Name: Champ

9.2 Vectors

Definition. What is a vector?

· A vector is a quantity that has both a magnitude and a direction.

· Examples: Velocity or force

Question. How to represent vectors?

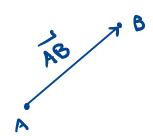
· We represent vectors by arrows

. The length of the arrow is the magnitude of the vector

. The arrow points in the direction of the vector

. We denote a vector by boldface font or by an arrow: W or V

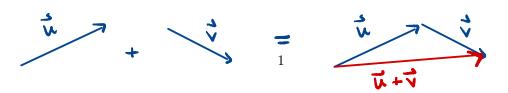
Definition. Suppose a particle moves along a line segment from point A to point B. What is the displacement vector from A to B?



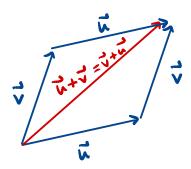
The displacement vector AB has initial point A (tail) and terminal point B (tip)

Definition. How do we add vectors?

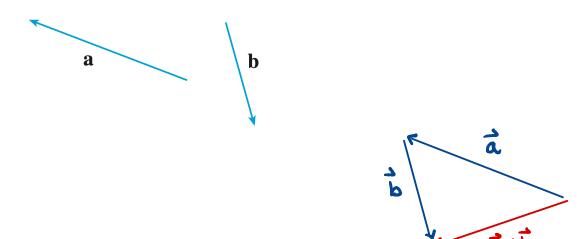
To add vectors \vec{n} and \vec{v} , we move \vec{v} so that it starts at the end of \vec{u} . $\vec{u} + \vec{v}$ is the vector that starts at the beginning of \vec{u} and ends at the end of \vec{v} .



Question. Given vectors \vec{u} and \vec{v} , why is $\vec{u} + \vec{v} = \vec{v} + \vec{u}$?



Example. Draw the sum of the vectors \vec{a} and \vec{b} shown below.

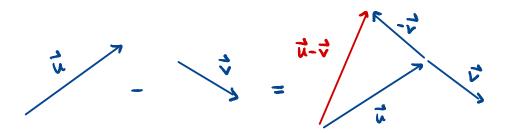


Definition. How do we scale vectors?

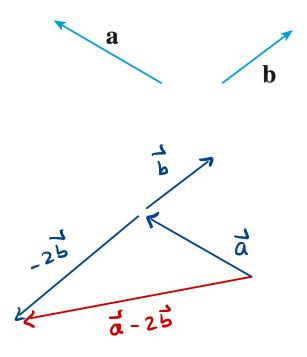
If C is a real number, then $C\vec{v}$ is the vector whose length is |C| times the length of \vec{v} in the direction of \vec{v} if C>0 and in the opposite direction if C<0.

Definition. How do we subtract vectors?

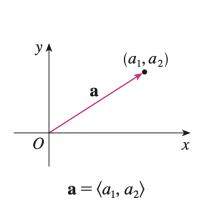
• Think about $\vec{n} - \vec{v}$ as $\vec{u} + (-\vec{v})$

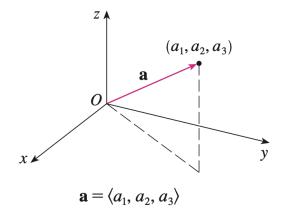


Example. If \vec{a} and \vec{b} are the vectors shown below, draw $\vec{a} - 2\vec{b}$.



Question. How to represent vectors using coordinates?

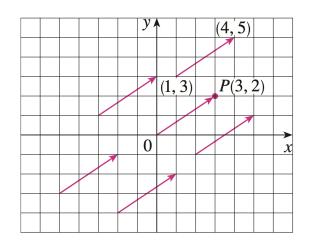




- · Place the initial point of the vector at the origin
- · In 3D, the terminal point is at some point (a, az, az)
- · We write a = < a,, a2, a3>

t components at a

Question. Explain why the vectors below are all equivalent.

