \rightarrow S_{k}$ be the permutation representation of G by action on cosets of H. Suppose that G is simple. Then the kernel is trivial and G is isomorphic to a subgroup of S_{k}. We can attempt to show that S_{k} contains no simple subgroup of order n.

We can use facts such as (1) if G contains an element/subgp of some order, so must S_{k} and (2) if $P \in S y l_{p}(G)$ and $P \in$ $S y l_{p}\left(S_{k}\right)$, then $\left|N_{G}(P)\right|$ divides $\left|N_{S_{k}}(P)\right|$.

Suppose $R, P \in S y l_{p}(G)$ are distinct subgroups and $R \cap$ $P \neq 1$. Then by property 4 in the list of properties of p groups, $P_{0}=R \cap P$ satisfies $P_{0}<N_{P}\left(P_{0}\right)$ and $P_{0}<N_{R}\left(P_{0}\right)$. This may cause the normalizer in G of P_{0} to have too small an index to satisfy the bound provided by the "exploiting subgroups of small index" technique.

Groups What is a free group? Algebra Prelim	Groups The derived series of a group terminates (every group in the chain is eventually trivial group 1) if and only if the group is \qquad
Groups If G, H are solvable groups, which of the following are also solvable? The direct product $H \times G$? The semidirect product $H \rtimes G$? Any subgroup K of G ? The quotient G / N for some normal subgroup N of G ? Algebra Prelim	Groups Let a be an element of order n and b be an element of order m. Is it true that $\langle a, b\rangle$ has order $\operatorname{lcm}(a, b)$? Algebra Prelim
Groups State and prove Frattini's Argument. Algebra Prelim	Groups Prove that if G is solvable, then G / N is solvable. Algebra Prelim
Groups Prove that if $N \unlhd G, N$ is solvable, and G / N is solvable, then G is solvable. Algebra Prelim	Rings What is a ring? Algebra Prelim
Rings What is a division ring? What is another name for a commutative division ring? Algebra Prelim	Rings What is an integral domain? What desirable property do integral domains possess? What desirable property do finite integral domains possess? Algebra Prelim

Rings What is a left ideal? Algebra Prelim	Rings What is the subring criterion? Algebra Prelim
Rings What is a ring homomorphism? Algebra Prelim	Rings Is the kernel of a ring homomorphism an ideal of the domain? Algebra Prelim
Rings Let I, J be ideals of ring R. What is $I+J$? Is it an ideal of R ? What is IJ? Is it an ideal of R ?	Rings Let I, J be ideals of ring R. Is it true that $I \cap J \subseteq I J ?$
Rings Given a ring R and some subset A, what is the ideal generated by A ? Algebra Prelim	Rings Given a ring R and ideal I, what is the condition that guarantees $I=R$? Algebra Prelim
Rings If R is a field, then what can we say about a nonzero ring homomorphism from R to another ring?	Rings What is a maximal ideal? Does every ring have maximal ideals? Which rings always have maximal ideals?
Algebra Prelim	Algebra Prelim

Rings	Rings
Let R be a ring and I. What can be said about R / I when I is maximal? What can be said about R / I when I is prime?	
Algebra Prelim	Algebra Prelim
Rings	Rings
In a commutative ring with unity, is every prime ideal a maximal ideal or is every maximal ideal a prime ideal? Give an example. In what kind of ring do prime and maximal ideals coincide?	Given a ring R, what is its ring of fractions? Under what condition is the ring of fractions a field?
Algebra Prelim	Algebra Prelim
Rings	Rings
Let A, B be ideals in ring R. What does it mean for A and B to be comaximal?	State the Chinese Remainder Theorem. Give an example.
Algebra Prelim	Algebra Prelim
Rings$\text { What is a Euclidean domain? }$	Rings
	What is a norm on an integral domain R ? What is a positive norm?
Algebra Prelim	Algebra Prelim
Rings	Rings
What is the greatest common divisor of a, b ?	Let R be a commutative ring and $a, b \in R$. If $(a, b)=(d)$ for some element d, what do we know about d?
Algebra Prelim	Algebra Prelim

Assume R is a commutative ring. The ideal P is a prime ideal if $P \neq R$ and whenever $a b \in P$, at least one of a or $b \in P$.

Let R be a commutative ring and D a nonempty subset of R that does not contain 0 or zero divisors and is closed under multiplication. Then the ring of fractions is $Q=\left\{\left.\frac{r}{d} \right\rvert\, r \in R, d \in D\right\}$.

If $D=R-\{0\}$ (i.e. R is an integral domain) then Q is a field.
R / I is a field if and only if I is a maximal ideal.
R / I is an integral domain if and only if I is a prime ideal.

Every maximal ideal is a prime ideal. The converse is not always true: in any nonfield integral domain, the zero ideal is a prime ideal which is not maximal.

In a PID, every nonzero prime ideal is maximal.

Ideals A and B are comaximal if $A+B=R$.
this map is surjective and $A_{1} \cap \cdots \cap A_{k}=A_{1} A_{2} \cdots A_{k}$ so that $R /\left(A_{1} A_{2} \cdots A_{k}\right)=R /\left(A_{1} \cap \cdots \cap A_{k}\right) \cong R / A_{1} \times \cdots \times R / A_{k}$.
ex.) If integer n has prime factorization $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, then $\mathbb{Z} / n \mathbb{Z} \cong\left(\mathbb{Z} / p_{1}^{\alpha_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p_{k}^{\alpha_{k}} \mathbb{Z}\right)$ and $(\mathbb{Z} / n \mathbb{Z})^{\times} \cong$ $\left(\mathbb{Z} / p_{1}^{\alpha_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{k}^{\alpha_{k}} \mathbb{Z}\right)^{\times}$.

A norm on integral domain R is a function $N: R \rightarrow \mathbb{Z}_{\geq 0}$ such that $N(0)=0$. If in addition, $N(a) \neq 0$ for $a \neq 0$, then N is a positive norm.

An integral domain R is a Euclidean domain if there exists a norm N on R such that for $a, b \in R$, there exist $q, r \in R$ such that

$$
a=q b+r \quad \text { with } r=0 \text { or } N(r)<N(b)
$$

d is the greatest common divisor of a, b.
Warning: This is not saying that $(a, b)=(\operatorname{gcd}(a, b))$ (which is true in a Euclidean domain). This is saying that if $(a, b)=(d)$, then d is the GCD.

In general, it is possible that $(a, b) \neq(\operatorname{gcd}(a, b))$. In $\mathbb{Z}[x]$, the ideal $(2, x)$ is not the whole ring. However, their GCD is 1 and the ideal (1) is indeed the whole ring

A greatest common divisor of a, b is a nonzero element d such that

1. $d \mid a$
2. $d \mid b$
3. if $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

Rings In what kind of ring is it true that any two elements from the ring are guaranteed to have a greatest common divisor? Algebra Prelim	Rings Let R be an integral domain. If $(d)=\left(d^{\prime}\right)$, prove that $d=u d^{\prime}$ for some unit u.
Rings In what kind of ring is it true that if $(a, b)=(d)$, then $d=\operatorname{gcd}(a, b)$? Algebra Prelim	Rings Let I be an ideal and suppose $a b \in I$ but $a, b \notin I$. Why is it the case that a, b are not units?
Rings What is a principal ideal domain? Algebra Prelim	Rings If R is a commutative ring such that $R[x]$ is a PID, prove that R is a field. Algebra Prelim
Rings Let R be an integral domain. What does it mean for $r \in R$ to be irreducible? What does it mean for r to be be prime? What is the relationship between these two terms?	Rings In what type of ring is a prime element the same as an irreducible element? In general, does prime imply irreducible or does irreducible imply prime? Give an example of an element that has one property but not the other.
Rings Prove that a prime element is always irreducible in an integral domain.	Rings What is a unique factorization domain?
Algebra Prelim	Algebra Prelim

This is clear if d or d^{\prime} is zero, so suppose both are nonzero. Since $d \in\left(d^{\prime}\right)$, there exists $x \in R$ such that $d=x d^{\prime}$. Likewise there exists $y \in R$ so that $d^{\prime}=y d$. Thus $d=x y d$ and $d(1-x y)=0$. Since $d \neq 0, x y=1$.	UFDs. The division algorithm in a Euclidean domain gives a convenient way to compute it, but the GCD is guaranteed to exist for any two ring elements in a GCD domain. A UFD is always a GCD domain.
Suppose by contradiction that b is a unit. Since $a b \in I$, by the multiplicative sucking property, $(a b) b^{-1} \in I$. But this implies that $a \in I$, contrary to our premise. Thus b is not a unit.	a and b need to be nonzero elements in a commutative ring.
R is a subring of $R[x]$, so R must also be an integral domain. Since $R[x] /(x)$ is isomorphic to R and R is an integral domain, we know that (x) is a prime ideal. In a PID, a prime ideal is also a maximal idea. Thus $R[x] /(x) \cong R$ is a quotient by a maximal ideal and hence is a field.	A principal ideal domain is an integral domain in which every ideal is principal.
In an integral domain, every prime element is irreducible. Every irreducible element is also prime in a PID. In $\mathbb{Z}[\sqrt{-5}]$, the number 3 is irreducible but not a prime because $9=(2+\sqrt{-5})(2-\sqrt{-5})$ and $3 \mid 9$ but 3 does not divide either of the two factors of 9 .	Suppose $r \neq 0$ and r is not a unit. An element r is irreducible if whenever $r=a b$ for $a, b \in R$, one of a or b is a unit. An element r is prime if the ideal (r) is a prime ideal. In a PID, an irreducible element is also prime. In an integral domain, a prime element is always irreducible.
A unique factorization domain is an integral domain R in which every nonzero element r that is not a unit has a unique factorization into irreducible elements and that this factorization is unique up to multiplication by units.	Take prime element p such that $p=a b$. Then $a b=p \in(p)$ so either a or b is in (p). Assume WLOG $a \in(p)$. Then $a=p r$ for some $r \in R$. Thus $p=a b=p r b$ and $r b=1$ so b is a unit.

