
FINAL EXAM PRACTICE PROBLEMS

(9.1) Find a vector function that parametrizes the line through (4,�1, 2) and (1, 1, 5).

(9.2) Find a vector function that parametrizes the line through (�2, 2, 4) that is perpendicular
to the plane 2x� y + 5z = 12.

(9.3) Find an equation of the plane through (3,�1, 1), (4, 0, 2), and (6, 3, 1).

(9.4) Calculate proja b if a = i+ j� 2k and b = 3i� 2j+ k.

(10.1) Find a vector function that represents the curve of intersection of the cylinder x2+ y2 = 16
and the plane x+ z = 5.

(10.2) A particle’s position at time t is given by r(t) = ht, cos t, sin ti. Determine the distance
traveled by the particle between t = 0 and t = 1.

(11.1) Sketch several level curves of the function f(x, y) =
p
4x2 + y2.

(11.2) Evaluate the limit lim(x,y)!(0,0)
2xy

x2 + 2y2
or show that it does not exist.

(11.3) Find (a) the tangent plane and (b) a normal vector to the surface z = 3x2 � y2 +2x at the
point (1,�2, 1).

(11.4) Find (a) the tangent plane and (b) a normal vector to the surface r(u, v) = hu + v, u2, v2i
at the point (3, 4, 1).

(11.5) Find the directional derivative of f(x, y) = x2e�y at the point (�2, 0) in the direction of
the point (2,�3).

(11.6) Find the local maximum and minimum values and saddle points of the function f(x, y) =
3xy � x2y � xy2.

(11.7) Let r(t) = hcos t, sin t, ti,g(x, y) = hx+ y, 3x� y, 2x+ yi, and w(x, y, z) = h2x, 2yi. Which
of the following compositions are well-defined?

r � g, r �w, g � r, g �w, w � r, w � g
If a composition is well-defined, state its domain and codomain.

(12.1) Write
RR

R f(x, y) dA as an iterated integral, where R is the
region shown and f is an arbitrary continuous function on R.
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(12.2) Rewrite the integral
R
1

�1

R
1

x2

R
1�y
0

f(x, y, z) dz dy dx as an iterated integral in the order
dx dy dz.

(12.3) Use the transformation u = x � y and v = x + y to evaluate
RR

R
x�y
x+y dA where R is the

square with vertices (0, 2), (1, 1), (2, 2), and (1, 3).

(12.4) Evaluate
RRR

B(x
2 + y2 + z2)2 dV , where B is the ball with center the origin and radius 5.

(13.1) Show that F(x, y) = h4x3y2 � 2xy3, 2x4y � 3x2y2 + 4y3i is a conservative vector field and
use this fact to evaluate

R
C F · dr along the curve r(t) = ht+ sin⇡t, 2t+ cos⇡ti.

(13.2) Use Green’s Theorem to evaluate
R
C x2y dx�xy2 dy, where C is the circle x2+ y2 = 4 with

the counterclockwise orientation.

(13.3) Evaluate the surface integral
RR

S z dS, where S is the part of the paraboloid z = x2 + y2

that lies under the plane z = 4.

(13.4) Evaluate the surface integral
RR

S F ·dS, where F(x, y, z) = hxz,�2y, 3xi and S is the sphere
x2 + y2 + z2 = 4 with outward orientation.

(13.5) Use Stokes’ Theorem to evaluate
R
C F · dr, where F(x, y, z) = hxy, yz, zxi, and C is the

triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented counterclockwise as viewed
from above.

(13.6) Find
RR

S F · dS, where F(x, y, z) = hx, y, zi and S is
the outwardly oriented surface shown in the figure
(the boundary surface of a cube with a unit corner
cube removed).

Answers

(9.1) r(t) = h4� 3t,�1 + 2t, 2 + 3ti
(9.2) r(t) = h�2 + 2t, 2� t, 4 + 5ti
(9.3) �4x+ 3y + z = �14
(9.4) h�1

6
,�1

6
, 1
3
i

(10.1) r(t) = h4 cos t, 4 sin t, 5� 4 cos ti
(10.2)

p
2

(11.1) The level curves form a family of concen-
tric ellipses.

(11.2) The limit does not exist.
(11.3) (a) z = 8x+ 4y + 1 (b) h8, 4,�1i
(11.4) (a) 4x� y � 2z = 6 (b) h4,�1,�2i
(11.5) �4

5
.

(11.6) Maximum f(1, 1) = 1;
Saddle points (0, 0), (0, 3), (3, 0).

(11.7) Well-defined: g �w : R3 ! R3 ,
w � r : R1 ! R2, w � g : R2 ! R2.

Not well-defined: r � g, r �w, g � r.
(12.1)

R
4

0

R
4�y
y�4

f(x, y) dx dy

(12.2)
R
1

0

R
1�z
0

R p
y

�p
y f(x, y, z) dx dy dz

(12.3) � ln 2
(12.4) 312, 500⇡/7
(13.1) 0
(13.2) �8⇡
(13.3) (⇡/60)(391

p
17 + 1)

(13.4) �64⇡/3
(13.5) �1
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(13.6) 21
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By the divergence there,
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