Chapter 9

9.1 Three-Dimensional Coordinate Systems

- Working in three dimensions:
 - How do we represent points in space?
 - What is the right-hand rule?
 - What are the x-, y-, and z-coordinate planes? How can a point P(a, b, c) be projected to each of the coordinate planes?
 - What is \mathbb{R}^3 ?
- Identifying basic surfaces in \mathbb{R}^3 :
 - What surface in \mathbb{R}^3 is represented by the equation z=3?
 - What surface in \mathbb{R}^3 is represented by the equation y = 5?
 - Why do we have to be careful about the context of our equations?
 - What does the equation $x^2 + y^2 = 1$ represent as a surface in \mathbb{R}^3 ?
 - Describe and sketch the surface in \mathbb{R}^3 represented by the equation y=x.
- Distances in three dimensions:
 - What is the distance formula in three dimensions?
 - Find the distance from the point P(2,-1,7) to the point Q(1,-3,5).
- Spheres:
 - Find an equation of a sphere with radius r and center C(h, k.l).
 - Show that $x^2 + y^2 + z^2 + 4x 6y + 2x + 6 = 0$ is the equation of a sphere, and find its center and radius.
 - What region in \mathbb{R}^3 is represented by the following inequalities?

$$1 \le x^2 + y^2 + z^2 \le 4 \qquad z \le 0$$

9.2 Vectors

- Introduction to vectors:
 - What is a vector? What are some examples of vectors?
 - What are the various ways to represent vectors?
 - Suppose a particle moves along a line segment from point A to point B. What is the displacement vector from A to B?
- Vector operations:
 - How do we add vectors? How to draw the sum of vectors?
 - Given vectors \vec{u} and \vec{v} , why is $\vec{u} + \vec{v} = \vec{v} + \vec{u}$?
 - How do we scale vectors?
 - How do we subtract vectors? How to draw the difference of vectors?
- Coordinate representation of vectors:
 - How to represent vectors using coordinates?
- Vectors between two points:
 - Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, what is the vector \overrightarrow{AB} ?
 - Find the vector represented by the directed line segment with initial point A(2, -3, 4) and terminal point B(-2, 1, 1).
- Lengths of vectors:
 - How to compute the magnitude of a vector \vec{v} ?
- Vector operations using components:
 - How do we add vectors using coordinates?
 - How do we scale vectors using coordinates?
 - If $\vec{a} = \langle 4, 0, 3 \rangle$ and $\vec{b} = \langle -2, 1, 5 \rangle$, find $|\vec{a}|$ and the vectors $\vec{a} + \vec{b}, \vec{a} \vec{b}, 3\vec{b}$ and $2\vec{a} + 5\vec{b}$.
- Properties of vector operations:
 - Let \vec{a}, \vec{b} , and \vec{c} are vectors in V_n and c and d are scalars. Summarize the properties of these vectors.
- Unit vectors and \vec{i} , \vec{j} , and \vec{k} :
 - What are the vectors \vec{i} , \vec{j} , and \vec{k} ?
 - Show that any vector in V_3 can be expressed in terms of the vectors $\vec{i}, \vec{j}, \vec{k}$.
 - If $\vec{a} = \vec{i} + 2\vec{j} 3\vec{k}$ and $\vec{b} = 4\vec{i} + 7\vec{k}$, express the vector $2\vec{a} + 3\vec{b}$ in terms of \vec{i}, \vec{j} , and \vec{k} .
 - What is a unit vector? If $\vec{a} \neq 0$, what is a unit vector that has the same direction as \vec{a} ?
 - Find the unit vector in the direction of the vector $2\vec{i} \vec{j} 2\vec{k}$.
 - Know how to find vector sums and magnitudes in various contexts (e.g. force diagrams).

9.3 The Dot Product

- Work and the dot product:
 - What is the dot product of two nonzero vectors \vec{a} and \vec{b} ?
 - What is the work done by a constant force F in moving an object through a distance d?
 - How can we reinterpret work in terms of the dot product?
 - Find $\vec{a} \cdot \vec{b}$ if \vec{a} and \vec{b} have lengths 4 and 6, and the angle between them is $\pi/3$.
 - A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.