Rings What are the primes in $\mathbb{Z}[i]$? Algebra Prelim	Rings Under what conditions is a prime p the sum of two integer squares? (i.e. State Fermat's Theorem of the sum of squares.) Algebra Prelim
Rings State the containment chain for different kinds of commutative rings. Give an example from each superset that is not contained in its subset.	Rings If F is a field, then $F[x]$ is what kind of ring? Be as specific as possible. Algebra Prelim
Rings State Gauss's Lemma for polynomials in a UFD. Algebra Prelim	Rings If ring R is a UFD, then what can we say about the polynomial ring formed from adjoining any number of variables to R ?
Rings State the theorem for detecting irreducibility via quotient by an ideal. Algebra Prelim	Rings State Eisenstein's Criterion. Algebra Prelim
Rings How can we use Eisenstein's Criterion to indirectly show that $x^{4}+1$ is irreducible over \mathbb{Q} ? Algebra Prelim	Rings Let F be a field so that $F[x]$ is a polynomial ring. What are the maximal ideals of $F[x]$? Give a proof.

The prime p is the sum of two integer squares, $p=a^{2}+b^{2}$, if and only if $p=2$ or $p \equiv 1 \bmod 4$. This representation of p is unique.	A Gaussian integer $a+b i$ is a Gaussian prime if and only if either - one of a, b is zero and the other is a prime of the form $4 n+3$ or $-(4 n+3)$ or - both $a, b \neq 0$ and $a^{2}+b^{2}$ is a prime.
$F[x]$ is a Euclidean domain.	$E \subseteq P \subseteq U \subseteq I \subseteq C$ - $\mathbb{Z} / n \mathbb{Z}, n$ not prime, $\in C$ but $\notin I$. - $\mathbb{Z}[\sqrt{-5}] \in I$ but $\notin U$ because 6 factors as $2 \cdot 3$ and as $(1+\sqrt{-5})(1-\sqrt{-5})$. - $\mathbb{Z}[x]$ is a UFD but not a PID - The ring of integers in $\mathbb{Q}(\sqrt{-19})$, which is numbers of the form $(a+b \sqrt{-19}) / 2$ with a, b both even or both odd, is a PID but not Euclidean.
The polynomial ring is also a UFD.	Let R be a UFD with field of fractions F and let $p(x) \in$ $R[x]$. If $p(x)$ is reducible/irreducible in $F[x]$, then it is reducible/irreducible over $R[x]$
Let R be an integral domain with prime ideal P. Let $p(x)$ be a monic polynomial of degree ≥ 1 in $R[x]$. If every coefficient except the leading coefficient is in P and the constant term is not in P^{2}, then $p(x)$ is irreducible in $R[x]$.	Let R be an integral domain with ideal I. Let $p(x)$ be a nonconstant polynomial in $R[x]$. If the image of $p(x)$ in $(R / I)[x]$ cannot be factored into two polynomials of smaller degree, then $p(x)$ is irreducible in $R[x]$. Note: The converse is not true. This theorem can fail to detect irreducibility. For example, $x^{4}-72 x^{2}+4$ is irreducible, but is reducible modulo every integer.
The maximal ideals of $F[x]$ are those generated by irreducible elements. Proof: Since $F[x]$ is Euclidean, irreducible elements are prime (in PIDs) and prime elements generate maximal ideals (in PIDs).	First we shift the polynomial. Let $f(x)=x^{4}+1$ and $g(x)=$ $f(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$. Now $g(x)$ is irreducible by Eisentein's, so $f(x)$ must also be irreducible since any factorization of g yields a factorization of f.

Rings Let F be a field so that $F[x]$ is a polynomial ring. What kind of ring is $F[x]$? Algebra Prelim	Rings Let F be a field so that $R=F\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring. What kind of ring is R ? Algebra Prelim
Rings What is a Noetherian ring? Algebra Prelim	Rings Let R be a Noetherian Ring so that $R[x]$ is a polynomial ring. What kind of ring is $R[x]$? Algebra Prelim
Rings Prove that if F is a field, then $F\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.	Rings Let R be a ring and I its unique maximal ideal. Prove that I must contain every element of R that is not a unit. Algebra Prelim
Modules True or False: A submodule of a finitely-generated module is also finitely generated. Give a proof or counterexample Algebra Prelim	Modules True or False: If a module and its submodule are both finitely generated, then the minimal number of generators of the module is greater or equal to the minimal number of generators of the submodule. Algebra Prelim
Modules $\text { What is a (left) } \mathrm{R} \text {-module? }$	Modules What is a submodule?
Algebra Prelim	Algebra Prelim

R is a UFD. It is not a PID unless $n=1$.

Any \mathbb{Z}-module is exactly an abelian group. \mathbb{Z}-submodules are subgroups.

Let R be a unital ring and let n be a positive integer. The free module of rank n over R is

$$
R^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in R\right\}
$$

as a module over R with componentwise addition and multiplication.

Let T be a linear transformation from vector space V to V. Then an $F[x]$-module is the vector space V under the action of polynomials from $F[x]$. The action is of a polynomial $p(x) \in F[x]$ is the linear transformation $p(T)$.

There is a bijection between pairs V, T and $F[x]$-modules over V.

Let R be a ring and M an R -module. A subset N of M is submodule of M if and only if

1. $N \neq \varnothing$, and
2. $x+r y \in N$ for all $r \in R, x, y \in N$

Let $r \in R$ and $\varphi \in \operatorname{Hom}_{R}(M, N)$. Let the action of r on φ be $(r \varphi)(m)=r(\varphi(m))$ for all $m \in M$. Under this action, $\operatorname{Hom}_{R}(M, N)$ is an R-module.

The smallest module that contains A and B is the sum, $A+B=\{a+b \mid a \in A, b \in B\}$.

Note that we use the sum and not the product because we are combining groups, so we combine using the group operation.
$\operatorname{Hom}_{R}(M, N)$ is the set of all R-module homomorphisms from M into N.

True.

Since M is an abelian group, N is normal so M / N is a group. Then define the action of R on M / N so that for $r \in R, x+N \in M / N$,

$$
r(x+N)=(r x)+N
$$

Then we can verify that this is a proper R-module.

Modules Let M be an R-module and let A be a subset of M. What is the definition of $R A$, the submodule generated by A ? Algebra Prelim	Modules Let M be an R-module and N a submodule of M. What does it mean for N to be cyclic? Algebra Prelim
Modules True or False: Let M be an R-module and N a submodule of M. Then N has a minimal generating set. Give a proof or counterexample. Algebra Prelim	Modules True or False: Let M be an R-module and N a submodule of M. If N has a minimal generating set, then that minimal generating set is unique. Give a proof or counterexample.
Modules True or False: A submodule of a finitely generated R-module is also finitely generated. Give a proof or counterexample.	Modules What is the direct product of a finite number of R-modules? What is the external direct sum of a finite number of R-modules? Algebra Prelim
Modules What is the direct product of an infinite number of R-modules? What is the direct sum of an infinite number of R-modules? Algebra Prelim	Modules Let $N_{1}, N_{2}, \ldots, N_{k}$ be submodules of the R-module M. Suppose the map $\pi: N_{1} \times \cdots \times N_{k} \rightarrow N_{1}+\cdots+N_{k}$ defined by $\pi\left(n_{1}, \ldots, n_{k}\right)=n_{1}+\cdots+n_{k}$ is an isomorphism of R-modules. State three other equivalent characterizations of this isomorphism.
Modules $\text { What is a free R-module? }$ Algebra Prelim	Modules Clearly state the difference between the uniqueness property of direct sums and the uniqueness property of free modules. Algebra Prelim

A submodule is cyclic if it is finitely generated by exactly 1 element of M, i.e. $N=R a$ for some $a \in N$.

False.

If R is a field, then M is a vector space. A minimal generating set for a vector space is a basis, and we know that there are multiple bases that can generate the vector space.

Let M_{1}, \ldots, M_{k} be a collection of R-modules. Then the k-tuples $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ where $m_{i} \in M_{i}$ with addition and action of R defined componenetwise is the direct product of M_{1}, \ldots, M_{k}, denoted $M_{1} \times \cdots \times M_{k}$.

The external direct sum is the same thing but is infuriatingly denoted $M_{1} \oplus \cdots \oplus M_{k}$
$R A=\left\{r_{1} a_{1}+\cdots r_{m} a_{m} \mid r_{i} \in R, a_{i} \in A, i \in 1, \ldots, m\right\}$

In other words, $R A$ is the set of all finite R-linear combinations of the elements of A.

