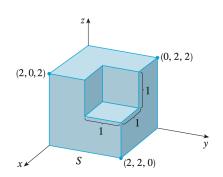

FINAL EXAM PRACTICE PROBLEMS

- (9.1) Find a vector function that parametrizes the line through (4, -1, 2) and (1, 1, 5).
- (9.2) Find a vector function that parametrizes the line through (-2, 2, 4) that is perpendicular to the plane 2x y + 5z = 12.
- (9.3) Find an equation of the plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1).
- (9.4) Calculate $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ if $\mathbf{a} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} 2\mathbf{j} + \mathbf{k}$.
- (10.1) Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 16$ and the plane x + z = 5.
- (10.2) A particle's position at time t is given by $\mathbf{r}(t) = \langle t, \cos t, \sin t \rangle$. Determine the distance traveled by the particle between t = 0 and t = 1.
- (11.1) Sketch several level curves of the function $f(x,y) = \sqrt{4x^2 + y^2}$.
- (11.2) Evaluate the limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+2y^2}$ or show that it does not exist.
- (11.3) Find (a) the tangent plane and (b) a normal vector to the surface $z = 3x^2 y^2 + 2x$ at the point (1, -2, 1).
- (11.4) Find (a) the tangent plane and (b) a normal vector to the surface $\mathbf{r}(u,v) = \langle u+v,u^2,v^2\rangle$ at the point (3,4,1).
- (11.5) Find the directional derivative of $f(x,y) = x^2 e^{-y}$ at the point (-2,0) in the direction of the point (2,-3).
- (11.6) Find the local maximum and minimum values and saddle points of the function $f(x,y) = 3xy x^2y xy^2$.
- (11.7) Let $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$, $\mathbf{g}(x, y) = \langle x + y, 3x y, 2x + y \rangle$, and $\mathbf{w}(x, y, z) = \langle 2x, 2y \rangle$. Which of the following compositions are well-defined?


 $\mathbf{r} \circ \mathbf{g}$, $\mathbf{r} \circ \mathbf{w}$, $\mathbf{g} \circ \mathbf{r}$, $\mathbf{g} \circ \mathbf{w}$, $\mathbf{w} \circ \mathbf{r}$, $\mathbf{w} \circ \mathbf{g}$

If a composition is well-defined, state its domain and codomain.

(12.1) Write $\iint_R f(x,y) dA$ as an iterated integral, where R is the region shown and f is an arbitrary continuous function on R.

- (12.2) Rewrite the integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x,y,z) dz dy dx$ as an iterated integral in the order dx dy dz.
- (12.3) Use the transformation u = x y and v = x + y to evaluate $\iint_R \frac{x-y}{x+y} dA$ where R is the square with vertices (0, 2), (1, 1), (2, 2), and (1, 3).
- (12.4) Evaluate $\iiint_B (x^2 + y^2 + z^2)^2 dV$, where B is the ball with center the origin and radius 5.
- (13.1) Show that $\mathbf{F}(x,y) = \langle 4x^3y^2 2xy^3, 2x^4y 3x^2y^2 + 4y^3 \rangle$ is a conservative vector field and use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve $\mathbf{r}(t) = \langle t + \sin \pi t, 2t + \cos \pi t \rangle$.
- (13.2) Use Green's Theorem to evaluate $\int_C x^2 y \, dx xy^2 \, dy$, where C is the circle $x^2 + y^2 = 4$ with the counterclockwise orientation.
- (13.3) Evaluate the surface integral $\iint_S z \, dS$, where S is the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z=4.
- (13.4) Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = \langle xz, -2y, 3x \rangle$ and S is the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation.
- (13.5) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = \langle xy, yz, zx \rangle$, and C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1), oriented counterclockwise as viewed from above.
- (13.6) Find $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ and S is the outwardly oriented surface shown in the figure (the boundary surface of a cube with a unit corner cube removed).

