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Definition
A Coxeter system is a group with presentation

〈s1, . . . , sn | (sisj)Mij = 1〉

where M is a symmetric n × n matrix with Mii = 1 and Mij ∈ {2, 3, . . . }. n
is called the rank of the group.

When i = j , this means s2
i = 1 for all i , thus generators are idempotent

and self-inverse

When Mij = 2, this means (sisj)2 = 1⇒ sisj = sjsi , i.e. si and sj
commute

When Mij ≥ 3, si and sj are said to have a braid relation:
I (sisj)3 = 1 implies sisjsi = sjsisj
I (sisj)4 = 1 implies sisjsisj = sjsisjsi
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Instead of a matrix M we can use a edge-labeled graph on {1, ..., n} where

i j
means si , sj commute

i j
means si , sj have a 3-braid relation

i jk means si , sj have a k-braid relation

Coxeter sytem of type An:

1 2
. . .

n

i.e., adjacent generators have a 3-braid relation and all other pairs commute.
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We represent elements of a Coxeter group by fully reduced words in the
generators.

Theorem (Matsumoto)
For any element w ∈W of a Coxeter group, all reduced words for W have
the same length. Furthermore, any reduced word is related to any other by
a sequence of braid relations.

In type A4:

s3s1s2s1s4 → s3s2s1s2s4 → s3s2s1s4s2 → s3s2s4s1s2 → s3s4s2s1s2 →
s3s4s1s2s1 are reduced words representing the same element.
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The other Coxeter types we will be concerned with in this talk are closely
related to An:

Bn:

1 2
. . .

n4

Hn:

1 2
. . .

n5

These look innocent, but blow up combinatorially:

A4 has 120 elements
B4 has 384 elements
H4 has 14,440 elements!
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Given a Coxeter group W = 〈s1, . . . , sn : . . .〉, we can define the Hecke
algebra of W :

Let A = Z[v , v−1] be the ring of Laurent polynomials over the integers. A
is a commutative ring.

Now we will define an A-algebra by a certain presentation.

Definition
The Hecke algebra of W is the (unital, associative) A-algebra with
presentation

H(W ) = 〈T1, . . . ,Tn : (braid relations), (Ti − v)(Ti + v−1) = 0〉

Note that (Ti − v)(Ti − v−1) = 0⇔ T 2
i = (v − v−1)Ti + 1, so we can still

“get rid of any squares”.
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It turns out H(W ) has a very simple free basis:

Theorem
H(W ) is free over the basis

{Tw = Ti1 . . .Tik : si1 . . . sik is any reduced expression for w ∈W }

Indexed by the group elements of W .

i.e., in H(A4) we have T232 = T2T3T2 = T3T2T3 = T323 (since
s2s3s2 = s3s2s3 represent the same element in W ).

Typical elements look like:

(3v2 − v−1)T121 = (3v2 − v−1)T212
vT1 + v−1T24 = vT1 + v−1T42
T1(v + T24) = T1(v + T2T4) = vT1 + T1T2T4 = vT1 + T124
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In general, H(W ) has many bases (all necessarily indexed by the elements
of W ). But one is of particular interest:

Theorem (Kazdahn, Lusztig)
There exists a unique basis {Cw : w ∈W } for H satisfying some precise
technical properties called the Kazdahn-Lusztig basis.
When a C -basis element is expanded in terms of the T -basis, the
coefficients (or “structure constants”) are the Kazdahn-Lusztig polynomials:

Cw = Tw +
∑
y<w

py ,wTy

In particular, H(W ) is generated by Ci = Ti + v−1.

Warning
This basis is far more compliated than the T -basis! Ci1i2...ik is usually very
different from Ci1Ci2 . . .Cik ! We cannot just do arithmetic/multiplication
“trivially” like we could in the T -basis.
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Now we will take a quotient of H(W ) by a certain ideal:

I(W ) = 〈Clong braids〉 = 〈Cij...i : sisj . . . si is a long braid〉

We’ll call the resulting quotient TL(W ) = H(W )/I(W ) for reasons that
will be explained shortly.

How can we figure out what TL(W ) looks like?

Since the Ci generate H(W ), their equivalence classes Ui = π(Ci)
generate the quotient.
If we can figure out what relations the Ui have we can present TL(W )
by generators and relations.
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Let’s do this “concretely” in type An, where adjacent numbers have a
3-braid relation, and all others commute. We have

I(An) = 〈Ci(i+1)i : 1 ≤ i < n〉 = 〈C121,C232, . . .〉

Next, recalling that Ci = Ti + v−1, you may calculate:

C2
i = (T + v−1)2 = (v + v−1)T1 + 1 + v−2 = (v + v−1)Ci

You can verify by another straightforward calculation that CiCk = CkCi for
non-adjacent, i , k.

Finally, the following calculation requires knowing what C121 is, but if you
knew you would compute (likewise for all indices):

C1C2C1 = (T1 + v−1)(T2 + v−1)(T1 + v−1)
= T121 + v−1T21 + v−1T12 + v−2T1 + v−2T2 + v−3 + T1 + v−1

= C121 + C1

≡ C1 (in the quotient)
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So to summarize, we’ve “showed” that TL(An) is abstractly presented by
generators and relations in the following way:

〈U1, . . . ,Un : U2
i = (v + v−1)Ui ,

UiUk = UkUi for non-adjacent i , k,
UiUjUi = Ui for adjacent i , j〉

It turns out that this particular presentation reveals an isomorphism with
something much more concrete. . .

