
A Tour of Type Theory
This talk is ...

Part hands-on / Lean tutorial
Part introduction to foundational / theoretical aspects of Type Theory

Which means,

It's not a great Lean tutorial
It's not a perfect formal treatment of Type Theory



Set-Theoretic Foundations
Typical set-theoretic foundations:

First order logic
Syntax

variables, logical connectives 
binary relation 

A deductive system
Judgements of the form "  is provable"
Rules of inference to infer judgements from other judgements

Axioms of FOL
Axioms of set theory ( , , , etc.)

¬, ∧, →, ↔, ∀, ∃

∈

p

modus-ponens
Γ ⊢ a Γ ⊢ a → b

Γ ⊢ b

ZF ZFC ZF−



Big picture:

Primitive concept = logic 📝

Decide how logic and proof works 🤔
... Axiomatize things called sets
... Use sets to implement the rest of mathematics

Deductive system of FOL → Sets → Mathematics



Type-Theoretic Foundations
Type theory takes a fundamentally different approach:

Primitive concept = computation 🤖

Start with a system of "well-typed computation"
Implement logic and proof (using Curry-Howard)
Implement the rest of mathematics

Type theory

→ Logic and proof

→ Mathematics



(Typed) Lambda Calculus
The formal system we will describe in the next few slides is called the Calculus of
Inductive Constructions, an extension of lambda calculus.

Syntax
Variables are terms
If  is a variable,  is a term, and  are terms, then

 is a term (function abstraction)

 is a term (dependent function type constructor)

If  and  are terms, then  is a term (application)

Deductive system
The primary judgements of our deductive system are "typing judgements" of the form

which asserts that, in the given context, the term  has type .

x A ,Bx Tx

λ x : A, Bx

∏x:A Tx

A B AB

: , … : ⊢ x : Ax1 A1 xn An

x A



Definitional (Computational) Equality
beta-reduction is the following rule:

this captures "performing" function application by literally inserting the argument into
the body in place of the variable.

The equivalence relation  generated by this rule will be called definitional equality, and
gives rise to a type of judgement

that  and  are "definitionally equal terms".

We also declare the inference rule

(λ x : A, ) t [t / x]Bx →β Bx

≡

A ≡ B

A B

conv
Γ ⊢ x : A Γ ⊢ B : Type Γ ⊢ A ≡ B

Γ ⊢ x : B



We will see that the assertion/judgement

will eventually be interpreted in all of the following ways:

 is a term of type 
When we implement mathematics...

 is an "element" of  ( )

When we implement logic...
 is a proof of 
 is a witness to 

x : A

a A

a A A = N, Q, CptHaus, Alg, …C∗

a A

a A



Dependent Function Type
CIC has an infinite heirarchy of "universes":

The dependent function type constructor is governed by the following rule:

When  is constant (does not depend on ), the dependent function is just the type of
"regular" functions from  to , and we write

:Prop
  

logic

: …Type1 Type2
  

data

Pi
Γ ⊢ A : Γ; x : A ⊢ :Typei Bx Typej

Γ ⊢ :∏x:A Bx Typemax(i,j)

Bx x

A B

B ≡ A → B∏
x:A



Terms of a function type are constructed with lambda abstraction:

and come with the following application typing rule:

lam
Γ ⊢ : Type Γ; x : A ⊢ :∏x:A Bx bx Bx

Γ ⊢ λ x : A, :bx ∏x:A Bx

app
Γ ⊢ f : Γ ⊢ t : A∏x:A Bx

Γ ⊢ f t : [t / x]Bx



We want to interpret  as the type of logical propositions. If , we want adopt
the point of view that

And, more generally

Finally,

Under this point of view, we naturally get the Brouwer-Heyting-Kolmogorov
interpretation of intuitionistic logic, as will be explained.

Prop p : Prop

 means "  is a proof of "x : p x p

"  is inhabited" means "  is true"p p

"proving " means "exhibiting a term of type "p p



Under the BHK interpretation,

should mean

(Non-dependent) functions types capture exactly this: If , then

is the proposition representing "  implies ", and terms  are exactly functions
taking proofs of  and returning proofs of .

A proof that  implies p q

A process transforming proofs of  into proofs of p q

p, q : Prop

q ≡ p → q : Prop∏
h:p

p q f : p → q

p q



Under the BHK interpretation

Should mean

Which is where we need dependent function types. Indeed, if  and for each 
 we have ,

represents the proposition "for all , ", and terms  are functions
taking objects  of type  to proofs (terms) of .