False.

If N is finitely generated, then it has a minimal generating set (not necessarily unique).
\mathbb{Q} as a \mathbb{Z}-module has no minimal generating set.

False.

Let F be a field and let $R=F\left[x_{1}, x_{2}, \ldots\right]$, the ring of polynomials in infinitely many variables. Let R be an R-module over itself. Then R is finitely generated by 1 but the submodule generated by $\left\{x_{1}, x_{2}, \ldots\right\}$ is not finitely generated.

1. M is the direct sum of N_{1}, \ldots, N_{k}.
2. $N_{j} \cap\left(N_{1}+\cdots+N_{j-1}+N_{j+1}+\cdots+N_{k}\right)=0$ for all $j \in\{1, \ldots, k\}$.
3. Every $x \in N_{1}+\cdots+N_{k}$ can be written uniquely in the form $n_{1}+\cdots+n_{k}$ with $n_{i} \in N_{i}$.

In a direct sum, each element can uniquely be written as a sum of module elements.

In a free module, each element can be uniquely written as an R-linear combination of some generating set (i.e. basis).

Let I be a nonempty index set and for each $i \in I$, let M_{i} be an R-module. The direct product is their direct product as abelian groups with the action of R as componentwise multiplication.

The direct sum is the submodule of the direct product where only finitely many of the components m_{i} are nonzero.

An R-module F is free on the subset A of F if for every nonzero element $x \in F$, there are unique nonzero elements $r_{1}, \ldots, r_{n} \in R$ and unique $a_{1}, \ldots, a_{n} \in A$ such that $x=r_{1} a_{1}+\cdots+r_{n} a_{n}$.

Another way of describing this is to say that A is a basis for F.

Modules What is the universal property of free modules? Algebra Prelim	Modules True or False: If F_{1} and F_{2} are free R-modules on the same set A, then there is a unique isomorphism between F_{1} and F_{2} which is the identity map on A. Give a proof or counterexample. Algebra Prelim
Modules Let R be an integral domain and let M be a free R-module of finite rank n. Prove that any $n+1$ elements of M are R-linearly dependent.	Modules Let R a ring and M an R-module. What does it mean for M to be a torsion module? Algebra Prelim
Modules Let R a ring and M an R-module. What does it mean for M to be torsion-free? Algebra Prelim	Modules Let R an integral domain and M an R-module. What is the torsion submodule denoted $\operatorname{Tor}(M)$?
Modules Let R be a ring, M be an R-module, and N a submodule of M. What is the annihilator of N ? Algebra Prelim	Modules True or False: If M is an R-module for some ring R and N, L are submodules, then $N \subseteq L$ implies Ann $N \subseteq$ Ann L. Algebra Prelim
Modules Let R be an integral domain. What is the rank of an R-module M ? Algebra Prelim	Modules True or False: Let R be an integral domain, M a finitely generated R-module, and N a submodule of M. Then the rank of M is greater than or equal to the rank of N. Algebra Prelim

True. Proof sketch: F_{1} and F_{2} are both a bunch of copies of R indexed by the elements of A, so just map any copy of R to another copy of R.	Let A be a set, R a ring, and $F(A)$ the free R-module on the set A. If M is any R-module and $\varphi: A \rightarrow M$ is a set map, there is a unique R-module homomorphism $\psi: F(A) \rightarrow M$ such that $\psi(A)=\varphi(A)$.
M is a torsion module if for every $m \in M$, there exists $r \in R$ such that r is not a zero divisor and r annihilates m, i.e. $r m=0$. In other words, every element of M is a torsion element.	Let $x_{1}, \ldots, x_{n+1} \in M$ be our set of $n+1$ elements. R is an integral domain, so embed it in its field of fractions F. Because $M \cong R^{n}$, we know $M \subseteq F^{n}$. Since F^{n} is an n dimensional vector space, the $n+1$ elements are F-linearly dependent so there exists linear dependence relation with $f_{1}, \ldots, f_{n+1} \in F$ not all zero such that $f_{1} x_{1}+\cdots f_{n+1} x_{n+1}=$ 0 . We can obtain an R-linear dependence relation by clearing the denominators.
The torsion submodule $\operatorname{Tor}(M)$ is the set of all torsion elements of M. Note: If R is not commutative, $\operatorname{Tor}(M)$ may fail to be a submodule.	M is torsion free if for $m \in M$ and $r \in R$ where r is not a zero divisor, $r m=0$ implies that $m=0$. In other words, the only torsion element of M is 0 .
False. $\operatorname{Ann}(L) \subseteq \operatorname{Ann}(N)$	The annihilator of N is the ideal of R defined by $\operatorname{Ann}(N)=\{r \in R \mid r n=0 \text { for all } n \in N\}$
False. Consider $\mathbb{Z}[x]$ as a module over itself. Then its rank is one while the rank of its submodule $(2, x)$ is two.	The rank of M is the maximum number of R-linearly independent elements of M.

Modules State the structure theorem for modules over PIDs in invariant factor form.	Modules State the structure theorem for modules over PIDs in elementary divisor form. Algebra Prelim
Modules Let R be a PID and let M be a torsion R-module, $M \neq 0$. What is the p-primary component of M ? Algebra Prelim	Modules True or False: Every nonzero torsion module over a PID is a direct sum of its p-primary components. Give a proof or counterexample. Algebra Prelim
Modules Let R be a PID and p prime in R. Let $F=R /(p)$. Prove that if $M=R^{n}$, then $M / p M \cong F^{n}$.	Modules What is an R-algebra? Algebra Prelim
Modules What is meant by the expression "Every R-algebra is also an R-module"? Algebra Prelim	Modules What is special about a module over a PID? Algebra Prelim
Modules True or False: Let F be a field. Any nonzero free $F[x]$-module is an infinite dimensional vector space over F. Give a proof or counterexample. Algebra Prelim	Modules True or False: Let R be a ring and M an R-module. if A is a minimal spanning set for M under R-linear combinations, then A is a basis. Give a proof or counterexample.

Let R be a PID and M a finitely generated R-module. Then M is the direct sum of a finite number of cyclic modules whose annihilators are either (0) or generated by powers of primes in R, i.e.

$$
M \cong R^{n} \oplus R /\left(p_{1}^{\alpha_{1}}\right) \oplus R /\left(p_{2}^{\alpha_{2}}\right) \oplus \cdots \oplus R /\left(p_{t}^{\alpha_{t}}\right)
$$

where n is a nonnegative integer and $p_{i}^{\alpha_{i}}$ are positive powers of not-necessarily-distinct primes in R.

Let R be a PID and M a finitely generated R-module. Then

1. $M \cong R^{n} \oplus R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{m}\right)$ where $a_{i} \in R$ nonzero and $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$.
2. M is torsion-free if and only if M is free.
3. $\operatorname{Tor}(M) \cong R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{m}\right)$
p_{i}-primary component of M

$$
=\left\{x \in M: x p_{i}^{\alpha}=0 \text { where } \alpha>0\right\}
$$ zero. Then the structure theorem states exactly this - that M is isomorphic to a direct sum of its p-primary components.

Let R be a commutative ring. An R-algebra is an R-module M together with binary multiplication $M \times M \rightarrow M$ (called M-multiplication) satisfying

- $[\alpha x+\beta y, z]=\alpha[x, z]+\beta[y, z]$
- $[z, \alpha x+\beta y]=\alpha[z, x]+\beta[z, y]$
for all scalars α, beta $\in R$ and all elements $x, y, z \in A$.

A module over a PID has a decomposition based on the Structure Theorem for Modules over PIDs.

We will proceed by seeking a R-module homomorphism $\varphi: R^{n} \rightarrow(R /(p))^{n}$ with kernel $p M$.

Take $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ and let $\varphi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left(a_{1}\right.$ $\left.\bmod (p), \ldots, a_{n} \bmod (p)\right)$. This map is clearly surjective. The kernel is the set of elements whose every component are multiples of p, or in other words, $p R^{n}$. Thus $M / p M=R^{n} / p R^{n} \cong(R /(p))^{n}=F^{n}$.

Any R-algebra is an R-module by simply forgetting the multiplicative structure of that R-algebra.

False.

Let $\mathbb{Z} / n \mathbb{Z}$ be a \mathbb{Z}-module. This module cannot have a basis because no element is linearly independent, i.e. every element can be multiplied by an appropriate nonzero element of \mathbb{Z} to reach 0 . So $1 \in \mathbb{Z} / n \mathbb{Z}$ is a minimal spanning set, yet it fails to be a basis.

True.

Since F is a field, $F[x]$ is a PID. By the Structure Theorem for Modules over PIDs, a free $F[x]$-module is isomorphic to a direct sum of copies of $F[x]$.

