
Syntax and Semantics
or: Galois Theory but I don't mention fields



Syntax
Defined by some selection of well-formed strings of symbols called formulas or sentences
Usually given via an inductive definition

Minimal sets including axioms and closed under inference rules

Semantics
Supplies "meaning" to syntax
A model consists of a structure and/or a valuation
The truth of a formula or sentence is given via a recursive definition



Classical Propositional Logic
Syntax
Fix a countable set of propositional variables A = {p, q, r, …} and define formulas:

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ

Semantics
In classical logic, a model is simply given by a valuation v : A → 2.

Given a valuation v, we write v ⊨ φ for "φ is true under v", defined recursively:

v ⊨ p iff v(p) = 1

v ⊨ ⊤ iff always

v ⊨ ⊥ iff never

v ⊨ φ ∧ ψ iff v ⊨ φ and v ⊨ ψ

v ⊨ φ ∨ ψ iff v ⊨ φ or v ⊨ ψ

v ⊨ φ → ψ iff v ⊭ φ, or v ⊨ ψ (material implication)

Notice this definition uniquely extends a valuation A → 2 to a function Form → 2



A formula ψ is a logical consequence of Γ, wri�en Γ ⊨ φ, if:
The truth of formulas in Γ forces the truth of φ regardless of the model.
(v ⊨ Γ implies v ⊨ φ for all v)

We can characterize this syntactically with a proof calculus for classical logic. One such system (due to Frege) is:

Axioms
p → (q → p)

(p → (q → r)) → ((p → q) → (p → r)

¬¬p → p

Inference Rules
Modus Ponens: From φ and φ → ψ, infer ψ
Uniform substitution: Replace propositional le�ers in φ with other formulas.

Γ ⊢ φ means there is a finite list of formulas, ending at φ, each of which is an axiom or a formula from Γ, or follows
from earlier formula(s) via an inference rule.



Fundamental concepts connecting syntax and semantics

Soundness: If Γ ⊢ φ, then Γ ⊨ φ

Completeness: If Γ ⊨ φ, then Γ ⊢ φ



First Order Logic
Syntax
Fix a language L containing

Function symbols (+, −, ⋅, exp, S)
Relation symbols (<, ≤, ≡, ≅, ∈)
Constant symbols (0, 1, π, e)

Fix a countable set V = {x, y, z, …} of variables.

L-terms: t ::= x | c | f(t, t, … , t) for all function symbols f ∈ L

Atomic L-formulas: Relation symbols or equality ("=") applied to/between terms.

L-formuals: φ ::= α | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ | ∀x φ | ∃x φ

If every occurrence of the variable x occurs somewhere in the scope of a quantifier ∀x, it is bound; otherwise it's free.

A sentence is an L-formula that has no free variables.



Semantics
A model is a structure M that consists of a set M  along with an interpretation of the language:

An actual function f M : M n → M  for each function symbol f ∈ L

An actual relation RM ⊆ M n for each relation symbol R ∈ L

An actual element cM ∈ M  for each constant symbol c ∈ L

Each term t(x1, … , xn) extends to an evaluation function tM : M n → M

For an formula φ(x) and values for the free variables –a ∈ M , define M ⊨ φ(–a) recursively:

M ⊨ (t1 = t2)(–a) iff tM
1 (–a) = tM

2 (–a)

M ⊨ R(t1, … , tn)(–a) iff (tM
1 (–a), … , tM

n (–a)) ∈ RM

...propositional connectives

M ⊨ (∀x φ(x, –y))(–a) iff for all b ∈ M , M ⊨ φ(b, –a)

M ⊨ (∃x φ(x, –y))(–a) iff there is some b ∈ M  s.t. M ⊨ φ(b, –a)

Note that sentences are definitively true or false in a model; write M ⊨ φ

–



Examples
Langauge of rings L = {+, −, ⋅, 0, 1}

R ⊨ ∃x x ⋅ x = 1 + 1, Q ⊭ ∃x (x ⋅ x = 1 + 1)

L = {<}

Z ⊭ ∀x∀y (x < y → ∃z(x < z ∧ z < y)), Q does.



Different models (structures) validate or falsify different sentences.

⊨ is a relation between structures and sentences

This relation induces a Galois connection between classes of structures and sets of sentences



Galois Connections
A Galois connection is a dual adjunction between two posets.

