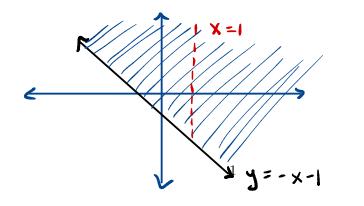
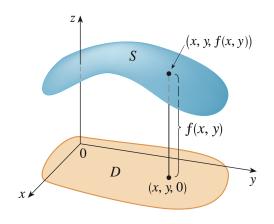
Lecture Notes Math 2400 - Calculus III Spring 2024 Name: Champ

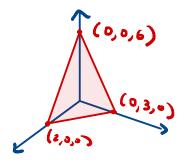

9.6 Functions and Surfaces

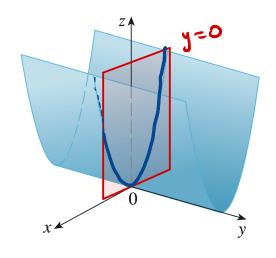
> f(x,y)


Definition. What is a function of two variables?

Example. If $f(x,y) = 4x^2 + y^2$, what are the domain and range of f(x,y)?

Example. If $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$, evaluate f(3,2) and find and sketch the domain.


Definition. If f is a function of two variables with domain D, what is the graph of f?


The graph of f(x,y)is the set of all Points (x,y,z) such that Z = f(x,y)

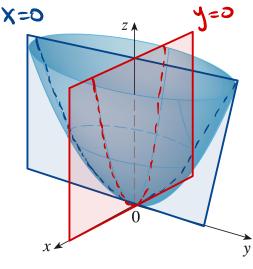
Example. Sketch the graph of the function f(x,y) = 6 - 3x - 2y.

. This is a plane. Intercepts?

Example. Sketch the graph of the function $f(x,y) = x^2$.

- · The graph has equation $Z = x^2$
- · This equation obesn't depend on y
- · Each plane y = k has a copy of the $z = x^2$ parabola

Remark. How can we use cross-sections to help us sketch graphs of functions of two variables?

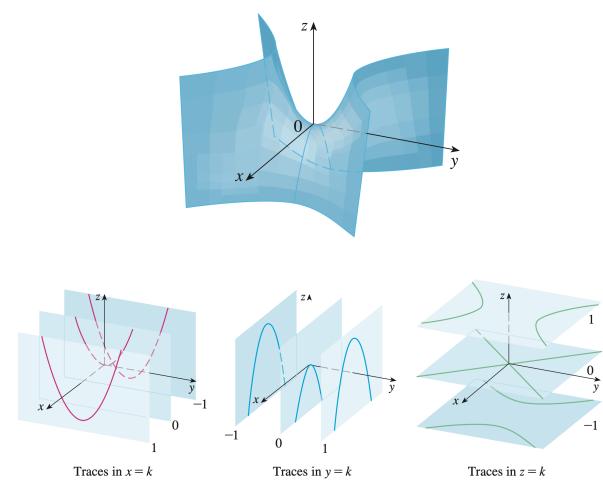

"It helps to keep one of the vanables fixed to graph "slices" of the function

- · Set x=k or y=k to see vertical slikes
- · Set Z=k to see horzontel slices

(K is some number)

> = 4x2+y2

Example. Use traces to sketch the graph of the function $f(x,y) = 4x^2 + y^2$.



as we move the x=0 plane along the x-axis

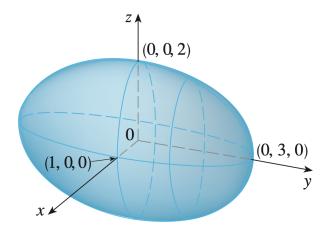
=) we get a famig of peraboles
as we move the y=0 plane
along the y-axis

the z=0 plane through the z-axis

Example. Sketch the graph of $f(x,y) = y^2 - x^2$.

$$7 = y^2 - k^2$$

(upward prabolas)


$$Z = -x^2 + k^2$$

(downward parabolas) (hyperbolas)

Definition. What is a quadric surface?

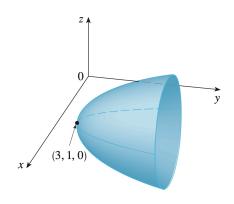
The graph of a degree 2 equation in the variables x, y, z 4

Example. Sketch the quadric surface with equation $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$.

Question. Is the ellipsoid $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$ the graph of a function?

These surfaces are

These surfaces are


Symmetric about the z-axis

Changes accordingly

Example. Below is a table of the six basic types of quadric surfaces in standard form.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2 + y^2}{a^2} + \frac{b^2}{z^2} = 1$	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
Elliphe Paraboloid	$\frac{Z}{C} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Variable Paised to 1st power inductes the axis of symmetry	Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Variable with negative coefficient indicates axis of symmetry.
Hyperbolic Personoloid	$\frac{Z}{c} = \frac{\chi^2}{a^2} - \frac{y^2}{b^2}$ This is the case $c < 0$.	Hyperboloid of Two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ two minus Signs indicates two sheets

Example. Classify the quadric surface $x^2 + 2z^2 - 6x - y + 10 = 0$.

Complete the square:

$$x^2-6x+9+2z^2-y+10=9$$

 $(x-3)^2+2z^2=y-1$

- => Elliptic paraboloid
- =) The axis of symmetry is parallel to the y-axis
- => Vertex has been shifted from (0,0,0) to (3,1,0)