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Abstract. In [HH05], Herzog and Hibi study the Hibi ideal of a poset and describe

its resolution in detail. Furthermore, they use this notion to classify Cohen-Macaulay

bipartite graphs. In [CF07], Carra'Ferro and Farrarello demonstrate a construction

associating a bipartite undirected graph G to a directed graph D, and re-cast the

aforementioned classi�cation in terms of the directed graph D. In particular, they

show that G is Cohen-Macaulay if and only if D is acyclic and transitive. We study

how and to what extent this result generalizes to to directed hypergraphs. Though we

do not achieve a characterization as in the case of directed graphs, we demonstrate a

class of directed hypergraphs and a su�cient condition for the associated undirected

hypergraph to be Cohen-Macaulay.

1. Introduction

In [CF07], Carra'Ferro and Farrarello introduce the following construction for asso-

ciating a bipartite undirected graph to a directed graph. Since we will be dealing with

both kinds of graphs, we establish now the notational convention of using the notation

(x → y) for directed edges in a directed graph, and {x, y} for undirected edges in an

undirected graph.

De�nition 1.1. Let D be a simple directed graph on the vertex set X with edge set

ED. Let Y = {x : x ∈ X} be a set consisting of formal copies of the variables in X.

Then, the undirected graph G(D) is a graph on the vertex set X tY with edge set EG,

where:

EG = {{x, x} : x ∈ X} ∪ {{x, y} : (x→ y) ∈ ED}

Note that G(D) is always a bipartite graph (with bipartition X t Y ) with a perfect

matching.

In [HH05], Herzog and Hibi classify all bipartite Cohen-Macaulay graphs. That is,

a necessary and su�cient set of conditions is given for a bipartite graph to be Cohen-

Macaulay (that is, having a Cohen-Macaulay edge ideal). In [CF07], these results are
1
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re-interpreted � in particular, we can describe when G(D) is Cohen-Macaulay in terms

of properties of the graph D:

Theorem 1.2. Let D be a simple directed graph. Then D is transitive if and only if

G(D) is Cohen-Macaulay.

Remark 1.3. Some state this theorem with the requirement that D also be acyclic.

However, we require that D be a simple graph, and it is a fact from graph theory that

any simple transitive directed graph is necessarily acyclic.

Example 1.4. Let X = {x1, x2, x3} and D be a directed graph on X with edge-set

{x1 → x2, x2 → x3, x1 → x3}. For this (and other) examples, we will set xi = yi to

improve readability. Below are D and G(D), respectively:

x1

x2

x3

x1

x2

x3

y1

y2

y3

We have, in k[x1, x2, x3, y1, y2, y3],

I(G(D)) = (x1y1, x2y2, x3y3, x1y2, x2y3, x1y3)

Here D is transitive, so I(G(D)) and thus G(D) is Cohen-Macaulay.

2. Recovery of Original Result

If we assume Herzog and Hibi's results from [HH05], the proof of Theorem 1.2 is

straightforward. Of course, most of the technical content of the proof is contained

there. As such, we give an alternative presentation of the (partial) proof from �rst

principles. By doing this, we extract the parts of the proof that will generalize to the

directed hypergraph case.

Before starting, we will need some notation. Throughout, D will be a directed graph

on the vertex set X = {x1, . . . , xn}, and G(D) will be the associated undirected graph

using the same notation as 1.1. Let S = k[x1, . . . , xn, x1, . . . , xn] be a polynomial ring

in 2n variables. We will often be considering the edge ideal of G(D), i.e., I(G(D)). For

ease of notation we set ID = I(G(D)).
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We also use I∨D to refer to the Alexander dual of ID. Recall that the Alexander

dual of I is the Stanley-Reisner ideal of ∆∨, where ∆ is the Stanley-Reisner simplicial

complex of I.

We will need a bit more notation. Let A ⊆ X be an arbitrary subset of X. We will

speak about several monomials in S constructed from such a subset. In particular, we

let:

p(A) =
∏
x∈A

x p(A) =
∏
x∈A

x u(A) =
∏
x∈A

x
∏

x∈X\A

x

Our goal in this section is to prove the forward direction of Theorem 1.2. That is,

Theorem 2.1. For a simple digraph D, if D is transitive, then G(D) is Cohen-

Macaulay.

The main strategy of the proof will be to determine I∨D explicitly (determine its

minimal generators), and show that ID has a linear resolution. We start with a lemma:

Lemma 2.2. Consider J = (xx : x ∈ X), an ideal in S. Then the Alexander dual of

J is J∨ = (u(A) : A ∈P(X)).