That is, given posets A and B
A pair of maps f : A → B, g : B → A so that
f and g are order-reversing (a ≤ a′ implies f(a′) ≤ f(a))
f(a) ≤ b if and only if g(b) ≤ a (natural iso of hom sets)
Alternatively, a ≤ gf(a) and b ≤ fg(b) (unit/counit)



Facts about adjoint functors Galois connections
Every adjunction restricts to an equivalence of full subcategories

Here, these are the elements that appear as the image of either function
So we get a dual isomorphism between g[B] ⊆ A and f[A] ⊆ B

These are called the stable elements (sets)
Every adjunction yields a monad on both categories given by the composition/double-dual

A monad on a poset is a closure operator c : A → A

extensive a ≤ c(a)

monotone a ≤ b → c(a) ≤ c(b)

idempotent cc(a) = c(a)

a is closed if a = c(a)

The stable elements are exactly the closed elements.



Galois connections from relations
Take sets X, Y  and a relation R ⊆ X × Y

R induces a Galois connection between P(X) and P(Y ).

f : P(X) → P(Y ) := U ↦ {y ∈ Y : uRy ∀u ∈ U}

g : P(Y ) → P(X) := V ↦ {x ∈ X : xRv ∀v ∈ V }

The stable elements of the connection are called stable sets = closed sets.



Galois connection of FOL
M = class of L-structures, S = set of L-sentences
⊨ ⊆ M × S

Th : P(M) → P(S) takes a subclass K of structures to its theory, the set of sentences true in all structures in K
Mod : P(S) → P(M) takes a set Γ of sentences to its class of models, the structures which believe everything in Γ.
A closed set on the semantic side is an elementary class
A closed set on the syntactic side is a theory



Language of groups L = {⋅,−1 , 1}

ΓG = {∀x 1 ⋅ x = x ⋅ 1 = x, ∀x∀y∀z x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z, ∀x x ⋅ x−1 = x−1 ⋅ x = 1}

ΓA = ΓG ∪ {∀x∀y x ⋅ y = y ⋅ x}



"Features"
Elementary equivalence is wacky

(language of ordered fields) Mod(Th(R)) contains fields with infinitesimal elements (ε2 = 0)

(language of rings) Mod(Th(N)) contains 2ℵ0  non-isomorphic countable models that contain "infinitely large primes"
Generally, any theory that has an infinite model has models of any cardinality

There are non-trivial examples of non-elementary (non-closed) classes
(language of groups) The class of torsion groups is not elementary
(language of ordered sets) The class of well-ordered sets is not elementary



The goal of a proof calculus is to characterize closure on the syntactic side internally
A proof calculus is sound and complete exactly when it meets this goal.
We can in fact do this for FOL:

Axiom schema
Propositional tautologies
φ(t) → ∃x φ(x) for any term t
∀x φ(x) → φ(t) for any term t
Assert = is an equivalence relation and equal terms can be freely substituted/exchanged for each other

Inference Rules
Modus Ponens: from φ and φ → ψ infer ψ
Q1: From φ → ψ where x is not free in φ, infer φ → ∀x ψ

Q2: From φ → ψ where x is not free in ψ, infer ∃x φ → ψ

Sometimes, we can characterize closure on the semantic side as well.



When the signature L contains only function symbols (no relations), an L-structure is called an algebra

An equation or identity is a universally quantified sentence asserting equality of terms (e.g., group axioms)

Galois Connection of Universal Algebra
A = class of L-algebras, E = set of L-equations
⊨ ⊆ A × E

EqTh : P(A) → P(E) takes a class K of algebras to its equational theory, the set of equations true in K.
Mod : P(E) → P(A) takes a set Γ of equations to its class of models, the algebras which believe everything in Γ.
A closed set on the semantic side is an variety or equational class

Closure is usually denoted V(−) for "variety generated by"
A closed set on the syntactic side is an equational theory



Closure on the syntactic side simplifies dramatically; there is a sound and complete equational calculus that reflects how
we reason with equations:

Axioms:
t = t for all terms t

Inference Rules:
From s = t infer t = s

From r = s and s = t infer r = t

From q = r and s = t infer q[s/x] = r[t/x] where x is a variable

But we can also characterize closure on the semantic side, by a famous theorem of Birkhoff:

(HSP Theorem) For any class K of algebras, V(K) = HSP(K), where

P  denotes "products of"
S denotes "subalgebras of"
H denotes "homomorphic images of" (a.k.a. quotients)



Modal Logic
Syntax
Take a countable set of propositional variables A = {p, q, r, …} and define formulas:

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ | □φ | ◊φ

Semantics
Evaluation happens inside a structure called a frame, F = (W , R). W  is a set of worlds and R ⊆ W × W  is a binary
relation representing accessibility. Of course we also need a valuation v : A → P(W)

v(p) is meant to represents the set of worlds where p holds.