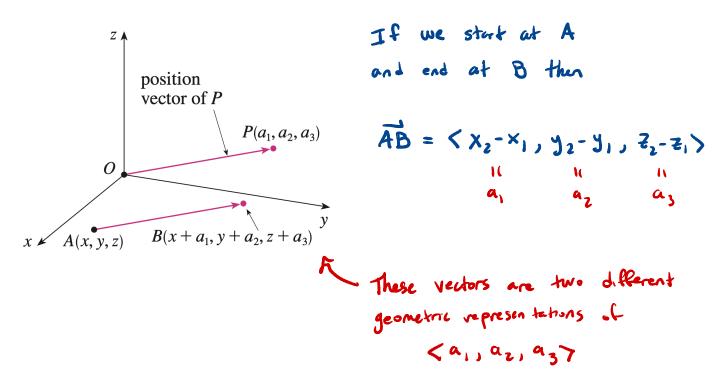


- · Vectors are equivalent if they have the same magnitude and direction
- · All of these vectors are equivalent to <3,2>

Definition. What is a position vector?

The vector
$$\overrightarrow{OP}$$
 starting at the origin and ending at a point P is called the position vector of the point P(a, az, az).

Definition. Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, what is the vector with representation \vec{AB} ?



Example. Find the vector represented by the directed line segment with initial point A(2, -3, 4) and terminal point B(-2, 1, 1).

$$\overrightarrow{AB} = \langle -2-2, 1-(-3), 1-47 = \langle -4, 4, -3 \rangle$$

Definition. How to calculate the magnitude of a vector \vec{v} ?

The magnitude (length) of
$$\vec{v}$$
 is denoted by $|\vec{v}|$

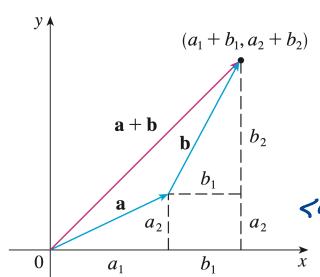
In 2D: $|\vec{v}| = |\langle \alpha_1, \alpha_2 \rangle| = \sqrt{a_1^2 + a_2^2}$

Fythagorean

In 3D: $|\vec{v}| = |\langle \alpha_1, \alpha_2, \alpha_3 \rangle| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Then

Question. How do we add vectors algebraically?

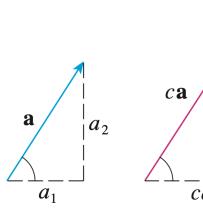


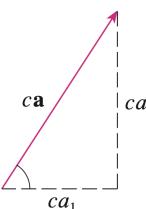
To add vectors B = < b,, b2>

we just add the components
$$\langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle$$

. Similarly, to subtract vectors, we subtract the components

Question. How do we scale vectors algebraically?





To multiply a vector by a scalar, we multiply each component

Example. If $\vec{a} = \langle 4, 0, 3 \rangle$ and $\vec{b} = \langle -2, 1, 5 \rangle$, find $|\vec{a}|$ and the vectors $\vec{a} + \vec{b}, \vec{a} - \vec{b}, 3\vec{b}$ and $2\vec{a} + 5\vec{b}$.

$$|\vec{a}| = \sqrt{4^2 + 0^2 + 3^2} = \sqrt{25} = 5$$

$$\vec{0} + \vec{b} = \langle 4 + (-2), 0 + 1, 3 + 5 \rangle$$

= $\langle 2, 1, 8 \rangle$

$$\vec{a} - \vec{b} = \langle 4 - (-2), 0 - 1, 3 - 5 \rangle$$

= $\langle 6, -1, -2 \rangle$

$$3\vec{b} = \langle 3.(-2), 3.1, 3.5 \rangle$$

= $\langle -6, 3, 15 \rangle$

$$2\vec{a} + 5\vec{b} = \langle 2.4, 2.0, 2.37 + \langle 5.6.2, 5.1, 5.5 \rangle$$

= $\langle 8, 0, 6 \rangle + \langle -10, 5, 25 \rangle$
= $\langle -2, 5, 31 \rangle$

Definition. What is the set V_n ?

. Vn is the set of all n-dimensional vectors

· an n-dimensional vector is an ordered tuple $\vec{a} = \langle a_1, a_2, ..., a_n \rangle$

Where a, , az, ... , an are real numbers

Theorem. Let \vec{a}, \vec{b} , and \vec{c} are vectors in V_n and c and d are scalars. Prove the following properties of these vectors.