Modules True or False: Let R be a ring and M an R-module with a finite basis. Then every spanning set in M contains a basis and every linearly independent set in M is contained in a basis. Algebra Prelim	Modules Give an example of a free module with a submodule that is not free. Algebra Prelim
Modules True or False: If M is an R-module for some ring R, then M is a free R-module if and only if M has a basis.	Modules For what kind of R-module is is true that we can uniquely define an R-module homomorphism by specifying the values that the elements of a basis map to?
Modules Give an example of a quotient of a free module that is not free.	Modules Give an example of an R-module that cannot be expressed as a direct sum of it submodules.
Modules Let M be an R-module for some ring R and let N, P be submodules. Prove that if $M=N \oplus P$, then $P \cong M / N$. Algebra Prelim	Modules Let M an R-module for some ring R. What condition needs to be placed on R to guarantee that any two bases of M have the same cardinality and the cardinality of a spanning set is greater than or equal to that of a basis?
Modules Complete the sentence: Let R be a commutative ring with identity. Then two R-modules have the same rank if and only if \qquad .	Modules Let R be PID and let M be a cyclic R-module. Let $\operatorname{Ann}(M)$ be the annihilator of M. Prove that $M \cong R / A n n(M)$.
Algebra Prelim	Algebra Prelim

The set $\mathbb{Z} \times \mathbb{Z}$ is a free module over itself using componentwise multiplication. We know it is free because the singleton set $\{(1,1)\}$ serves as a basis.

The submodule $\mathbb{Z} \times\{0\}$ is a proper submodule that is not free. We know it is not free because no elements are linearly independent. Any $(a, 0)$ is torsion because multiplying by nonzero element $(0, b)$ will result in $(0,0)$.

False.

True.

Only free R-modules have bases anyway!
\mathbb{Z} is a module over itself. Its submodules are the ideals of the ring \mathbb{Z}. These are $n \mathbb{Z}$ for $n \in Z$.

Given any two submodules $n \mathbb{Z}$ and $m \mathbb{Z}$, we know that their intersection is nontrivial. In fact, their interseciton is $k \mathbb{Z}$ where $k=\operatorname{lcm}(n, m)$. Since there are no submodules that intersect only trivially, this module cannot be expressed as a direct sum.
\mathbb{Z} is a free module over itself because its basis is the set $\{1\} . n \mathbb{Z}$ is is a proper submodule that is also free because its basis is the set $\{n\}$. But $\mathbb{Z} / n \mathbb{Z}$ is not a free \mathbb{Z}-module because not even a single element is linearly independent.
R needs to be a commutative ring with identity.
Let π be the canonical projection $\pi: M \rightarrow P$. Then by the first isomorphism theorem, $M / N \cong P$.

Define the multiplication map φ such that for $r \in R, m \in M$, $\varphi(r)=r m$. This is an R-module homomorphism. The map is surjective since M is cyclic. The kernel of this map is the set of elements in R that map every element of M to zero - in other words, $\operatorname{Ann}(M)$. Thus by the first isomorphism theorem, $R / \operatorname{Ann}(M) \cong M$.
they are isomorphic

Modules What condition on a ring R guarantees that any submodule of a free R-module is also free? Algebra Prelim	Modules True or False: Let M be a free module over R and let R be a PID. Let N be a submodule of M. Then any basis for N can be extended to form a basis for M. Give a proof or counterexample. Algebra Prelim
Modules Let R be a PID, M a free R-module, and N a submodule. What is the closest analogue to the vector space property that there is a basis for M containing a basis for N ? Algebra Prelim	Modules True or False: Any free module over an integral domain is torsion-free. Give a proof or counterexample. Algebra Prelim
Modules Complete the sentence: A finitely-generated module over a PID is a free module if and only if it is \qquad . Algebra Prelim	Modules Complete the sentence: Any \qquad module over a PID R is the direct sum of a finitely generated free R-module and a finitely generated torsion R-module
Modules Let R be a PID and M a finitely generated R-module so that $M \cong M_{\text {free }} \oplus M_{\text {tor }}$. True or False: (1) $M_{\text {free }}$ is unique. (2) $M_{\text {tor }}$ is unique.	Linear Algebra When does a matrix admit an $L U$ decomposition into lower and upper triangular matrices? Algebra Prelim
Linear Algebra What are the vector space axioms for a vector space V over a field F ? Algebra Prelim	Linear Algebra Fill in the blank: Each conjugacy class of \qquad is represented by exactly one matrix in rational canonical form Algebra Prelim

False.
\mathbb{Z} is a module over itself and $2 \mathbb{Z}$ is a submodule. The set $\{2\}$ is a basis for $2 \mathbb{Z}$, but it cannot be extended to a basis for \mathbb{Z}.

True.
A free module of rank n over R where R is an integral domain is isomorphic to R^{n}. Since R is an integral domain, its action on R^{n} (n copies of itself) must be torsion-free.
R is a PID.

Let M be of rank n and let N be of rank $k \leq n$. Then there is a basis \mathcal{B} for M that contains a subset $S=\left\{v_{1}, \ldots, v_{k}\right\}$ for which $\left\{r_{1} v_{1}, \ldots, r_{k} v_{k}\right\}, r_{i} \in R$ nonzero, is a basis for N. The elements r_{i} satisfy the divisility relations $r_{1}\left|r_{2}\right| \cdots \mid r_{k}$
finitely generated

finitely generated
An invertible matrix admits an $L U$ decomposition if and
only if all of its leading principal minors are nonsingular,

1. False. $M_{\text {free }}$ is unique up to isomorphism, i.e., its rank is unique
2. True. $M_{\text {tor }}$ consists of all the torsion elements of M.

For $u, v \in V$ and $a, b \in F$, we must have

1. V is a group under addition
2. $a(b v)=(a b) v$
3. $1 v=v$ where $1 \in F$
4. $a(u+v)=a u+a v$
5. $(a+b) v=a v+b v$

Linear Algebra Given a matrix A, what is the trace of A ? What are the three properties that completely characterize a matrix trace?	Linear Algebra True or False: Given a finite collection of matrices, the trace of their product is the same for any order matrix multiplication.
Linear Algebra Let V be a vector space over field F and S a subset of V. What does it mean for S to be a linearly independent set of vectors?	Linear Algebra Let V be a vector space. What is a basis for V ?
Linear Algebra Let V, W be two n-dimensional vector spaces over a field F. Prove that V and W are isomorphic. Algebra Prelim	Linear Algebra Let V be a vector space over F and W a subspace of V. What is the dimension of V / W ? Algebra Prelim
Linear Algebra Let $\varphi: V \rightarrow U$ be a linear transformation over F. What is the relationship between $\operatorname{dim} V$, $\operatorname{dim} \operatorname{ker} \varphi$, and $\operatorname{dim} \varphi(V)$? Algebra Prelim	Linear Algebra Let V be a k-dimensional vector space over F_{q}, the finite field with q elements. How many distinct bases of W are there? How does this relate to $\|G L(V)\|$, the group of invertible linear transformations from V to V ? Algebra Prelim
Linear Algebra Suppose $\varphi: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3}$ is a linear transformation such for $x, y, z \in \mathbb{Q}$, $\varphi(x, y, z)=(9 x+4 y+5 z,-4 x-3 z,-6 x-4 y-2 z)$ Write the matrix representing φ.	Linear Algebra Let V, W be vector spaces over field F. What is the dimension of $\operatorname{Hom}_{F}(V, W)$? Give a proof.

Linear Algebra	Linear Algebra
Let A, B be $n \times n$ matrices. What does it mean if A and B are similar? Algebra Prelim	Let V be a vector space over field F. What is the dual space V^{*} ?
	Algebra Prelim
Linear Algebra	Linear Algebra
Let V be a vector space over field F. Given some basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, what is the dual basis?	True or False: Let V be a vector space and V^{*} its dual space. Then $\operatorname{dim}(V)=\operatorname{dim}\left(V^{*}\right)$.
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
Let V be a vector space over field F. What is the double dual $V^{* *}$?	Let V be a finite-dimensional vector space. What does it mean to say that there is a natural isomorphism between V and its double dual $V^{* *}$? What is this isomorphism?
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
Given a matrix $A=\left(\alpha_{i j}\right)$, what is the determinant?	State Cramer's Rule.
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
Let A be an $n \times n$ matrix over an integral domain R. What can we say about the columns of A if $\operatorname{det} A=0$?	True or False: Let A, B be $n \times n$ matrices over a commutative unital ring R. Then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
Algebra Prelim	Algebra Prelim

Cherry says: the lying down vectors!
$V^{*}=\operatorname{Hom}_{F}(V, F)$, i.e. the space of linear transformations from V to F.

The elements of V^{*} are called linear functionals.

False.
If V is finite dimensional, the statement is true since $\operatorname{dim} V^{*}=\operatorname{dim} \operatorname{Hom}_{F}(V, F)=(\operatorname{dim} V)(\operatorname{dim} F)=\operatorname{dim} V$.

If V is infinite dimensional, $\operatorname{dim}(V)<\operatorname{dim}\left(V^{*}\right)$.

It means that specifying an explicit isomorphism between the two spaces does not depend on choosing a basis.

This isomorphism is called evaluation at v. Define

$$
E_{v}: V^{*} \rightarrow F \quad \text { by } \quad E_{v}(f)=f(v)
$$

Then $\varphi: V \rightarrow V^{* *}$ such that $\varphi(v)=E_{v}$ is an isomorphism.

Let A_{1}, \ldots, A_{n} be the columns of $n \times n$ matrix A. Suppose $B=\beta_{1} A_{1}+\cdots \beta_{n} A_{n}$ for $\beta_{1}, \ldots, \beta_{n} \in R, R$ a ring. Then

$$
\beta_{i} \operatorname{det} A=\operatorname{det}\left(A_{1}, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_{n}\right)
$$

A and B are similar if there exists an invertible $n \times n$ matrix P such that $A=P^{-1} B P$.

