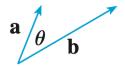
MIDTERM 1 PRACTICE PROBLEMS

Section 9.2

- (1) Copy the vectors in the figure and use them to draw the following vectors.
 - (a) $\vec{a} + \vec{b}$
 - (b) $\vec{a} \vec{b}$
 - (c) $2\vec{b} \vec{a}$
- (2) Find a unit vector that has the same direction as $8\vec{i} \vec{j} + 4\vec{k}$.

(1) In each case, state whether $\vec{a} \cdot \vec{b}$ is positive, negative, or zero. Explain your reasoning.



- (2) Find the angle between the vectors $\langle -8, 6 \rangle$ and $\langle \sqrt{7}, 3 \rangle$.
- (3) Find the work done by a force $F = 8\vec{i} 6\vec{j} + 9\vec{k}$ that moves an object from (0, 10, 8) to (6, 12, 20) along a straight line. Distances in meters, force in newtons.
- (4) Find the scalar and vector projections of $\vec{b} = \langle 0, 1, \frac{1}{2} \rangle$ onto $\vec{a} = \langle 2, -1, 4 \rangle$.

Section 9.4

(1) Find the cross product $\langle 1, 3, -2 \rangle \times \langle -1, 0, 5 \rangle$.

Section 9.5

- (1) Find a vector equation, parametric equations, and symmetric equations for the line through (6, 1, -3) and (2, 4, 5).
- (2) Know how to write down the equation of a plane:
 - Using a point and a normal vector. Example: plane through (6, 3, 2) perpendicular to $\langle -2, 1, 5 \rangle$.

 - Using three non-collinear points. Example: (0,1,1), (1,0,1), (1,1,0). Using two intersecting lines. Example: $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-5}{6}$ and $\vec{r}(t) = \langle 1, -1, 5 \rangle + 1$ $t\langle 1, 1, -3\rangle$.
 - Using a point and a line. Example: through (6,0,2) and containing the line x=4-2t, y=3+5t, z=7+4t.
- (3) Find the distance from (1, -2, 4) to the plane 3x + 2y + 6z = 5.

Section 9.7

- (1) Identify the surface whose equation is given.
 - $\theta = \pi/4$
 - $\phi = \pi/3$
 - $z = 4 r^2$
 - $r = 2\cos\theta$
 - $\rho = \sin \theta \sin \phi$

Section 10.1

- (1) Find a vector function that represents the curve of intersection of the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 1 + y.
- (2) Find a vector function that represents the curve of intersection of the hyperboloid $z = x^2 y^2$ and the cylinder $x^2 + y^2 = 1$.

Section 10.2

- (1) Let $\vec{r}(t) = \cos t \vec{i} + 3t \vec{j} + 2\sin(2t) \vec{k}$. Find the unit tangent vector $\vec{T}(t)$ at t = 0. (2) Suppose $\vec{v}(t) = 16t^3\vec{i} 9t^2\vec{j} + 25t^4\vec{k}$. If the initial position is $\langle 1, 4, 3 \rangle$ at t = 0, find the position at t = 1.

Section 10.3

- (1) Find the length of $\vec{r}(t) = \langle 2\sin t, 5t, 2\cos t \rangle$ for $-10 \le t \le 10$.
- (2) Write an integral that computes the length of $\vec{r}(t) = \langle \sqrt{t}, t, t^2 \rangle$ from t = 1 to t = 4.

Section 10.5

- (1) Parametrize a cylinder of radius 3 centered on the y-axis.
- (2) Parametrize a sphere of radius 2 centered at the origin.
- (3) Parametrize the bottom hemisphere of a sphere with radius 10 centered at the origin.
- (4) Parametrize the plane 2x y + 3z = -2.
- (5) Parametrize the cone $4x^2 + 2y^2 = z^2$.
 - Hint: Start with $u^2 + v^2 = z^2$. Then set u = 2x and $v = \sqrt{2}y$.
- (6) Parametrize the ellipsoid $3x^2 + 5y^2 + z^2 = 1$.
 - Hint: Start with $u^2 + v^2 + z^2 = 1$. Then set $u = \sqrt{3} x$ and $v = \sqrt{5} y$.