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2.
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

3.
$$\vec{a} + \vec{0} = \vec{a}$$

4.
$$\vec{a} + (-\vec{a}) = \vec{0}$$

5.
$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

6.
$$(c+d)\vec{a} = c\vec{a} + d\vec{a}$$

7.
$$(cd)\vec{a} = c(d\vec{a})$$

8.
$$1 \cdot \vec{a} = \vec{a}$$

Proof.

$$Q$$

$$(a+b)+c$$

$$a+(b+c)$$

$$b$$

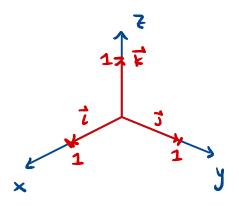
$$b+c$$

② Given vectors \vec{a} , \vec{b} , \vec{c} , construct \vec{a} + \vec{b} and \vec{b} + \vec{c} $\vec{PQ} = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (See figure)

Definition. What are the vectors \vec{i} , \vec{j} , and \vec{k} ?

$$\vec{l} = \langle 1, 0, 0 \rangle$$

 $\vec{J} = \langle 0, 1, 0 \rangle$
 $\vec{k} = \langle 0, 0, 1 \rangle$



Example. Show that any vector in V_3 can be expressed in terms of the vectors \vec{i} , \vec{j} , \vec{k} .

$$\vec{a} = \langle a_{1}, a_{2}, a_{3} \rangle = \langle a_{1}, 0, 0 \rangle + \langle 0, a_{2}, 0 \rangle + \langle 0, 0, a_{3} \rangle$$

$$= a_{1} \langle 1, 0, 0 \rangle + a_{2} \langle 0, 1, 0 \rangle + a_{3} \langle 0, 0, 1 \rangle$$

$$= a_{1} \vec{i} + a_{2} \vec{j} + a_{3} \vec{k}$$

Example. If $\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{b} = 4\vec{i} + 7\vec{k}$, express the vector $2\vec{a} + 3\vec{b}$ in terms of \vec{i}, \vec{j} , and \vec{k} .

$$2\vec{a} + 3\vec{b} = 2(\vec{t} + 2\vec{j} - 3\vec{k}) + 3(4\vec{t} + 7\vec{k})$$

$$= 2\vec{t} + 4\vec{j} - 6\vec{k} + 12\vec{t} + 21\vec{k}$$

$$= 14\vec{t} + 4\vec{j} + 15\vec{k}$$

$$(14, 4, 15)$$

Definition. What is a unit vector? If $\vec{a} \neq 0$, find a unit vector that has the same direction as \vec{a} .

Unit vector: a vector of length 1

$$\vec{h} = \frac{\vec{a}}{|\vec{a}|}$$
 is a vector with magnitude 1 in the direction of \vec{a}

(check: Since $|\vec{c}| = |\vec{c}| = |\vec{c}| = |\vec{a}|$, we have $|\vec{n}| = |\vec{a}| \cdot |\vec{a}| = |\vec{a}|$

Example. Find the unit vector in the direction of the vector $2\vec{i} - \vec{j} - 2\vec{k}$.

$$|2\vec{t} - \vec{j} - 2\vec{k}| = \sqrt{(2)^2 + (-1)^2 + (-2)^2} = \sqrt{q} = 3$$
We obtain $\frac{1}{3}(2\vec{t} - \vec{j} - 2\vec{k}) = \frac{2}{3}\vec{t} - \frac{1}{3}\vec{j} - \frac{2}{3}\vec{k}$

$$\langle \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3} \rangle$$

Example. A 100-lb weight hangs from two wires as shown below. Find the tensions (forces) $\vec{T_1}$ and $\vec{T_2}$ in both wires and the magnitudes of the tensions.

Hence by EQ2,

$$|\vec{T}_1| \sin(90^\circ) + |\vec{T}_1| \frac{\cos(90^\circ)}{\cos(30^\circ)} \sin(30^\circ) = 100$$

Plugging these into 1) we get the vector components

$$\vec{\tau}_2 = 55.05t + 34.40j$$