Geometrically, this means they represent the same linear transformation under a difference choice of basis.

The dual basis is the set $\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ such that the action of any element of the dual basis on any element of the basis of V is defined by $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$, i.e. the Kronecker delta.

As the name suggests, the dual basis is a basis for dual space V^{*}.

It is the dual of V^{*}.

The determinant, denoted $\operatorname{det}(A)$, is given by

$$
\operatorname{det}\left(\alpha_{i j}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} \alpha_{\sigma(i) i}
$$

where $\operatorname{sgn}(\sigma)$ is the sign $(+$ or -$)$ of the permutation σ.

True.
$\operatorname{det} A=0$ if and only if the columns of A are R-linearly dependent.

Linear Algebra	Linear Algebra
True or False: If W is any subspace of vector space V, then there exists subspace U such that $V=W \oplus U$. Give a proof or a counterexample. Algebra Prelim	Let T be the matrix of a linear transformation. How does one calculate $\operatorname{det}(T)$ if T is upper triangular?
	Algebra Prelim
Linear Algebra	Linear Algebra
Let T be the matrix of a linear transformation. How does one find the characteristic polynomial of T ?	What is the significance of the roots of the characteristic polynomial?
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
What is the minimal polynomial of a matrix A ?	Explain the fact that the rational canonical form of a matrix A is based on an invariant factor decomposition of the finite-dimensional vector space V.
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
True or False: The minimal polynomial is the smallest invariant factor of vector space V.	Given an invariant factor $a(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}$, what is the companion matrix generated by this invariant factor?
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
Let C_{i} be the companion matrix calculated from invariant factor $a_{i}(x)$ and let the invariant factors satify $a_{1}(x)\left\|a_{2}(x)\right\| \cdots \mid a_{m}(x)$. How do we form the rational canonical form from these companion matrices?	True or False: Let S, T be linear transformations of V. Then S, T are similar if and only if they share the same rational canonical form.
Algebra Prelim	Algebra Prelim

$\operatorname{det}(T)=$ the product along the diagonal	True. Every subspace has a complement. Let B_{W} be a basis for W. We can extend it to form a basis for V. Let this basis for V be called B_{V}. Then U is the span of $B_{V} \backslash B_{W}$. By the construction of B_{V}, it is clear that $V=W \oplus U$.
They are eigenvalues.	The characteristic polynomial is $\operatorname{det}(x I-T)$.
Given a particular matrix A, V is an $F[x]$-module. Since $F[x]$ is a PID (actually it's Euclidean), we can use the structure theorem for modules over PIDs. Then $V \cong F[x] /\left(a_{1}(x)\right) \oplus F[x] /\left(a_{2}(x)\right) \oplus \cdots \oplus F[x] /\left(a_{m}(x)\right)$ where the generators of the quotienting ideals are invariant factors.	The minimal polynomial $m(x)$ is the unique monic polynomial of lowest degree such that $m(A)=0$ (the zero operator)
$\left(\begin{array}{cccccc}0 & 0 & \cdots & \cdots & \cdots & -b_{0} \\ 1 & 0 & \cdots & \cdots & \cdots & -b_{1} \\ 0 & 1 & \cdots & \cdots & \cdots & -b_{2} \\ 0 & 0 & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & \cdots & 1 & -b_{n-1}\end{array}\right)$	False. It is the largest invariant factor. All other invariant factors must divide it.
True.	$\left(\begin{array}{llll}C_{1} & & & \\ & C_{2} & & \\ & & \ddots & \\ & & & C_{m}\end{array}\right)$

Linear Algebra	Linear Algebra
True or False: Let A be an $n \times n$ matrix over field F and let K be an extension of F. Then the rational canonical forms of A over K and over F are the same.	What is an $n \times n$ Jordan block for eigenvalue λ ?
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
Complete the sentence: A matrix is diagonalizable if and only if its Jordan canonical form is \qquad .	In what sense is the Jordan canonical form of a matrix unique?
Algebra Prelim	Algebra Prelim
Linear Algebra	Linear Algebra
What does it mean for a matrix to be in Jordan canonical form?	True or False: Two diagonal matrices are similar if and only if their diagonal entries are the same up to a permutation.
Algebra Prelim	Algebra Prelim
Linear Algebra	Fields
A matrix M is diagonalizable if and only if what condition is placed on its minimal polynomial? Give a proof.	In what fields does that quadratic formula apply?
Algebra Prelim	Algebra Prelim
Fields	Fields
Let L / F be a finite extension of fields. For $\alpha \in L$, left multiplication by α is an F-linear transformation of F. What is the relationship between the field norm of α and this linear transformation induced by α ?	Let L / F be a finite extension of fields. For $\alpha \in L$, what is the field norm $N_{L / F}(\alpha)$?
Algebra Prelim	Algebra Prelim

$\left(\begin{array}{lllll} \lambda & 1 & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda & 1 \\ & & & & \lambda \end{array}\right)$	True.
It is unique up to permutation of the Jordan blocks.	diagonal
True. If their diagonal entries are the same up to permutation, then their Jordan canonical forms are the same, which means they are similar.	A matrix is in Jordan canonical form if it is block diagonal and each block is a Jordan block.
The quadratic formula applies in any field that is not of characteristic 2.	Its minimal polynomial $m(x)$ must have no repeated roots. (\Longleftarrow) If $m(x)$ has no repeated roots, by the divisibility conditions of invariant factors, the elementary divisors are linear polynomials. Thus the JCF of M is diagonal (\Longrightarrow) If M is similar to a diagonal matrix D, then M and D have the same minimal polynomial. The minimal polynomial of D must contain all distinct linear factors, each corresponding to the 1×1 blocks that make up D.
Let $f(x)$ be the minimal polynomial for α over F. Let $\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)$ be the roots (counted with multiplicity) of $f(x)$. Then $N_{L / F}(\alpha)=\left(\prod_{j=1}^{n} \sigma_{j}(\alpha)\right)^{[L: F(\alpha)]}$ i.e., it is the product of all Galois conjugates of α. One can also think of it as the constant term of the minimal polynomial times $(-1)^{n}$ where n is the degree of $f(x)$.	Let T be the matrix that represents the linear transformation. Then the field norm of α is the determinant of T.

Fields Let K / F be a finite extension of fields. For $\alpha \in K$, left multiplication by α on K is an F-linear transformation T_{α} of K. How does the minimal polynomial of α over F relate to T_{α} ? Algebra Prelim	Fields Let K / F be a finite extension of fields. For $\alpha \in K$, left multiplication by α on K is an F-linear transformation T_{α} of K. What is the trace $\operatorname{Tr}_{K / F}(\alpha)$? How does $\operatorname{Tr}_{K / F}(\alpha)$ relate to T_{α} ? Algebra Prelim
Fields Let K / F be a finite extension of fields. For $\alpha \in K$, left multiplication by α is an F-linear transformation of F. What is the relationship between $\operatorname{Tr}_{K / F}(\alpha)$ and this linear transformation induced by α ? Algebra Prelim	Fields Let $F_{p^{n}}$ and $F_{p^{m}}$ be finite fields of characteristic p. What is the smallest finite field that contains both of them? Give a proof.
Fields For what type of polynomial is is true that the polynomial is irreducible if and only if it does not have a root in field F ? Algebra Prelim	Fields State the rational roots theorem Algebra Prelim
Fields Let G be a finite subgroup of the multiplicative group of a field. What property does G have? Give an example for the field F_{p} for prime p.	Fields True or False: In a finite field, adjoining one root of an irreducible polynomial results in the splitting field of the polynomial. Algebra Prelim
Fields What is the characteristic of a field? Algebra Prelim	Fields What is the characteristic of a field in terms of its prime subfield? Algebra Prelim

Let $f(x)$ be the minimal polynomial for α over F. Let $\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)$ be the roots (counted with multiplicity) of $f(x)$. Then

$$
\operatorname{Tr}_{K / F}(\alpha)=\left(\sum_{j=1}^{n} \sigma_{j}(\alpha)\right)^{[L: F(\alpha)]}
$$

i.e., it is the sum of all Galois conjugates of α. One can also think of it as the coefficient of the second-highest degree term of $f(x)$ times -1 .

Let $k=\operatorname{lcm}(n, m)$. Then the smallest finite field that contains both fields if $F_{p^{k}}$.
F_{n} contains the n roots of $x^{p^{n}}-x$ and F_{m} contains the m roots of $x^{p^{m}}-x$. The smallest polynomial of the form $x^{p^{k}}-x$ that is divisible by both $x^{p^{n}}-x$ and $x^{p^{m}}-x$ is the one where $k=\operatorname{lcm}(n, m)$. Thus the smallest field that contains both fields is $F_{p^{k}}$.

The minimal polynomial of α over F is equal to the minimal polynomial of the matrix T_{α}.
$\operatorname{Tr}_{K / F}(\alpha)$ is equal to the trace (matrix trace, i.e. sum along diagonal) of the matrix that represents the linear transformation.

Let $p(x)$ be a polynomial with integer coefficients. For $r / s \in \mathbb{Q}, r / s$ is a root of $p(x)$ if and only if r divides the constant term and s divides the leading coefficient.