Proof. Note that we can express the Alexander dual of J in a straightforward way �

that is J∨ =
⋂

x∈X(x, x). We now show this expression is equal to the one given in the

lemma.

Suppose m ∈
⋂

x∈X(x, x). Then, either x or x must divide m for each x ∈ X.

Let A = {x ∈ X : x | m}. Then, for x 6∈ A, we must necessarily have x | m. Thus,

u(A) | m, and we have m ∈ (u(A) : A ∈P(X)).

Suppose m ∈ (u(A) : A ∈ P(X)). Then it follows immediately that, for each

x ∈ X, at least one of x or x must divide m, and so m ∈
⋂

x∈X(x, x). �

This lemma is important because J is precisely ID for the directed graph D with no

edges. In fact, ID for arbitrary D with edge set ED will have the form:

ID = J + (xy : (x→ y) ∈ ED)

This helps us understand the Alexander dual of ID. In fact, the Alexander dual will

have the form:

I∨D = J∨ ∩
⋂

(x→y)∈ED

(x, y)

Now, we show another lemma, elucidating the structure of I∨D:
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Lemma 2.3. Consider a simple transitive directed graph D with edge-set ED. If m is

a minimal generator of I∨D, then m = u(A) for some subset A ⊆ X.

Proof. From the previous lemma and following discussion, recall that

I∨D = J∨ ∩
⋂

(x→y)∈ED

(x, y)

Suppose m is a minimal generator of I∨D. To show that m = u(A), it su�ces to show

that, for any x ∈ X, at least one of x or x divide m, but not both.

Suppose towards contradiction that neither x or x divide m. But, then m would not

be in J∨, because u(A) for any subset A contains either x or x, and no u(A) would

divide m.

Suppose that both x and x divide m for some x. We show that we must be able to

safely remove one of the two variables from m and obtain a monomial still in the ideal,

contradicting the minimality of m.

Suppose that there is an edge (a → x) ∈ ED such that a - m (this means that we

cannot possibly remove x from m, as the resulting monomial would no longer be in

the ideal associated to this edge). We show that we must be able to safely remove x:

Suppose towards contradiction that there was some edge (x → b) ∈ ED with b - m.

But, this cannot be the case since (a→ b) is necessarily an edge, and m would fail to

be in the ideal (a, b), a contradiction. Thus, there are no such edges, and we �nd that

b | m for every ideal (x, b) in the intersection. Thus, setting m′ = m/x, we have that

m′ is still in I∨D � certainly it is still in J∨, and the only possible additional ideals that

could be a�ected are ideals of the form (x, b), but we just established that b | m and

thus m′ in these cases, so m′ is still in each of these ideals.

We use an entirely symmetric argument to show that in the opposite case (that is,

there is an edge (x→ b) where b - m), the monomial m′ = m/x is still in the ideal.

Of course, if neither of the suppositions in the preceding two cases are true, it would

not matter which variable we remove. So, we conclude that in any case, we must be

able to remove either x or x from the ideal and obtain a monomial still in the ideal,

contradicting the minimality of m. �

Now, we know the form of the minimal generators of I∨D. The next step is how to

characterize precisely which monomials u(A) make up the generators. For the current

case of directed graphs, there is a very nice interpretation, which is the key to the proof.

Before the next theorem, recall that, for a directed acyclic graph D, the reachability
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relation in D forms a partial order � recall that a vertex y is reachable from a vertex

x if there exists a (directed) path from x to y. In particular, if D is transitive, the

reachability relation is the edge set. So, in this case, we can speak of the partial order

on X de�ned by D, where x < y if and only if (x → y) ∈ ED. Finally, recall that

an order ideal with respect to the partial order < (also called a downset) is a subset

A ⊆ X such that if b ∈ A and a < b, then a ∈ A.

Theorem 2.4. Consider a simple transitive directed graph D with edge set ED. Then

the generators of I∨D are precisely those monomials u(A) where A is an order ideal with

respect to the partial order on X de�ned by D.

Proof. Let m = u(A) be a generator of I∨D (from the lemma, all generators are of this

form). Suppose that A is not an order ideal. Then, there is some a ∈ A and r ∈ X

such that r < A but r 6∈ A. But, since r < a, (r → a) is an edge, and m must be in

the ideal (r, a). But, since r 6∈ A, we have r | m and necessarily r - m. Since a ∈ A, we

have a | m and necessarily a - m. Then, m cannot be in the ideal (r, a), a contradiction.

