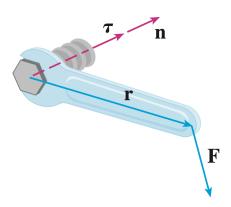
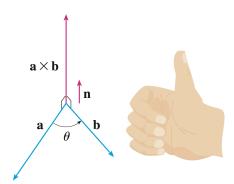
9.4 The Cross Product

Definition. What is torque?

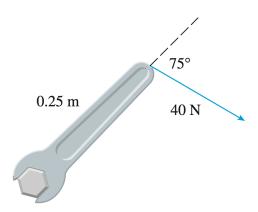


Definition. If \vec{a} and \vec{b} are nonzero vectors in V_3 , what is the cross product of \vec{a} and \vec{b} ?



Theorem. Show that two nonvectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b} = 0$.

Example. A bolt is tightened by applying a 40-N force to a 0.25-m wrench, as shown below. Find the magnitude of the torque about the center of the bolt.



Example. Find $\vec{i} \times \vec{j}$ and $\vec{j} \times \vec{i}$.

Example. Summarize the cross products of \vec{i} , \vec{j} , and \vec{k} .

Example. Is $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$?

Example. Is $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$?

Theorem. What are some properties of the cross product? If \vec{a} , \vec{b} , and \vec{c} are vectors and c is a scalar, then

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

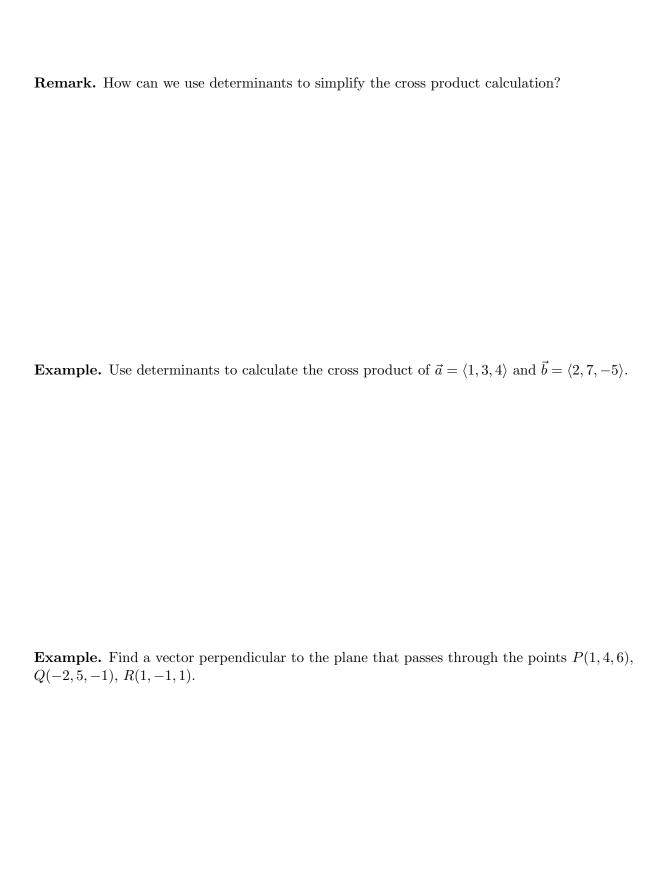
2.
$$(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b})$$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

4.
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

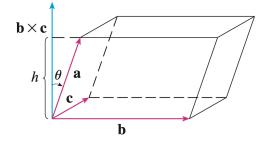
Question. Give a geometric interpretation of the length of the cross product.

Question. How to calculate $\vec{a} \times \vec{b}$ using components?



Example. Find the area of the triangle with vertices P(1,4,6), Q(-2,5,-1), and R(1,-1,1).

Definition. What is the scalar triple product of the vectors $\vec{a}, \vec{b},$ and \vec{c} ?



Theorem. Let $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, and $\vec{c} = \langle c_1, c_2, c_3 \rangle$. Show that

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Example. Use the scalar triple product to show that the vectors $\vec{a} = \langle 1, 4, -7 \rangle$, $\vec{b} = \langle 2, -1, 4 \rangle$, and $\vec{c} = \langle 0, -9, 18 \rangle$ lie in the same plane.