A polynomial of degree 2 or 3 , since these are the only kinds that factor if and only if they have a linear factor.
G is cyclic.

For F_{p}, its group of units F_{p}^{\times}is a finite subgroup of the multiplicative group of a field. Therefore, F_{p}^{\times}is cyclic.
$\operatorname{char}(F)=0$ if and only if its prime subfield is isomorphic to \mathbb{Q}
$\operatorname{char}(F)=p$ if and only if its prime subfield is isomorphic to \mathbb{F}_{p}.

Let F be a field. Then its characteristic, $\operatorname{char}(F)$, is the smallest positive integer p such that $p \cdot \alpha=0$ for all $\alpha \in F$. If no such p exists, $\operatorname{char}(F)=0$

Fields What is the prime subfield of a field F ?	Fields What is a field extension of a field F ? Algebra Prelim
Fields What is the degree of an extension K / F ?	Fields Let $\varphi: F \rightarrow F^{\prime}$ be a homomorphism of fields. What can we say about φ ? Algebra Prelim
Fields What is a splitting field for an irreducible polynomial $p(x) \in F[x]$? Algebra Prelim	Fields Let $p(x) \in F[x]$ be an irreducible polynomial of degree n and let $K=F[x] /(p(x))$. What is one convenient basis for representing K as a vector space over F ? Algebra Prelim
Fields What is a simple extension of field F ? Algebra Prelim	Fields Let K be a finite extension over field F. Name two conclusions that can be drawn from this statement.
Fields What does it mean for an element α to be algebraic over field F ? What does it mean for extension K to be algebraic over F ? Algebra Prelim	Fields Let α be an algebraic element over field F. What is $m_{\alpha, F}(x)$, the minimal polynomial of α ? Algebra Prelim

Fields Let $p(x) \in F[x]$ have α as a root. What can we say about the minimal polynomial of α ?	Fields True or False: If K / F is an extension of fields and α is algebraic over both K and F, then $m_{\alpha, F}(x)$ divides $m_{\alpha, K}(x)$. Algebra Prelim
Fields Let F be a field and let α be algebraic over F. What is the degree of α ?	Fields Let α be algebraic over field F. Prove that $[F(\alpha): F]=\operatorname{deg}(\alpha)$
Fields Complete the sentence: The field extension $F(\alpha) / F$ is finite if and only if \qquad	Fields What is the tower rule for field extensions? Algebra Prelim
Fields What does it mean for a field extension K / F to be finitely generated? Algebra Prelim	Fields (Artin's Theorem) Complete the sentence: Let K / F be a finite extension. Then $K=F(\alpha)$ for some $\alpha \in K$ if and only if \qquad .
Fields What condition on field extension K / F guarantees that $K=F(\alpha)$ for some $\alpha \in K$? What can we say if the base field is of characteristic 0 ?	Fields Suppose α, β are algebraic over F. Prove that $\alpha \pm \beta, \alpha \beta, \alpha / \beta(\beta \neq 0)$ are all algebraic over F. Algebra Prelim

Fields If K_{1}, K_{2} are subfields of field K, what is the composite field $K_{1} K_{2}$? Algebra Prelim	Fields True or False: If K_{1}, K_{2} are finite extensions of F contained in K, then $\left[K_{1} K_{2}: F\right] \leq\left[K_{1}: F\right]\left[K_{2}: F\right] .$ Give a proof or counterexample. Algebra Prelim
Fields Let K_{1}, K_{2} be finite extensions of F contained in K. Let $\left[K_{1}: F\right]=n$, $\left[K_{2}: F\right]=m$, and $(n, m)=1$. Prove that $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$. Algebra Prelim	Fields Prove that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$ Algebra Prelim
Fields Complete the sentence: Let $F \subset \mathbb{R}$. Then $\alpha \in R$ can be obtained by compass and straightedge constructions if and only if \qquad .	Fields Prove that given a cube, one cannot construct another cube with double the volume by using compass and straightedge constructions. Algebra Prelim
Fields Complete the sentence: The regular n-gon is constructible by compass and straightedge constuctions if and only if \qquad .	Fields What is a Fermat prime? Algebra Prelim
Fields What is a splitting field?	Fields What is a normal extension?
Algebra Prelim	Algebra Prelim

True.

K_{1}, K_{2} are finite extensions, so they are finitely generated. Say $K_{1}=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $K_{2}=F\left(\beta_{1}, \ldots, \beta_{m}\right)$. Then $K_{1} K_{2}=F\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)=K_{1}\left(\beta_{1}, \ldots, \beta_{m}\right)$. This means $\left\{\beta_{i}\right\}$ spans $K_{1} K_{2}$ over K_{1}, so $\left[K_{1} K_{2}: K_{1}\right] \leq m$. Then applying the tower rule completes the proof.

Note: The inequality becomes an equality if and only if an F-basis for one of the fields remains linearly independent over the other field.
$K_{1} K_{2}$ is the smallest subfield of K that contains K_{1} and K_{2}.

Clearly $F\left(\alpha^{2}\right) \subseteq F(\alpha)$. Then $\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F\left(\alpha^{2}\right): F\right]$ is odd. The minimal polynomial for α over $F\left(\alpha^{2}\right)$ is of degree at most 2 since α is a root of $x^{2}-\alpha^{2}$.

If $m_{\alpha}(x)$ is of degree 2 , then $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=2$, which contradicts that $\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F(\alpha)^{2}: F\right]$ is odd. Thus $m_{\alpha}(x)$ is of degree 1 and $\alpha \in F\left(\alpha^{2}\right)$.
K_{1} and K_{2} are subfields of $K_{1} K_{2}$, so both n and m divide [$K_{1} K_{2}: F$]. Then $\left[K_{1} K_{2}: F\right.$] is divisible by $\operatorname{lcm}(n, m)=$ $n m$. Finally since it is known that $\left[K_{1} K_{2}: F\right] \leq\left[K_{1}\right.$: $F]\left[K_{2}: F\right]$, we conclude $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.

Suppose the original cube has side length 1 . Then a cube with double the volume has side length $\sqrt[3]{2}$. This element has degree 3 over \mathbb{Q}, so $[\mathbb{Q}(\sqrt[3]{2})$: $\mathbb{Q}] \neq 2^{k}$ for nonnegative integer k. Thus the cube of doubled volume is not constructible.
$[F(\alpha): F]=2^{k}$ for some integer $k \geq 0$

A Fermat prime is a prime number of the form $2^{2^{n}}+1$ for nonnegative integer n.
$n=2^{k} p_{1} \cdots p_{r}$ where k is a nonnegative integer and p_{1}, \ldots, p_{r} are distinct Fermat primes.

Let K be an algebraic extension of F. If K is the splitting field for some collection of polynomials $f(x) \in F[x]$, then K is a normal extension.

Let K be an extension of F. Then K is a splitting field for the polynomial $f(x) \in F[x]$ if $f(x)$ factors into linear factors in $K[x]$ and fails to factor completely in any proper subfield of K containing F.

Fields Complete the sentence: Let $f(x) \in F[x]$ be a polynomial of degree n. Then adjoining one root of $f(x)$ to F generates an extension of degree n if and only if \qquad	Fields Let $f(x) \in F[x]$ be of degree n. What is the largest possible degree of the extension that is the splitting field of $f(x)$? Algebra Prelim
Fields What is a primitive root of unity?	Fields How many $n^{\text {th }}$ roots of unity are primitive roots of unity?
Fields What is the cyclotomic field of $n^{\text {th }}$ roots of unity? Algebra Prelim	Fields Let ζ_{p} be a primitive $p^{\text {th }}$ root of unity for prime p. What is the minimal polynomial for ζ_{p} ?
Fields What is $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]$ where ζ_{n} is a primitive $n^{\text {th }}$ root of unity? Algebra Prelim	Fields What is an algebraic closure of F ? Algebra Prelim
Fields What is a separable polynomial? Algebra Prelim	Fields How can we use the derivative to check whether a polynomial is separable?