Let A be an order ideal and set m = u(A). We show it's in the ideal (and thus a

minimal generator, due to its form). Certainly, m ∈ J∨. Take any of the additional

ideals in the intersection (x, y). This means (x→ y) is an edge and x < y. In the case

that y ∈ A, so is x, and so necessarily x | m. In the case that y 6∈ A, we have y | m.

Either way, m ∈ (x, y). Then, m ∈ I∨D. �

It is at this point that, using the language of [HH05], we realize that I∨D is precisely

the Hibi ideal of the poset de�ned by D � i.e., the ideal generated by monomials u(A)

where A ranges over the order ideals of the poset de�ned by D. It is shown in [HH05]

that Hibi ideals have linear resolutions (in fact, the resolution is computed explicitly).

Thus, we �nish the proof of Theorem 2.1 by noting that since I∨D has a linear resolution,

ID is Cohen-Macaulay (by Eagon-Reiner).

The converse, through true, uses more graph theory than algebra, and since we do

not aim to generalize it, we will not present it here. Interested readers should refer to

[CF07] for such a proof.

3. Generalization

We now study how and to what extent Theorem 2.1 generalizes to directed hyper-

graphs. First, we present the relevant de�nitions to remove ambiguity:
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De�nition 3.1. A hypergraph is a pair G = (V,E) of a vertex set V and an edge-set

E, where elements of E are subsets of V . A simple hypergraph satis�es the condition

that x 6⊆ y for any x, y ∈ E.

There is some question as to what a directed hypergraph should be. One generaliza-

tion, and indeed the one that works well for our purposes, is the following:

De�nition 3.2. A directed hypergraph is a pair D = (V,E) of a vertex set V and an

edge-set E, where elements of E are tuples (S, T ), where S and T are disjoint subsets of

V . The elements of S are the sources the edge, and the elements of T are the targets of

the edge. A simple hypergraph satis�es the condition that for any (S, T ), (S ′, T ′) ∈ E,

S ∪ T 6⊆ S ′ ∪ T ′.

Remark 3.3. This generalization of a directed graph makes sense in the following way:

A edge in a directed graph adds structure to the plain undirected edge by specifying a

source and a target for the edge (giving it an orientation). Here, an edge in a directed

hypergraph adds the same structure by partitioning the plain undirected edge into

sources and targets.

We will also need the notion of a cycle in a directed hypergraph:

De�nition 3.4. A cycle in a directed hypergraphD is a sequence of vertices {v1, . . . , vn}
such that v1 = vn and for each 1 ≤ i < n, there exists an edge (S → T ) such that

vi ∈ S and vi+1 ∈ T .

This notion of directed hypergraph is well-known an actively studied, particularly

in the Computer Science literature (see [GLPN93], [AFF01] for broad surveys of the

topic).

The construction to produce an undirected hypergraph from a directed one carries

over nicely:

De�nition 3.5. Let D be a simple directed hypergraph on the vertex set X with

edge-set ED. Let Y = {x : x ∈ X} be a set consisting of formal copies of the variables

in X. Then, the undirected graph G(D) is a graph on the vertex set X t Y with edge

set EG, where:

EG = {{x, x} : x ∈ X} ∪ {S ∪ {x : x ∈ T} : (S → T ) ∈ ED}

The next question that arises is what it should mean for a directed hypergraph to

be transitive. There are ostensibly many di�erent ways to generalize transitivity to
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directed hypergraphs. The following example provides motivation for the belief that

some notion of transitivity will serve to generalize Theorem 2.1:

Example 3.6. Consider the directed graph D on vertex set {x1, . . . , x7} with edge set

{{x1, x2} → {x3, x4} , {x4, x5} → {x6, x7}}:
x1

x2

x3

x4

x5

x6

x7

Again, set xi = yi. The edge ideal of the associated hypergraph is then

ID = I(G(D)) = (x1y1, x2y2, x3y3, x4y4, x5y5, x6y6, x7y7, x1x2y3y4, x4x5y6y7)

which is not Cohen-Macaulay. However, consider the following two closely related

graphs. The left, D1, is obtained by adding the edge {x1} → {x6} to D. The right,

D2, is obtained by adding two new vertices x8, x9 and the edge {x1, x8} → {x6, x9} to
D.

x1

x2

x3

x4

x5

x6

x7

x1

x2

x3

x4

x5

x6

x7

x8 x9

One can verify that ID1 is Cohen-Macaulay, while ID2 is again not Cohen-Macaulay.

