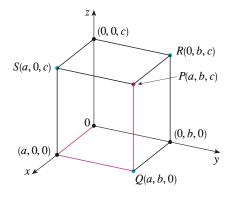

9.1 Three-Dimensional Coordinate Systems

Question. How do we represent points in space?



Definition. What is the right-hand rule?

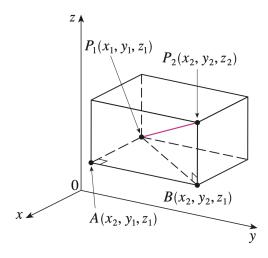
Example. What are the three coordinate planes?

Question. Explain how a point P(a,b,c) can be projected to each of the coordinate planes.

Definition. What is \mathbb{R}^3 ?

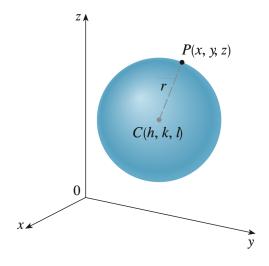
Example. What surface in \mathbb{R}^3 is represented by the equation z=3?

Example. What surface in \mathbb{R}^3 is represented by the equation y = 5?


Remark. Why do we have to be careful about the context of our equations?

Example.

- (a) Which points (x, y, z) satisfy the equations $x^2 + y^2 = 1$ and z = 3?
- (b) What does the equation $x^2 + y^2 = 1$ represent as a surface in \mathbb{R}^3 ?


Example. Describe and sketch the surface in \mathbb{R}^3 represented by the equation y = x.

Theorem (Distance Formula in Three Dimensions). Find a formula that represents the distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$.

Example. Find the distance from the point P(2, -1, 7) to the point Q(1, -3, 5).

Example. Find an equation of a sphere with radius r and center C(h,k,l).

Example. Show that $x^2 + y^2 + z^2 + 4x - 6y + 2z + 6 = 0$ is the equation of a sphere, and find its center and radius.

Example. What region in \mathbb{R}^3 is represented by the following inequalities?

$$1 \le x^2 + y^2 + z^2 \le 4 \qquad z \le 0$$