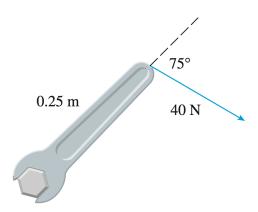

## 9.4 The Cross Product

**Definition.** What is torque?




**Definition.** If  $\vec{a}$  and  $\vec{b}$  are nonzero vectors in  $V_3$ , what is the cross product of  $\vec{a}$  and  $\vec{b}$ ?



**Theorem.** Show that two nonvectors  $\vec{a}$  and  $\vec{b}$  are parallel if and only if  $\vec{a} \times \vec{b} = 0$ .

**Example.** A bolt is tightened by applying a 40-N force to a 0.25-m wrench, as shown below. Find the magnitude of the torque about the center of the bolt.



**Example.** Find  $\vec{i} \times \vec{j}$  and  $\vec{j} \times \vec{i}$ .

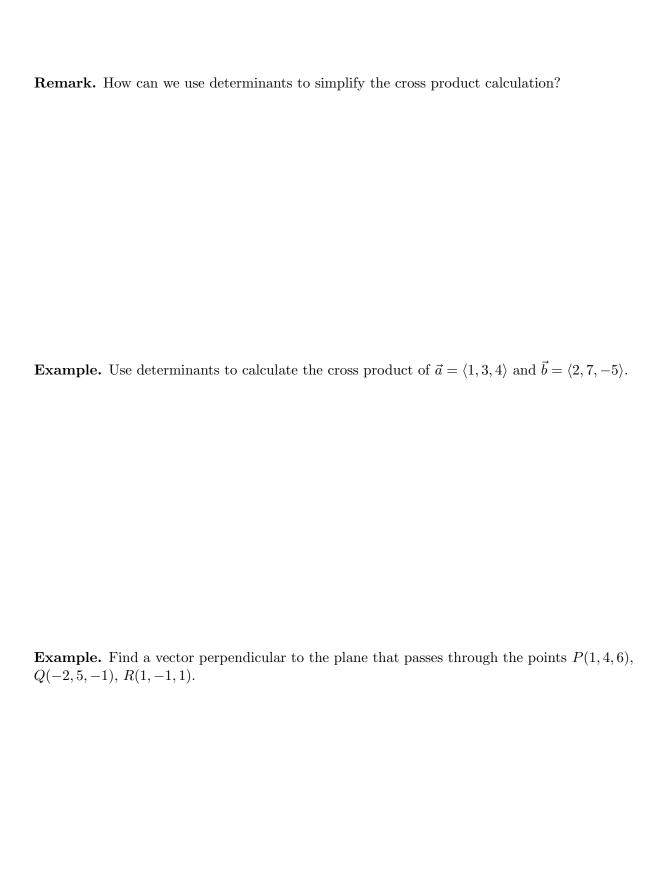
**Example.** Summarize the cross products of  $\vec{i}$ ,  $\vec{j}$ , and  $\vec{k}$ .

**Example.** Is  $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$ ?

**Example.** Is  $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ ?

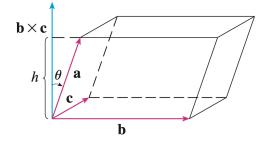
**Theorem.** What are some properties of the cross product? If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are vectors and c is a scalar, then

1. 
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$


2. 
$$(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b})$$

3. 
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

4. 
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$


Question. Give a geometric interpretation of the length of the cross product.

**Question.** How to calculate  $\vec{a} \times \vec{b}$  using components?



**Example.** Find the area of the triangle with vertices P(1,4,6), Q(-2,5,-1), and R(1,-1,1).

**Definition.** What is the scalar triple product of the vectors  $\vec{a}, \vec{b},$  and  $\vec{c}$ ?



**Theorem.** Let  $\vec{a} = \langle a_1, a_2, a_3 \rangle$ ,  $\vec{b} = \langle b_1, b_2, b_3 \rangle$ , and  $\vec{c} = \langle c_1, c_2, c_3 \rangle$ . Show that

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

**Example.** Use the scalar triple product to show that the vectors  $\vec{a} = \langle 1, 4, -7 \rangle$ ,  $\vec{b} = \langle 2, -1, 4 \rangle$ , and  $\vec{c} = \langle 0, -9, 18 \rangle$  lie in the same plane.