Motivated by this example, we make the following de�nition:

De�nition 3.7. A directed hypergraph D is intersection containment transitive or

IC-transitive if, whenever (S1, T1) and (S2, T2) are edges with T1 ∩ S2 6= ∅, then there

exists an edge (S ′1, T
′
2), where S ′1 ⊆ S1 and T ′2 ⊆ T2

Note that the graph D1 in Example 3.6 is the only one satisfying IC-transitivity, and

also the only one to produce a Cohen-Macaulay undirected hypergraph.
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For digraphs, we made use of the fact that a simple transitive digraph was necessarily

acyclic. In the present setting however, an analogous statement is not true. The

following is an example of a simple IC-transitive directed hypergraph with a cycle:

Example 3.8. Let D be the directed hypergraph on {x1, . . . , x9} with edge set:

{x1, x4} → {x2, x5}

{x2, x6} → {x3, x7}

{x3, x8} → {x1, x9}

{x4} → {x7}

{x6} → {x9}

{x8} → {x5}

One can verify that this graph is indeed simple and satis�es IC-transitivity, but has a

cycle {x1, x2, x3, x1}.

We will indeed require acyclicity in the proofs of the next section, but due to the

preceding discussion we must explicitly require it instead of simply specifying IC-

transitivity. From now on, we let D refer to the class of simple, acyclic, IC-transitive

directed hypergraphs. In the next section, we mimic the proofs of section 2 in this

generalized setting, and see that they mostly carry over.

4. Proof of Generalized Theorem

Our goal in this section is to prove the generalization of Theorem 2.1:

Conjecture 4.1. If D ∈ D, then ID is Cohen-Macaulay.

With Theorem 4.10 at the end of this section, we manage to prove the conjecture for

two broad subclasses of graph. First, we see that the Alexander dual of the associated

edge ideal has the same kind of generators:

Lemma 4.2. Let D ∈ D with edge-set E. If m is a minimal generator of I∨D, then

m = u(A) for some A ⊆ X.

Proof. The proof proceeds in the same way as Lemma 2.3. We have, using notation

introduced in the last section:

I∨D = J∨ ∩
⋂

(S→T )∈E

p(p(S)p(T ))
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where p(m) denotes the prime monomial ideal generated by the support of m.

So, suppose m is a minimal generator of I∨D. Again, we show that for every x ∈ X,

either x | m or x | m but not both. Similarly to before, if neither x or x divides m,

then m would fail to be in J∨, so this cannot be the case.

Suppose both x and x divide m for some x. Again, we show that we can remove one

of the two and obtain a monomial still in the ideal, contradicting the minimality of m.

Suppose there is an edge (A → U) with x ∈ U such that for all y ∈ A, y - m and

for all z ∈ U\ {x}, z - m. This means that we cannot possibly remove x from m, as

the resulting monomial would no longer would no longer be in the ideal associated to

this edge. Then, we show that we must be able to safely remove x: Suppose towards

contradiction that there were some edge (U ′ → B) with x ∈ U ′ such that for all

y ∈ U ′\ {x}, y - m and for all y ∈ B, y - m. But, since U ∩U ′ is non-null (it contains at
least x), we must have an edge (A′ → B′) with A′ ⊆ A and B′ ⊆ B, but m would fail

to be in the ideal p(p(A′)p(B′)), a contradiction. Then, setting m′ = m/x, we �nd that

m′ is still in the ideal. Certainly, it is still in J∨, and and the only possible additional

ideals in the intersection that could be a�ected are ones of the form p(p(U ′)p(B)), but

we established that in all of these cases, some variable in the prime ideal besides x

must divide m and thus m′, so m′ is still in these ideals.

Again, an entirely symmetric argument shows the opposite case (that is, if we cannot

remove x then we must be able to remove x).

So, in any case, we must be able to remove either x or x from m and obtain a

monomial still in the ideal, contradicting the minimality of m. �

So the generators of I∨D look the same as in the directed graph case. The concern

again becomes determining precisely which monomials u(A) make up the generators.

The characterization here is not quite as nice, but is still relatively easy to describe:

De�nition 4.3. For a subset A ⊆ X, and an edge (S → T ) in D such that T ⊆ A,

A is said to satisfy the target containment property with repsect to T if, for all edges

(S ′ → T ), A ∩ S ′ 6= ∅. If A satis�es the target containment property with respect to

every target contained in it, A is simply said to satisfy the target containment property.