Fields	Fields
Prove that every irreducible polynomial over a field of characteristic 0 is separable. Explain What is the Frobenius endomorphism of	
Algebra Prelim	Algebra Prelim
Fields	Fields
Let F be a field of characteristic p. Prove that the Frobenius map is a bijection.	What is a perfect field?
Algebra Prelim	Algebra Prelim
Fields	Fields
List several equivalent characterizations of a perfect field F.	True or False: All fields of characteristic zero and all finite fields are perfect.
Algebra Prelim	Algebra Prelim
Fields	Fields
Complete the sentence: Every irreducible polynomial over a \qquad field is separable.	True or False: Finite fields of any order p^{n} are unique up to isomorphism. Give a proof or counterexample.
Algebra Prelim	Algebra Prelim
Fields	Fields
Let $f(x)$ be an irreducible polynomial over a field F of characteristic p. Prove that there is a unique integer $k \geq 0$ and unique irreducible separable polynomial $f_{\text {sep }}(x) \in F[x]$ such that $f(x)=f_{\text {sep }}\left(x^{p^{k}}\right)$	Let $f(x)$ be irreducible over a field F of characteristic p. What is the separable degree of $f(x)$? What is the inseparable degree of $f(x)$?
Algebra Prelim	Algebra Prelim

Let F be a field of characteristic p. The Frobenius endomorphism is the map $\varphi: F \rightarrow F$ such that $\varphi(\alpha)=\alpha^{p}$.	Let F be of characteristic zero and $p(x) \in F[x]$ is irreducible of degree n. The only factors of $p(x)$ are 1 and $p(x)$. The derivative $p^{\prime}(x)$ has factors of degree at most $n-1$. Thus the only factor that $p(x)$ and $p^{\prime}(x)$ can share is 1. Thus $p(x)$ is separable. In a field of characteristic p, the derivative of $x^{p m}$ is zero, so the degree of the derivative may drop more than 1 . However, if $p^{\prime}(x)$ is nonzero (and $p(x)$ is irreducible as before), then $p(x)$ is separable.
A field K of characteristic p is perfect if every element of K is a $p^{\text {th }}$ power in K. Any field of characteristic 0 is also perfect.	Let $\varphi(a)=a^{p}$ for $a \in F$ be the Frobenius map. Since φ is a map between fields, the map is injective. Also, φ maps F to itself so injectivity is enough to prove that φ is a bijection.
True.	TFAE: - F is perfect - Every irreducible polynomial over F has distinct roots - Every irreducible polynomial over F is separable - Every finite extension of F is separable - Every algebraic extension of F is separable - Either F has characteristic 0 or when F has characteristic p, then every element is a $p^{\text {th }}$ power
True. A finite field of order p^{n} is the splitting field over \mathbb{F}_{p} of the polynomial $x^{p^{n}}-x$. All splitting fields are unique up to isomorphism.	perfect
Let $f_{\text {sep }}(x)$ be the unique irreducible separable polynomial in $F[x]$ such that $f(x)=f_{\text {sep }}\left(x^{p^{k}}\right)$. The separable degree of $f(x)$ is the degree of $f_{\text {sep }}(x)$. The inseparable degree of $f(x)$ is the integer p^{k}. Note: These definitions only make sense for irreducible polynomials!	If $f(x)$ is separable, then $f=f_{\text {sep }}$. If $f(x)$ is not separable, then $f^{\prime}(x)=0$ and every power of x in $f(x)$ is a multiple of p. Thus there exists polynomial $f_{1}(x)$ such that $f(x)=f_{1}\left(x^{p}\right)$. Continue this process until $f_{k}(x)$ is separable (i.e. has nonzero derivative). Such an f_{k} is clearly irreducible since any factorization of f_{k} would produce a corresponding factorization of f. This f_{k} is the $f_{\text {sep }}$ we seek.

Let μ_{n} be the group of $n^{\text {th }}$ roots of unity over \mathbb{Q}.

$$
\Phi_{n}(x)=\prod_{\zeta \text { primitive } \epsilon \mu_{n}}(x-\zeta)=\prod_{\substack{1 \leq a<n \\(a, n)=1}}\left(x-\zeta_{n}^{a}\right)
$$

In other words, it is the polynomial whose roots are exactly the primitive $n^{\text {th }}$ roots of unity.

A field K is separable over F if every element of K is the root of a separable polynomial over F. Equivalently, K is separable if every element of K has a separable minimal polynomial over F.
$\operatorname{Aut}(K / F)$ is the group (under composition) of automorphisms of K that fix every element of F.

Notice $x^{2 n}-1=\left(x^{n}-1\right)\left(x^{n}+1\right)$. Let ζ be a root of $x^{n}-1$. Then $-\zeta$ is a root of $x^{n}+1$. Thus any field with the $n^{\text {th }}$ roots of unity also contains the $2 n^{\text {th }}$ roots of unity.

Geometrically, we can see that the set of roots of $x^{n}+1$ is a rotation of the roots of $x^{n}-1$ by 180°.

Let K be a field and let H be a subset of $\operatorname{Aut}(K)$. Then the fixed field of H is the subfield of K such that H fixes all the elements of this subfield.
$\sigma(\alpha)$ is a root of the minimal polynomial of α.

False.

Let $\alpha=\sqrt[3]{2}$. Then $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, but $|\operatorname{Aut}(\mathbb{Q}(\alpha) / \mathbb{Q})|=1$. To see this, recall $m_{\alpha}(x)=x^{3}-2$. In the splitting field K of $m_{\alpha}(x), \operatorname{Aut}(K / \mathbb{Q})$ would shuffle the three roots. But $\mathbb{Q}(\alpha) / \mathbb{Q}$ contains the only real root, so automorphisms that fix the base field can only map α to itself. Hence $|\operatorname{Aut}(\mathbb{Q}(\alpha) / \mathbb{Q})|=1$.

TFAE:

- K / F is Galois
- $|\operatorname{Aut}(K / F)|=[K: F]$
- K is the splitting field over F for a separable polynomial
- K / F is algebraic and F is the fixed field of $\operatorname{Aut}(K / F)$
- Every irreducible polynomial in $F[x]$ with one root in K splits over K and is separable.
- K / F is a normal, separable, and finite extension.

Almost true. It is true if F is not of characteristic 2	False. $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ are both Galois because they are both quadratic extensions of a field with characteristic $\neq 2$. But $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is not Galois.
\{1\} $H=\operatorname{Gal}(K / E)$ (has order h) $G=\operatorname{Gal}(K / F)$ (has order g)	Let K / F be a Galois extension. If $\alpha \in K$, then the elements $\sigma(\alpha)$ for any $\sigma \in \operatorname{Gal}(K / F)$ are the Galois conjugate of α over F. In other words, the Galois conjugates are the other roots of the minimal polynomial of α.
There is a one-to-one correspondence between the isomorphisms of E that fix F and the cosets of H in G. If $H \unlhd G$, then $\operatorname{Aut}(E / F)=\operatorname{Gal}(E / F) \cong G / H$.	E / F is Galois if and only if $\operatorname{Aut}(E / F) \unlhd G=\operatorname{Gal}(K / F)$. $\operatorname{Gal}(E / F) \cong G / H \text { where } H=\operatorname{Gal}(K / E)$
$\left[\mathbb{F}_{p_{n}}: \mathbb{F}_{p}\right]=n$	Since all fields of characteristic 0 and all finite fields are perfect, we seek an infinite field of characteristic p. Recall that a field is perfect if and only if every irreducible polynomial is separable. Consider $\mathbb{F}_{p}(t)$, the field of rational functions in transcendental t. The polynomial $x^{p}-t \in \mathbb{F}_{p}(t)[x]$ is irreducible by Eisenstein's using the prime element t. Let α be a root. Then $\alpha^{p}=t$, so $x^{p}-\alpha^{p}=(x-\alpha)^{p}$, which is not separable.
It is the cyclic group of order n generated by the Frobenius automorphism, i.e. $\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)=\left\langle\sigma_{p}\right\rangle \cong \mathbb{Z} / n \mathbb{Z}$ where $\sigma_{p}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ so that $\sigma_{p}(\alpha)=\alpha^{p}$.	True. $\mathbb{F}_{p^{n}}$ is the splitting field of the separable polynomial $x^{p^{n}}-x$ and hence it is a Galois extension.

Fields Under what condition on n, m is is true that $\mathbb{F}_{p^{n}} \subseteq \mathbb{F}_{p^{m}} ?$ Algebra Prelim	Fields Prove that the irreducible polynomial $x^{4}+1 \in \mathbb{Z}[x]$ is reducible modulo every prime. Algebra Prelim
Fields Let $p(x)$ be irreducible over $\mathbb{F}_{p^{n}}$ and let α be a root of $p(x)$. What can we say about the field $\mathbb{F}_{p^{n}}(\alpha) ?$ Give a proof. Algebra Prelim	Fields Describe one method for recursively producing irreducible polynomials over \mathbb{F}_{p}. Algebra Prelim
Fields Prove that $x^{p^{n}}-x$ is the product of all irreducible polynomials over \mathbb{F}_{p} with degree d dividing n. Algebra Prelim	Fields What is the algebraic closure of \mathbb{F}_{p} ? Algebra Prelim
Fields Suppose K / F is Galois and F^{\prime} / F is any extension. Prove that $K F^{\prime} / F^{\prime}$ is also Galois. What is its Galois group?	Fields Complete the formula: Suppose K / F is Galois and F^{\prime} / F is any extension. Then $\left[K F^{\prime}: F\right]=$ \qquad
Fields Let K_{1}, K_{2} be Galois extensions of a field F. Prove that $K_{1} \cap K_{2}$ is Galois over F.	Fields Let K_{1}, K_{2} be Galois extensions of F. Is $K_{1} K_{2}$ Galois? If so, what is its Galois group?
Algebra Prelim	Algebra Prelim

If $p=2$, then $x^{4}+1=(x+1)^{4}$ and so it is reducible.
If p is odd, note that $p^{2}-1$ is divisible by 8 . Thus $x^{p^{2}-1}-1$ is divisible by $x^{8}-1$. Then

$$
x^{4}+1\left|x^{8}-1\right| x^{p^{2}-1}-1 \mid x^{p^{2}}-x
$$

the last of which generates $\mathbb{F}_{p^{2}}$, an extension of degree 2 . So any extension generated by a root of $x^{4}+1$ is of degree at most 2 , which means it is not irreducible over \mathbb{F}_{p}.