A proof of "for all , "x p(x)

A process transforming objects  into proofs of x p(x)

A : Type

x : A : Proppx

: Prop?∏
x:A

px

x : A px f : ∏x:A px

x A px



Why Differentiate ?
Our typing rule for the dependent function type says that the universe of types is
predicative:

but, we want the type on the previous slide to "remain" a proposition! So, we make 
 impredicative with the following special rule:

This way, under our intrepretation of the type , statements like "for all , ..." are
propositions.

Prop

Pi
Γ ⊢ A : Γ; x : A ⊢ :Typei Bx Typej

Γ ⊢ :∏x:A Bx Typemax(i,j)

Prop

Pi-prop
Γ ⊢ A : Γ; x : A ⊢ : PropTypei Bx

Γ ⊢ : Prop∏x:A Bx

Prop n : N



Inductive Types
(non)-dependent function is the only type constructor built into our system. The rest can
be created using inductive definitions. Roughly, an inductively defined type  is

A collection of constructors , functions that create
terms of type .
The only terms of type  are those created through its constructors (An inductive type is
just the initial algebra of an endofunctor, what's the problem?)

This is not only how we will define mathematical objects, like

(A natural number is either zero or the successor of another natural number, and nothing more)

But also the rest of the logical connectives

I

→ → ⋯ → → IA1 A2 An

I

I

inductive ℕ : Type 
| zero : ℕ 
| succ : ℕ → ℕ



In the BHK interpretation, a proof of "  and " should be a "a proof of  together with a
proof of ":

This actually results in

So, given , there is another proposition  and proofs of this
proposition are made from a proof of  and a proof of .

Similarly, a proof of "  or " should be a either a proof of , or a proof of :

p q p

q

inductive and (p : Prop) (q : Prop) : Prop 
| intro : p → q → and

and       : Prop → Prop → Prop                    -- Type constructor 
and.intro : Π p q : Prop, p → q → and p q         -- Term constructor

p, q : Prop and p q : Prop
p q

p q p q

inductive or (p : Prop) (q : Prop) : Prop 
| inl : p → or 
| inr : q → or 
 
or.inl : Π p q : Prop, p → or p q 
or.inr : Π p q : Prop, q → or p q



We can define the propositions true : Prop and false : Prop inductively:

true has a constructor that takes no arguments, while false has no constructors!

inductive true : Prop 
| intro : true 
 
inductive false : Prop



What about "not "?

Under the BHK interpretation, to claim that "  is false" should mean

which should in turn mean

And therefore we define

p

p

 cannot be truep

 implies absurdityp

¬p ≡ p → false



Finally, a proof of "there exists  such that " should mean

So we have

(The  version is called a dependent pair in HoTT and other MLTT type theories)

x px

An object  together with a proof of x px

inductive Exists (α : Type) (p : α → Prop) : Prop 
| intro (w : α) (h : p w) : Exists

Type



Let's Prove some Propositional Logic!



Identity
"Equality" is also an inductively defined proposition:

With only one constructor:

This means that the only "proof" that two things are equal is by "reflexivity", i.e., they
are (reduce to) the same thing.
The system of inductive types ensures that equality has the behavior you expect

A proof of  means they can be substituted essentially anywhere they appear

This is done heavily by the rewrite tactic in Coq and Lean

Compare the following proof to traditional foundations:

("proof by computation")

eq : Π {α : Type}, α → α → Prop

eq.refl : ∀ {α : Type} (a : α), a = a

x = y

example : 2 + 2 = 4 := refl 4



Axioms (Who needs 'em?)
All we've seen so far is just consequences of our deductive system of types.

But our type theory supports classical reasoning through the addition of axioms. In type
theory,

Thus, any function that invokes an axiom is not really a "program", since there is no
implementation of the axiom!

"axiom"  declared but unimplemented function=



Proofs are Programs?
The big picture for CIC (Coq and Lean)...