Theorem 4.4. Let D ∈ D. For A ⊆ X, u(A) is a minimal generator of I∨D if and

only if A satis�es the target containment property.
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Remark 4.5. Notice that subsetsA not containing any whole target of an edge vacuously

satisfy the target containment property � as such, all such subsets are represented in

the generators.

Proof. Let m = u(A) be a generator of I∨D (from the lemma, all generators are of

this form). Suppose that A does not satisfy the property. Then, there exists an edge

(S → T ) and an edge (S ′ → T ) such that T ⊆ A but A ∩ S ′ = ∅. But, in particular,

this means S ′ 6⊆ A. Thus, for all y ∈ S ′, y | m and thus y - m. Since T ⊆ A, for all

z ∈ T , we have z | m and so z - m. But then, m fails to be in the ideal p(p(S ′)p(T )) �

a contradiction.

Let A be a subset satisfying the property and set m = u(A). We show it's in the

ideal (and thus a minimal generator, due to its form). Certainly, m ∈ J∨. Consider

an arbitrary additional ideal in the intersection, say p(p(S)p(T )), corresponding to an

edge (S → T ). In the case that T ⊆ A, then there necessarily exists some x ∈ S ∩ A,

and x | m, so m is in the prime ideal. If T 6⊆ A, then there exists some x ∈ T\A, and
x | m, so m is again in the prime ideal. �

At this point in section 2, we relied on I∨D being the Hibi ideal of a poset � an object

with a known linear resolution. Here, we do not have the same luxury, and we must

show that I∨D has a linear resolution via other means.

Many examples and computations give reason to believe that I∨D has linear quotients.

Since I∨D is always generated in a single degree, this implies that I∨D has a linear

resolution. At this time, we cannot determine a linear quotients order in full generality

(that is, for any D ∈ D). However, if we again add one more restriction to the graph

D, we can show linear quotients for this special case.

De�nition 4.6. For a directed hypergraph D, D is a single-sourced graph if, for every

edge (S → T ), we have |S| = 1. Likewise, we call D a single-targeted graph if, for

every edge (S → T ), we have |T | = 1.

In preparation for the next theorem, recall the following combinatorial condition

equivalent to linear quotients for a squarefree monomial ideal ([HH11]):

Lemma 4.7. Suppose I = (m1, . . . ,mn) is a squarefree monomial ideal, and let Mi =

supp(mi) for all i. I has linear quotients with respect to this generator ordering if and

only if, for all i and all j < i, there exists an x ∈Mj\Mi and an integer k < i so that

Mk\Mi = {x}.
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Now, we demonstrate a linear quotients order for single-sourced graphs in D:

Theorem 4.8. Let D ∈ D be a single-sourced graph and suppose I∨D = (m1, . . . ,mk).

Let {A1, . . . , Ak} be the subsets such that mi = u(Ai). Order the generators of I
∨
D such

that |Ai| ≥ |Ai−1| for all i ≥ 2. Then {m1, . . . ,mk} is a linear quotients order for I∨D.

Proof. Since D is single-sourced, we abuse notation throughout and write (s→ T ) for

edges, where s ∈ X and T ⊆ X. For A1 = ∅, there is nothing to check. So, let i ≥ 2

and j < i be arbitrary.

Consider Ai\Aj. We claim that there exists an x ∈ Ai\Aj such that, for all edges

(s → T ) with T ⊆ Ai, x 6= s. Notice that, intuitively, this means removing x will not

a�ect the target containment property with respect to T for any T contained in Ai.

For the moment, assume this claim. Note that x ∈ Ai\Aj implies that x | mj but

x - mi (i.e., x ∈ Mj\Mi). Write B = Ai\ {x}. B still satis�es the target-containment

property by the choice of x. In particular then, u(B) is among the minimal generators,

and mk = u(B) for some k strictly less than i (because the size of B is smaller). Then,

since B and Ai agree on all of their members except for x, we have that x is the only

variable dividing mk that does not divide mi (i.e., Mk\Mi = {x}), satisfying the linear
quotients property.