This is true only when n divides m.
$x^{p^{n}}-x$ is precisely the product of all irreducible polynomials over \mathbb{F}_{p} of degree d dividing n.

For example, say we seek all irreducible degree 6 polynomials over \mathbb{F}_{3}. Since $1,2,3,6$ are the divisors of 6 , take $x^{3^{6}}-x$ and divide by all irreducible polynomials of degrees 1,2 , and 3 . The divisors of the quotient are all the irreducible degree 6 polynomials.
$\mathbb{F}_{p^{n}}(\alpha)$ is the splitting field for $p(x)$
Let $\operatorname{deg}(p(x))=d$. Then $\left[\mathbb{F}_{p^{n}}(\alpha): \mathbb{F}_{p^{n}}\right]=d$ and since all finite fields of a particular order are isomorphic, $\mathbb{F}_{p^{n}}(\alpha) \cong$ $\mathbb{F}_{p^{n d}}$. Thus α is a root of $x^{p^{n d}}-x$. Since $x^{p^{n d}}-x$ contains precisely all irreducible polynomials of degree dividing $n d$, we know $p(x) \mid x^{p^{n d}}-x$ and so all roots of $p(x)$ are in $\mathbb{F}_{p^{n}}(\alpha)$.

$$
\overline{\mathbb{F}_{p}}=\bigcup_{n \geq 1} \mathbb{F}_{p^{n}}
$$

The roots of $\mathbb{F}_{p^{n}}$ are precisely the roots of $x^{p^{n}}-x$. We know that $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$ if and only if $d \mid n$. Extending \mathbb{F}_{p} to the splitting field of any degree d irreducible polynomial will result in $\mathbb{F}_{p^{d}}$ since all finite fields of the same size are isomorphic. Thus every minimal polynomial of degree d splits in $\mathbb{F}_{p^{d}}$. Grouping together all minimal polynomials of the same degree, we see that their product is $x^{p^{n}}-x$.

$$
\left[K F^{\prime}: F\right]=\frac{[K: F]\left[F^{\prime}: F\right]}{\left[K \cap F^{\prime}: F\right]}
$$

Yes, $K_{1} K_{2}$ is Galois.

Its Galois group is isomorphic to the subgroup

$$
H=\left\{(\sigma, \tau)|\sigma|_{K_{1} \cap K_{2}}=\left.\tau\right|_{K_{1} \cap K_{2}}\right\}
$$

of the direct product $\operatorname{Gal}\left(K_{1} / F\right) \times \operatorname{Gal}\left(K_{2} / F\right)$ consisting of elements whose restrictions to the intersection $K_{1} \cap K_{2}$ are equal.

Recall that an extension is Galois if and only any irreducible polynomial that has at least one root in the extension splits completely in the extension.

Let $p(x)$ be irreducible in $F[x]$ with a root α in $K_{1} \cap K_{2}$. By the above characterization of Galois extensions, all roots of $p(x)$ are in both K_{1} and K_{2}. But then all roots of $p(x)$ are in $K_{1} \cap K_{2}$ and so $K_{1} \cap K_{2}$ is Galois.

Fields What is the Galois closure of finite separable extension E / F ? Algebra Prelim	Fields Prove that if K / F is finite and separable, then K / F is simple.
Fields What is a separable field extension? Algebra Prelim	Fields Prove that any finite field extension over a field of characteristic 0 is simple. Algebra Prelim
Fields Let $\mathbb{Q}\left(\zeta_{n}\right)$ be the cyclotomic field of $n^{\text {th }}$ roots of unity. What is its Galois group? Algebra Prelim	Fields Let $\mathbb{Q}\left(\zeta_{p}\right)$ be the cyclotomic field extension over for prime p. What is the Galois group of this extension?
Fields Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of positive integer n into distinct prime powers. Prove that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong$ $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p_{1}^{\alpha_{1}}}\right) / \mathbb{Q}\right) \times \cdots \times \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p_{k}^{\alpha_{k}}}\right) / \mathbb{Q}\right)$ Algebra Prelim	Fields What is an abelian field extension?
Fields Let G be a finite abelian group. Prove that there is a field K / \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong G$.	Fields What is the discriminant of a polynomial?
Algebra Prelim	Algebra Prelim

Let L be the Galois closure of K / F. By the Fundamental Theorem of Galois Theory, any intermediate field between K and F corresponds to a subgroup of $\operatorname{Gal}(L / F)$. Since there are finitely many subgroups, there are also finitely many intermediate fields. By Artin's Theorem, K / F is simple.	The Galois closure is an extension K / F which is Galois over F and is minimal in the sense that in a fixed algebraic closure of K, any other Galois extension of F containing E contains K. Note that the Galois closure is defined for finite separable extensions.
Any finite extension K / F of a field of characteristic 0 is separable. If the extension is finite and separable, we can consider its Galois closure. The corresponding Galois group of this Galois closure has finitely many subgroups and thus K / F has only finitely many intermediate fields. By Artin's Theorem, K / F is simple.	A field extension is separable if the minimal polynomial of every element is separable.
The cyclic group $\mathbb{Z} /(p-1) \mathbb{Z}$.	Its Galois group is the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
The extension K / F is called abelian if K / F is Galois and $\operatorname{Gal}(K / F)$ is an abelian group.	Note that $\zeta_{n}^{p_{2} \ldots \ldots p_{k}^{\alpha_{k}}}$ is a primitive $p_{1}^{\alpha_{1}}$-th root of unity, so the field $\mathbb{Q}\left(\zeta_{p_{1}^{\alpha_{1}}}\right)$ is a subfield of $\mathbb{Q}\left(\zeta_{n}\right)$. The same applies to the other prime powers. Their composite field is $\mathbb{Q}\left(\zeta_{n}\right)$ and their intersection is \mathbb{Q}. This means that the Galois group of $\mathbb{Q}\left(\zeta_{n}\right)$ is the direct product of the Galois groups of each of the aforementioned subfields, i.e. $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p_{1}^{\alpha_{1}}}\right) / \mathbb{Q}\right) \times \cdots \times \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p_{k}^{\alpha_{k}}}\right) / \mathbb{Q}\right)$
Let x_{1}, \ldots, x_{n} be the roots of a polynomial. Then the discriminant of the polynomial is $D=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2}$	The FTFGAG guarantees that $G \cong \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$. Let p_{i} be prime such that $p_{i} \cong 1 \bmod n_{i}$ (there are infinitely many such primes) for $i=1, \ldots, k$. Let $n=p_{1} \cdots p_{k}$. Then $(\mathbb{Z} / n \mathbb{Z})^{\times} \cong \prod_{i=1}^{k}\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{\times} \cong \prod_{i=1}^{k} \mathbb{Z} /\left(p_{i}-1\right) \mathbb{Z}$. Since $n_{i} \mid\left(p_{1}-1\right)$, there exists $H_{i} \leq \mathbb{Z} /\left(p_{i}-1\right) \mathbb{Z}$ such that the quotient by H_{i} is cyclic of order n_{i}. By the fundamental theorem of Galois theory, there is a subfield of $\mathbb{Q}\left(\zeta_{n}\right)$ that is Galois over \mathbb{Q} and has G as its Galois group.

The Galois group must be a subgroup of S_{3} and have order at least 3 since adjoining a single root will already result in an extension of degree 3 . If the discriminant is a square of an element of the base field, then the Galois group in A_{3}, i.e. it's precisely A_{3}. If the discriminant is not a square, then the Galois group must properly contain A_{3}, i.e. it's precisely S_{3}.

The Galois group contains automorphisms that fix the base field, so if $\sqrt{D}=\prod_{i<j}\left(x_{i}-x_{j}\right)$ is contained in the base field, the any automorphism in the Galois gorup fixes \sqrt{D}. This means that the number of transpositions of the roots is even, since an odd number of transpositions would change the sign of \sqrt{D}. We conclude that the Galois group is a subgroup of A_{n} where n is the degree of the polynomial in question.

The transitive subgroups of S_{5} are $S_{5}, A_{5}, D_{10}, F_{20}$, and $\mathbb{Z} / 5 \mathbb{Z}$.
These are the only possible Galois groups for an irreducible degree 5 polynomial.

The transitive subgroups of S_{4} are $S_{4}, A_{4}, D_{8}, V_{4}$, and $\mathbb{Z} / 4 \mathbb{Z}$.

These are the only possible Galois groups for an irreducible degree 4 polynomial.

The minimal polynomial for $\sqrt[n]{a}$ is $x^{n}-a$. This polynomial is separable. Since adjoining $\sqrt[n]{a}$ generates the splitting field, the extension is Galois.

An extension K / F is cyclic if it is Galois with a cyclic Galois group.

A polynomial is solvable by radicals if all its roots can be expressed by radicals.

An element α can be expressed by radicals if α is an element of a field K that can be formed by a succession of simple radical extensions

$$
F=K_{0} \subset K_{1} \subset \cdots \subset K_{s}=K
$$

where $K_{i+1}=K_{i}\left(\sqrt[n]{a_{i}}\right)$ for some $a_{i} \in K_{i}$.
its Galois group is a solvable group

separable	
The Galois group of $\overline{f(x)}$ is isomorphic to a subgroup of	
the Galois group of $f(x)$.	