Coxeter groups and diagram algebras 11 / 38



Consider a non-crossing pairing of n + 1 “north” nodes with n + 1 “south”
nodes. For example, when n = 4:

As suggested by the image, we also think of this as non-crossing 2-ary
partition diagrams of the set {−(n + 1), . . . , 1, 1, . . . , n + 1}.
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We can “multiply” these diagrams via vertical concatenation:
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Form the free A-algebra over these diagrams (i.e. formal A-linear
combinations of diagrams), and where multiplication is by vertical
concatentation + “reduction rules”. Right now, the only reduction rule is

any closed loops formed in a concatenation “come out” as a scalar
multiplication by δ = v + v−1:

This is the Temperley Lieb Algebra.
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Claim: The following diagrams generate all the diagrams:
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Furthermore, notice U2
i = (v + v−1)Ui
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And UiUk = UkUi for non-adjacent, Ui ,Uk :
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Finally, UiU(i+1)Ui = Ui for adjacent i , j :
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In fact, TL(An) is isomorphic to the Temperley-Lieb algebra of diagrams
with n + 1 nodes, which has been well known for a while.

One can form the Generalized Temperley-Lieb algebras TL(W ) by the same
construction as a quotient of the Hecke algebra.

Question: Is there a diagram algebra realization for the other Generalized
TL algebras?

One is known for types A,B,H,D,E and C̃n.
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If you repeat the whole process for type Bn, you’ll get the following
presentation of TL(Bn).

〈U1, . . . ,Un : U2
i = (v + v−1)Ui ,

UiUk = UkUi for non-adjacent i , k,
UiUjUi = Ui for adjacent i , j and {i , j} 6= {1, 2},
U1U2U1U2 = 2U1U2〉

This can be realized by “decorated” Temperley-Lieb diagrams, where arcs
are allowed to carry a “decoration” (according to certain rules).
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TL(B4) is generated by
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Multiplication is still concatenation + “reduction rules”, but now there are
more reduction rules:

Replace any instance of 2 decorations with 1 decoration.
An undecorated loop comes out as δ.
A decorated loop comes out as δ/2.
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This time we’ll only check the new relation U1U2U1U2 = 2U1U2.

Coxeter groups and diagram algebras 23 / 38



If you do this for type Hn, you’ll get the following presentation for TL(Hn):

〈U1, . . . ,Un : U2
i = (v + v−1)Ui ,

UiUk = UkUi for non-adjacent i , k,
UiUjUi = Ui for adjacent i , j and {i , j} 6= {1, 2},
U1U2U1U2U1 = 3U1U2U1 − U1〉

The diagram realization is the same as the previous one with different
reduction rules.
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TL(H4) is generated by
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Reduction rules for Hn are

If a diagram has an edge with 2 decorations, split it into two copies
that have 1 and 0 decorations on that edge, respectively.
An undecorated loop comes out as δ
A decorated loop comes out as 0 (i.e., the whole diagram is gone)
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This time, I’ll just show a computation of U1U2U1U2U1, and you can
check™ that it’s the same as what you get from 3U1U2U1 − U1.
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Ultimately, all such diagram realizations are of the same “scheme”, where
the basis elements are decorated Temperley-Lieb diagrams and
multiplication is by concatenation + “decoration reduction rules”.

Recall that H(W ) has bases indexed by the elements of W . It turns out:

Theorem
Bases of TL(W ) are indexed by the fully-commutative elements of W ;
w ∈W is fully commutative if any reduced word for w can be transformed
into any other reduced word by using only commutation relations (no longer
braid relations); equivalently, no reduced word for w contains a long braid.

In particular, any basis of TL(W ) is in bijection with Wc = the fully
commutative elements of W .
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As far as bases of TL(W ) go, there are particular ones of interest. Certian
algebras over A = Z[v , v−1] may have a canonical basis or IC-basis, a term
coming from representation theory (but the existence or uniqueness is not
guaranteed)

An example of such a canonical basis is the Kazdahn-Lusztig basis of the
H(W ), but it is not the case that a canonical basis for TL(W ) can simply
be obtained from the projection of the Kazdahn-Lusztig basis of H(W ).

Question: Can the canonical basis be understood in terms of diagrams? If
so, can we describe the bijection between fully commutative elements and
their “canonical diagrams”?

In cases A, B, and H, the bijection is non-trivial but can be described
combinatorially. In cases A and H, the canonical diagram basis can be
described combinatorially as “admissible diagrams” satisfying certain
restrictions. The same is true in case B, but it requires some additional
creativity.
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Some canonical diagrams in TL(A4) with their corresponding FC word:
(https://math.colorado.edu/~chme3268/diagrams)
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Some canonical diagrams in TL(H4):
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In type B, in order to describe the canonical basis, we need to invent a
notational shorthand: the “square” decoration:

Like the reduction rule in type H, this takes place on “whole diagrams”; for
example:
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This notational device can compound to express unwieldy linear
combinations as single diagrams:
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Using the square we can much more easily describe the canonical diagrams
in type B:
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There is a certain involution on Wc = the fully commutative elements of W
that has a very complicated definition.

Definition
The Mathas-Lusztig involution λ : W →W can be defined on w ∈W as
follows: Let Tw0 be the T -basis element in H(W ) corresponding to the
longest element w0 ∈W . Compute Tw0Cw and expand the result in terms
of the C -basis:

Tw0Cw =
∑

y∈W
αy ,wCy

There exists a unique element y in the same left Kazdahn-Lusztig cell as w
such that αy ,w 6= 0, and λ(w) = y .

Can this involution be better understood under the bijection with diagrams?
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One conjecture supported with evidence is that in type B, when the ML
involution is not the identity (it may often be), it appears to have an
interpretation as “toggling a square” on the diagram:
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Just for fun, I’ve included the decorations and reduction rules for type C̃ ,
but we won’t talk about it.
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