Answers

- (9.1) $\mathbf{r}(t) = \langle 4 3t, -1 + 2t, 2 + 3t \rangle$
- (9.2) $\mathbf{r}(t) = \langle -2 + 2t, 2 t, 4 + 5t \rangle$
- (9.3) -4x + 3y + z = -14
- $\begin{array}{ll} (9.4) & \langle -\frac{1}{6}, -\frac{1}{6}, \frac{1}{3} \rangle \\ (10.1) & \mathbf{r}(t) = \langle 4\cos t, 4\sin t, 5 4\cos t \rangle \end{array}$
- $(10.2) \sqrt{2}$
- (11.1) The level curves form a family of concentric ellipses.
- (11.2) The limit does not exist.
- (11.3) (a) z = 8x + 4y + 1 (b) $\langle 8, 4, -1 \rangle$
- (11.4) (a) 4x y 2z = 6 (b) $\langle 4, -1, -2 \rangle$
- $(11.5) -\frac{4}{5}$.
- (11.6) Maximum f(1,1) = 1; Saddle points (0,0), (0,3), (3,0).

- (11.7) Well-defined: $\mathbf{g} \circ \mathbf{w} : \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbf{w} \circ \mathbf{r} : \mathbb{R}^1 \to \mathbb{R}^2$, $\mathbf{w} \circ \mathbf{g} : \mathbb{R}^2 \to \mathbb{R}^2$. Not well-defined: $\mathbf{r} \circ \mathbf{g}, \mathbf{r} \circ \mathbf{w}, \mathbf{g} \circ \mathbf{r}$.
- (12.1) $\int_0^4 \int_{y-4}^{4-y} f(x,y) \, dx \, dy$
- (12.2) $\int_0^1 \int_0^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) dx dy dz$
- $(12.3) \ln 2$
- $(12.4) 312,500\pi/7$
- (13.1) 0
- $(13.2) -8\pi$
- $(13.3) (\pi/60)(391\sqrt{17}+1)$
- $(13.4) -64\pi/3$
- (13.5) $-\frac{1}{2}$
- (13.6) 21

(11.4) Find (a) the tangent plane and (b) a normal vector to the surface $\mathbf{r}(u,v) = \langle u+v, u^2, v^2 \rangle$ at the point (3, 4, 1).

$$\vec{r}_{A} \times \vec{r}_{V} = \begin{vmatrix} i & i & k \\ i & 2m & 0 \\ i & 0 & 2v \end{vmatrix} = \langle 4mv, -2v, -2m \rangle$$

$$\vec{n} = \langle 8, -2, -47 \rangle$$

P

(11.5) Find the directional derivative of $f(x,y) = x^2 e^{-y}$ at the point (-2,0) in the direction of the point (2,-3).

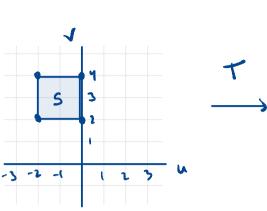
0

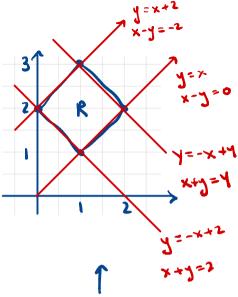
$$\vec{R} = \frac{44,-37}{\vec{R}} = \frac{44,-37}{5} = \frac{44,-37}{5} = \frac{44,-37}{5}$$

$$\nabla f = \langle 2\pi e^{-y}, -x^2 e^{-y} \rangle$$

$$= \langle -4, -4\rangle \cdot \langle \frac{4}{5}, -\frac{3}{5}\rangle$$

$$\frac{2}{5} + \frac{12}{5}$$


(11.7) Let $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$, $\mathbf{g}(x, y) = \langle x + y, 3x - y, 2x + y \rangle$, and $\mathbf{w}(x, y, z) = \langle 2x, 2y \rangle$. Which of the following compositions are well-defined?


 $r \circ g$, $r \circ w$, $g \circ r$, $g \circ w$, $w \circ r$, $w \circ g$

If a composition is well-defined, state its domain and codomain.