Given a frame F along with a valuation v, we wish to define "φ is true at world x": (F, v), x ⊨ φ



Evaluation of propositional connectives at a particular world happens in the exact same recursive way (classically, via
truth tables)

We wish to interpret the modalities as

□φ means "in all accessible worlds, φ holds"

◊φ means "there is some accessible world where φ holds"

Formally, define (F, v), x ⊨ φ as

(F, v), x ⊨ p iff x ∈ v(p)

... propositional connectives

(F, v), x ⊨ □φ iff ∀y such that xRy, (F, v), y ⊨ φ

(F, v), x ⊨ ◊φ iff ∃y such that xRy and (F, v), y ⊨ φ



Frame Semantics
A frame F validates a formula φ if φ holds at every world in F regardless of the valuation.

F ⊨ φ :  F validates φ

What does it say about F if it validates the formula p → ◊p?

F ⊨ p → ◊p if and only if R is reflexive

What does it say about F if it validates ◊◊p → ◊p?

F ⊨ ◊◊p → ◊p if and only if R is transitive

Frame semantics is about how modal formulas control the characteristics of the frames that validate them.



Galois connection of Frame Semantics
F  = class of frames, S = set of modal formulas
⊨ ⊆ F × S

Log : P(F) → P(S) takes a subclass K of frames to its logic, the set of formulas valid on all frames in K
Fr : P(S) → P(F) takes a set Γ of formulas to the class of frames which validate everything in Γ.
A closed set on the semantic side is called modally definable
A closed set on the syntactic side is ... ?



Normal Modal Logics
Let's define a proof calulus for modal logic:

Axioms:
Propositional axioms
□(p → q) → (□p → □q)

Inference Rules
Modus ponens, Substitution
Necessitation: From φ, infer □φ

The closure N(−) of a set of sentences under this deduction system is called a normal modal logic

It is a very reasonable candidate for characterizing the closure of the Galois connection.



Let
4 := ◊◊p → ◊p

T := p → ◊p

D := □p → ◊p

Our proof calculus "works well" for these axioms:

Axioms Frm(−) Log(Frm(−))

{∅} All frames K = N(∅)

{4} Transitives frames K4 = N(4)

{4, T} Transitive and reflexive frames S4 = N(4, T )

{D} Unbounded frames KD = N(D)



Frame incompleteness
Even though N(−) works for most of the classically studied systems, it does not work in general 😢

One can construct a logic L that is
Proper (not inconsistent)
A normal modal logic (N(L) = L, or closed according to N )
But Frm(L) = ∅

Logics like L are called frame incomplete.

"Most" (uncountably many) normal modal logics are
frame incomplete.

Moreover, for general reasons, no proof calculus in
the traditional sense can be sound and complete for
frame semantics.



Adequate semantics
One way to fix this: Add topological structure on the semantic side:

A (descriptive) general frame is a structure F = (W , τ, R) where (W , τ) is a Stone space (compact, Hausdorff, basis
of clopen sets) and R satisifies some conditions w.r.t. the topology.

When speaking of validity on general frames, we say F validates φ if φ is true at every world under every admissable
valuation, which may only assign propositional le�ers to clopen sets.

Remarkably, this "repairs" the situation so that N(−) is a sound and complete proof calculus for general frame semantics.

A full account of why this works would be through the duality with algebraic semantics.



Topological semantics for modal logic
We could interpret modal logic as "talking about space"

Evaluation of truth happens inside a structure that is a topological space X. We also need a valuation v : A → P(X)

Given a space X and a valuation v : A → P(X), we define "φ is true in X at the point x", (X, v), x ⊨ φ

(X, v), x ⊨ p iff x ∈ v(p)

... propositional connectives

(X, v), x ⊨ □φ iff ∃ open neighborhood U  of x s.t. ∀y ∈ U (X, v), y ⊨ φ

(X, v), x ⊨ ◊φ iff ∀ open neighborhoods U  of x, ∃y ∈ U (X, v), y ⊨ φ



This extends the valuation v : A → P(X) uniquely to a function Form → P(X).

If we think of this as assigning formulas to the set of points where they are true, then
The propositional connectives correspond to boolean operations on these sets
The modal operators correspond to closure and interior

v(¬φ) = v(φ)c

v(φ ∧ ψ) = v(φ) ∩ v(ψ)

v(φ ∨ ψ) = v(φ) ∪ v(ψ)

v(□φ) = Int(v(φ))

v(◊φ) = Cl(v(φ))

Again a formula φ is valid in X, X ⊨ φ if it is true at every point (v(φ) = X) regardless of the valuation.



Galois connection of topological semantics
An initial examination reveals that the axioms 4 and T  are universally valid in all topological spaces.

4 := ◊◊p → ◊p closure is idempotent

T := p → ◊p any set is contained in its closure

And indeed the smallest closed set on the syntactic
side, the logic of all topological spaces, is S4



How low can you go?
An interesting result here is that S4 is the logic of all topological spaces (S4 is complete with respect to Top), but a famous
result of Tarski and McKinsey shows that it is complete with respect to the real line. What does this mean?

What does this say about this notion of semantics?