• Orthogonal vectors:

- What does it mean for two vectors to be orthogonal?
- Prove that two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.
- The dot product in component form:
 - What is the dot product in terms of components?
 - Compute the following dot products:
 - 1. $\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle$
 - 2. $\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle$
 - 3. $(\vec{i} + 2\vec{j} 3\vec{k}) \cdot (2\vec{j} \vec{k})$
 - Show that $2\vec{i} + 2\vec{j} \vec{k}$ is perpendicular to $5\vec{i} 4\vec{j} + 2\vec{k}$.
 - Find the angle between the vectors $\vec{a}=\langle 2,2,-1\rangle$ and $\vec{b}=\langle 5,-3,2\rangle$.
 - A force is given by a vector $F = 3\vec{i} + 4\vec{j} + 5\vec{k}$ and moves a particle from the point P(2,1,0) to the point Q(4,6,2). Find the work done.
- Properties of the dot product:
 - If \vec{a} , \vec{b} , and \vec{c} are vectors in V_3 and c is a scalar, what are $\vec{a} \cdot \vec{a}$, $\vec{a} \cdot \vec{b}$, $\vec{a} \cdot (\vec{b} + \vec{c})$, $(c\vec{a}) \cdot \vec{b}$, and $\vec{0} \cdot \vec{a}$?

• Projections

- What is the vector projection of \vec{b} onto \vec{a}
- What is the scalar projection of \vec{b} onto \vec{a}
- Find the scalar projection and vector projection of $\vec{b}=\langle 1,1,2\rangle$ onto $\vec{a}=\langle -2,3,1\rangle$.

3

9.4 The Cross Product

- Torque and the cross product:
 - What is torque?
 - If \vec{a} and \vec{b} are nonzero three-dimensional vectors, what is the cross product of \vec{a} and \vec{b} ?
 - Show that two nonvectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b} = 0$.
 - A bolt is tightened by applying a 40-N force to a 0.25-m wrench, as shown below. Find
 the magnitude of the torque about the center of the bolt.
- Cross products of \vec{i} , \vec{j} , \vec{k} :
 - Find $\vec{i} \times \vec{j}$ and $\vec{j} \times \vec{i}$.
 - Summarize the cross products of \vec{i} , \vec{j} , and \vec{k} .
- Properties of the cross product:
 - Is $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$?
 - Is $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$?
 - What properties of the cross product hold?
- The cross product using components:
 - How to calculate $\vec{a} \times \vec{b}$ using components?
 - How can we use determinants to simplify the cross product calculation?
 - Use determinants to calculate the cross product of $\vec{a} = \langle 1, 3, 4 \rangle$ and $\vec{b} = \langle 2, 7, -5 \rangle$.
 - Find a vector perpendicular to the plane that passes through the points P(1,4,6), Q(-2,5,-1), R(1,-1,1).
- Geometry of the cross product:
 - Give a geometric interpretation of the length of the cross product.
 - Find the area of the triangle with vertices P(1,4,6), Q(-2,5,-1), and R(1,-1,1).
- Scalar triple product:
 - What is the scalar triple product of the vectors \vec{a}, \vec{b} , and \vec{c} ?
 - Let $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, and $\vec{c} = \langle c_1, c_2, c_3 \rangle$. Show that

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

– Use the scalar triple product to show that the vectors $\vec{a} = \langle 1, 4, -7 \rangle$, $\vec{b} = \langle 2, -1, 4 \rangle$, and $\vec{c} = \langle 0, -9, 18 \rangle$ lie in the same plane.

4

9.5 Equations of Lines and Planes

• Lines:

- How do we describe a line in three-dimensional space?
- How can we describe a line in three-dimensional space parametrically?
- Are the vector equation and parametric equations of a line unique?
- What are the symmetric equations a line L?
- Find a vector equation and parametric equations for the line that passes through the point (5,1,3) and is parallel to the vector $\vec{i} + 4\vec{j} 2\vec{k}$. Find two other points on the line.
- Find parametric equations and symmetric equations of the line that passes through the points A(2, 4, -3) and B(3, -1, 1). At what point does this line intersect the xy-plane?