Now, to prove the claim, suppose it is not true. Then, for every x ∈ Ai\Aj, there

exists some edge (x → Tx) with Tx ⊆ Ai (note that Ai\Aj is non-empty, since Aj is

a distinct set of equal or smaller cardinality). Observe that we cannot have Tx ⊆ Aj

(if it were, x is also necessarily in Aj by the target containment property, but x was

stated not to be in Aj). Then, for every x ∈ Ai\Aj, there must exist a tx ∈ Tx such

that tx 6∈ Aj � and in particular tx ∈ Ai\Aj. Now we have a well-de�ned mapping

Ai\Aj → Ai\Aj by x 7→ tx. Clearly, it must be the case that x and tx are distinct

since the sources and targets of an edge are required to be disjoint. But, such a map

corresponds to a cycle in D � a walk that starts at some vertex and iteratively follows

edges from x to tx will reach a vertex that has already been encountered. Since graphs

in D are acyclic, this is a contradiction. �

Next, we demonstrate that the opposite ordering is always a linear quotients order

for single-targeted graphs:

Theorem 4.9. Let D ∈ D be a single-targeted graph and suppose I∨D = (m1, . . . ,mk)

with mi = u(Ai) as before. Order the generators such that |Ai| ≤ |Ai−1| for all i ≥ 2.

Then {m1, . . . ,mk} is a linear quotients order for I∨D.
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Proof. The proof proceeds in a complementary way to that of Theorem 4.8. Again, we

abuse notation and write (S → t) for edges where S ⊆ X and t ∈ X. For A1 = X,

there is nothing to check. So, let i ≥ 2 and j < i be arbitrary.

Consider Aj\Ai. We claim there is an x ∈ Aj\Ai such that, for all edges (S → x)

(if any), Ai ∩S 6= ∅. This means that adding x to Ai will produce a set still satisfying

the target containment property.

For the moment, assume this claim. x ∈ Aj\Ai means that x | mj but x - mi (i.e.,

x ∈Mj\Mi). Write B = Ai ∪ {x}. B satis�es the target containment property by the

choice of x as discussed earlier. As such, u(B) is among the minimal generators and

mk = u(B) for some k strictly less than i (because the size of B is greater). Then,

since B and Ai agree on all their members except for x, we have that x is the only

variable dividing mk that does not divide mi i.e., Mk\Mi = {x}), satisfying the linear

quotients property.

To prove the claim, suppose that it is not true. Then, for every x ∈ Aj\Ai, there

exists some edge (Sx → x) with Ai ∩ Sx = ∅. Then, because x ∈ Aj, we must have

some sx ∈ Sx with sx ∈ Aj. In particular, sx 6∈ Ai because of the null intersection,

so sx ∈ Aj\Ai. Then again we have a map Aj\Ai → Aj\Ai by x 7→ sx. Clearly, x

and sx must be distinct since the sources and targets of an edge are required to be

disjoint. But such a map corresponds to a cycle in D � a sequence of vertices formed

by iteratively applying the map x 7→ sx will reach a vertex that has already been

encountered � following said sequence backwards would correspond to following the

edges of a cycle in D � again a contradiction. �

So, in these cases I∨D has a linear resolution. Then, we have shown the following

special case of Conjecture 4.1:

Theorem 4.10. If D ∈ D is single-sourced or single-targeted, then ID is Cohen-

Macaulay.

5. Conclusion

For graphs in D that are neither single-sourced nor single-targeted, there is strong

evidence to believe that there always exists a linear quotients order, but such orders

are always non-monotone with respect to the cardinality of the subsets. Whereas the

previous proofs started with a relatively simple order and showed it was su�cient, a

proof for the general case would likely have to construct a unique ordering for each

possible graph, depending on intricate combinatorial properties of the graph.
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Readers familiar with Stanley-Reisner theory will recognize that investigating linear

quotients orders for I∨D is equivalent to investigating shelling orders for the Stanley-

Reisner complex of ID � call it ∆D. In fact, in this case, the facets of ∆D are obtained

from the generators of I∨D by simply 'toggling the bar' on the variables. In other

words, if I∨D = (u(A1), . . . , u(Ak)), then the facets of ∆D are {u(Ac
1), . . . , u(Ac

k)}. One
conjecture that is supported by a considerable amount of evidence is the following:

Conjecture 5.1. If D ∈ D, ∆D is vertex-decomposable. Furthermore, any x ∈ X

such that x 6∈ T for any edge (S → T ) is a shedding vertex.

Since ∆D is pure (equivalently, I∨D is generated in a single degree), this would imply

the shellability of ∆D and complete the proof in the general case.
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