We have
$$\begin{cases} \vec{r} : R \rightarrow R^3 \\ \vec{g} : R^2 \rightarrow R^3 \\ \vec{w} : R^3 \rightarrow R^2 \\ \vec{w} : R^3 \rightarrow R^2 \\ \vec{r} \cdot \vec{g} : R^2 \rightarrow R^3 \\ \vec{r} \cdot \vec{w} : R^3 \rightarrow R^3$$

(12.3) Use the transformation u = x - y and v = x + y to evaluate $\iint_R \frac{x-y}{x+y} dA$ where R is the square with vertices (0,2), (1,1), (2,2), and (1,3).

$$\frac{\partial(a,v)}{\partial x} = \begin{vmatrix} \frac{2a}{2a} & \frac{2a}{2a} \\ \frac{2a}{2a} & \frac{2a}{2a} \end{vmatrix}$$

$$\Rightarrow \frac{\partial(x_1y)}{\partial(x_1y)} = \frac{1}{2}$$

$$\iint\limits_{R} \frac{x-y}{x+y} dA = \iint\limits_{S} \frac{u}{v} \cdot \left| \frac{1}{2} \right| dA$$

$$= \int_{2}^{4} \int_{-2}^{\infty} \frac{v}{v} \cdot \frac{1}{2} du dv$$

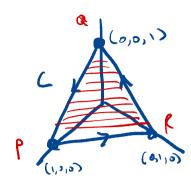
$$= \frac{1}{2} \int_{2}^{4} \left[\frac{1}{v} \cdot \frac{1}{2} u^{2} \right]_{u=-2}^{u=-2} W$$

$$=\frac{1}{2}\int_{2}^{4}-\frac{1}{v}\cdot 2 dv$$

$$= - \left[|VA| \right]_{A=A}^{A=3}$$

(12.4) Evaluate $\iiint_B (x^2 + y^2 + z^2)^2 dV$, where B is the ball with center the origin and radius 5.

(13.1) Show that $\mathbf{F}(x,y) = \langle 4x^3y^2 - 2xy^3, 2x^4y - 3x^2y^2 + 4y^3 \rangle$ is a conservative vector field and use this fact to evaluate $f(\mathbf{F})$ is a conservative vector field and use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve $\mathbf{r}(t) = \langle t + \sin \pi t, 2t + \cos \pi t \rangle$.


$$\frac{\partial x}{\partial x} = 8x^3y - 6xy^2 \qquad \frac{\partial y}{\partial y} = 8x^3y - 6xy^2$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
, so $\vec{F} = \langle P, Q \rangle$ is conservative.

Could find potential function, but can also change the path: let c be FL) = (t,17 for 05ts) instead. So 7'(+) = <1,0>

$$= \int_0^1 4t^3 - 2t dt = \left[t^4 - t^2 \right]_{t=0}^{t=1} = 0$$

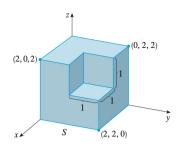
(13.5) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = \langle xy,yz,zx \rangle$, and C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1), oriented counterclockwise as viewed from above.

What is s? Sis part of the plane passing through (1,0,0),

(0,1,0) and (0,0,1). Find this plane:

We want possitive normal to this give, so $\vec{n} = (1,1,17)$ the plane has equation: 1(x-0) + 1(y-0) + 1(z-1) = 0x + y + z = 1

So a punimetritation for S is


$$\frac{1}{1}(x,y) = \langle x, y, 1-x-y \rangle \qquad 0 \leq y \leq 1-x$$

$$0 \leq x \leq 1$$

$$= \iint_{-y-x} -y - (3-x) dy dx$$

=
$$\int_{0}^{\infty} -1 \, dy \, dx$$

= $-A realor = -\frac{1}{2} \cdot b \cdot h = -\frac{1}{2} \cdot 1 \cdot 1 = -\frac{1}{2}$

(13.6) Find $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = \langle x,y,z \rangle$ and S is the outwardly oriented surface shown in the figure (the boundary surface of a cube with a unit corner cube removed).