• Line Segments:

- How to describe the line segment AB between the points A(2,4,-3) and B(3,-1,1)?
- How to describe the line segment from vector $\vec{r_0}$ to $\vec{r_1}$?

• Planes:

- How to describe a plane in space?
- How to describe a plane using a scalar equation?
- Find an equation of the plane through the point (2,4,-1) with normal vector $\vec{n} = \langle 2,3,4 \rangle$. Find the intercepts and sketch the plane.
- How to rewrite the equation of a plane using a linear equation?
- Find an equation of the plane that passes through the points P(1,3,2), Q(3,-1,6) and R(5,2,0).
- Find the point at which the line with parametric equations x = 2+3t, y = -4t, z = 5+t intersects the plane 4x + 5y 2z = 18.

• Angle between planes:

- How can we determine if two planes are parallel?
- If two planes are not parallel, what is the angle between the two planes?
- Find the angle between the planes x + y + z = 1 and x 2y + 3z = 1. Find symmetric equations for the line of intersection L of these two planes.

• Distances:

- Find a formula for the distance from a point $P_1(x_1, y_1, z_1)$ to the plane ax+by+cz+d=0.
- Find the distance between the parallel planes 10x + 2y 2z = 5 and 5x + y z = 1.

• Skew lines:

- Show that the lines L_1 and L_2 with parametric equations

$$x = 1 + t$$
 $y = -2 + 3t$ $z = 4 - t$
 $x = 2s$ $y = 3 + s$ $z = -3 + 4s$

5

are skew lines.

- Find the distance between the skew lines L_1 and L_2 above.

9.6 Functions and Surfaces

• Functions of two variables:

- What is a function of two variables?
- If $f(x,y) = 4x^2 + y^2$, what are the domain and range of f(x,y)?
- If $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$, evaluate f(3,2) and find and sketch the domain.
- If $f(x,y) = x \ln(y^2 x)$, evaluate f(3,2) and find and sketch the domain.

• Graphs of functions:

- If f is a function of two variables with domain D, what is the graph of f?
- Sketch the graph of the function f(x,y) = 6 3x 2y.
- Sketch the graph of the function $f(x,y) = x^2$.
- How can we use cross-sections to help us sketch graphs of functions of two variables?
- Use traces to sketch the graph of the function $f(x,y) = 4x^2 + y^2$.
- Sketch the graph of $f(x,y) = y^2 x^2$.

• Quadric surfaces:

- What is a quadric surface?
- Sketch the quadric surface with equation $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$.
- Is the ellipsoid $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$ the graph of a function?
- What are the six basic types of quadric surfaces? What are their equations in standard form?
- Classify the quadric surface $x^2 + 2z^2 6x y + 10 = 0$.

9.7 Cylindrical and Spherical Coordinates

• Cylindrical coordinates:

- How do we convert between polar and Cartesian coordinates in two dimensions?
- What is the cylindrical coordinate system?
- Plot the point with cylindrical coordinates $(2, 2\pi/3, 1)$ and find its rectangular coordinates.
- Find cylindrical coordinates of the point with rectangular coordinates (3, -3, -7).
- When are cylindrical coordinates useful? What is the equation of a cylinder in cylindrical coordinates?
- Describe the surface whose equation in cylindrical coordinates is z = r.
- Find an equation in cylindrical coordinates for the ellipsoid $4x^2 + 4y^2 + z^2 = 1$.

• Spherical coordinates:

- What is the spherical coordinate system?
- When are spherical coordinates useful? What is the equation of a sphere in spherical coordinates?
- Find equations for surfaces using spherical coordinates.
- What is the relationship between rectangular and spherical coordinates?
- The point $(2, \pi/4, \pi/3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.
- The point $(0, 2\sqrt{3}, -2)$ is given in rectangular coordinates. Find spherical coordinates for this point.
- Find an equation in spherical coordinates for the hyperboloid of two sheets with equation $x^2 y^2 z^2 = 1$.
- Find a rectangular equation for the surface whose spherical equation is $\rho = \sin \theta \sin \phi$.