 = Logic and reasoning,  = Data and Programs
We can safely add axioms in  like excluded middle

to make our reasoning classical
to make our reasoning more expressive / easier
this means "proofs are not programs" 😔... 🤔
CS POV: Write programs, prove their correctness, but "discard" proofs

The only axiom that has catastrophic consequences for programs is our pal, Axiom of
Choice:

Magically produce a term of any nonempty ! �
Definitions/theorems that invoke AC must be marked with noncomputable 😮

Let's take a closer look:

Prop Type

Prop

Type



<�> If we think of our impredicative universe  as a "set"... then the dependent
product rule for  says it is closed under arbitrary dependent products. In other
words, given a family of sets , the product  is still in , no
matter how large  is. This is only possible if

</�>

This suggests that it is at least consistent to add propositional extensionality

Proof irrelevance (don't distinguish only on the content of proofs)

And excluded middle

Prop

Prop

B : A → Prop B(x)∏x∈A Prop

A

 "is" Prop {∅, {∙}}

axiom propext {a b : Prop} : (a ↔ b) → a = b

axiom proof_irrel : ∀ {a : Prop} (h₁ h₂ : a), h₁ = h₂

axiom em : ∀ (p : Prop), p ∨ ¬p



Choice
The following function is illegal � 🚨

We cannot build data (i.e.  stuff) out of a proposition
If  is completely constructive, this is fine, but...
If the world of  is classical, we can construct terms of 
nonconstructively
So extracting the data doesn't make sense.
The -level synonym of  is the dependent pair type, which is always
constructive.

We can only use propositions to build other propositions (stay in )

def choice_ish : (∃ n : ℕ, true) → ℕ := 
λ ⟨n, hn⟩, n

Type

Prop

Prop ∃x : A, px : Prop

Type ∃

Impredicative Prop + Large elimiation + EM = 💥

Prop



Choice is exactly the axiom that allows you to "large eliminate" existential propositions.

We can invoke it for our previous function:

At this point, you are completely classical
Any function, isomorphism, bijection, you build that depends on choice is no longer
an actual function that can be run.
But the fact that our proofs type-check is still a verification that it's a "valid proof".
mathlib's approach: it's easier to be classical �

Entire files can be marked noncomputable
Can formalize strictly classical mathematics (Zorn's lemma, ZFC-style
ordinals/cardinals, etc.)

axiom choice {α : Sort u} : (∃ n : α, true) → α

noncomputable def just_do_it : (∃ n : ℕ, true) → ℕ := 
λ h, classical.some h



Draw the Rest of the Owl 🦉
All the rest of the objects we talk about in mathematics are implemented in the 
universe with inductive types.

Expressing that the type  is a group amounts to creating an inductive type called 
, where a term is made from a binary operation and proofs of the relevant

propositions:

But this is very unwieldy. Lean implements a bunch of special behavior called type
classes that make this sort of thing easier

Type

α

group α

inductive group (α : Type)  
| mk : ((*) : α → α → α) → (∀ a b c : G, a * b * c = a * (b * c)) → ... → group



Tactics
There are also some higher level tactics available in tactic mode that implement actual
automation

simp
Relies on a library of "simp" theorems in the standard library of the form  or 

Does magic on the current goal

linarith
Automatically proves goals that are simple linear inequalities given the right
hypotheses are in the context

Shows mathlib's nonconstructive approach: linarith actually negates the
goal and performs a search for contradictions!

group/ring
Implement "normal form" routines for group and ring stuff, solve ring arithmetic
goals

a ↔ b

a = b



What about HoTT?
HoTT is a plain intuitionistic type theory; discards 
HoTT distinguishes particular types as mere propositions, they are exactly the types
that only have one inhabitant:

Among that types that are not (automatically) mere propositions are
(or)  (comes with information about which one is true!)
(dependent pair)  (comes with an actual object )
identity types

There is a general operation of propositional truncation that "turns things into" mere
propositions

Prop

x y∏
x:A

∏
y:A

=A

a + b

Σx:ABx x

∥ ∥ =Σx:ABx ∃x:ABx



Our logic effectively declared that the equality type  is always a mere
proposition, but it does not have to be.

By removing this shackle from identity types, HoTT views the type  as the
"type of equivalences between  and  in type ".

If  and  are equivalences between  and , we can ask if they
are equivalent in the type . That is,

is the type of equivalences between  and .

Effectively, HoTT adds the following possible interpretation of a typing judgement

x y=A

x y=A

x y A

p : x y=A q : x y=A x y

x y=A

p q=x y=A

p q

   is a point of the space x : A means x A



Under this interpretation,  is the type of "paths betweeen  and  in the
space "

 is the type of "paths between paths between  and "

Identity types have the structure of a higher groupoid
Leads to "Synthetic Homotopy Theory"

x y=A x y

A

p q=x y=A
x y



goals accomplished 🎉

�   🐴→


