Lecture Notes Math 2400 - Calculus III Spring 2024 Name: Champ

13.8 The Divergence Theorem Argion Anchors of x and y

Question. What is a simple solid region? What are some examples?

We defined type 1, type 2, and type 3 regions in \$12.7.

A simple solid region is a region that is simultaneously types 1, 2, and 3

e.g. regions bounded by ellipsoids or rectongular boxes.

Theorem. What is the divergence theorem?

Let E be a simple solid region and let S be the boundary sortace of E, given with the positive (outward) orrentation.

Then

In words, the flux of \vec{F} across the boundary surface of \vec{F} is equal to the triple integral of the divergence of \vec{F} over \vec{F} .

Rmk: Compare this to the vector firm of Green's thm which said $\int_C \vec{F} \cdot \vec{n} \, ds = \int_C div \vec{F} \, dA$

1. Let
$$\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$$
. Since div $\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$, what is $\iiint_E \operatorname{div} \mathbf{F} \, dV$?

2. If **n** is the unit outward normal of S, what is $\iint_S \mathbf{F} \cdot d\mathbf{S}$?

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S} (P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}) \cdot \mathbf{n} \, dS$$

$$= \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S} \mathbf{Q} \, \mathbf{j} \cdot \mathbf{n} \, dS + \iint_{S} \mathbf{R} \, \mathbf{k} \cdot \mathbf{n} \, dS$$

3. What do we have to do to prove the Divergence Theorem?

4. To prove the last equation, we will use the fact that E is a type 1 region:

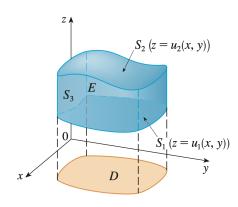
$$E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

where D is the projection of E onto the xy-plane. Using this, what is $\iiint_E \frac{\partial R}{\partial z} dV$?

$$\iiint_{E} \frac{\partial R}{\partial z} dV = \iint_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} \frac{\partial R}{\partial z} (x,y,z) dz \right] dA$$

$$= \iint_{D} R(x,y,u_{2}(x,y)) - R(x,y,u_{1}(x,y)) dA$$

5. What is the boundary of E?



The boundary surface S consists of three pieces: Si, Sz, and Sz.

S₃ May or may not appear (e.g. no S₃ if E i3 a sphere)

6. How can we rewrite $\iint_S R\mathbf{k} \cdot \mathbf{n} \, dS$?

On S_3 , $\vec{k} \cdot \vec{n} = 0$ since \vec{k} is vertical and \vec{n} is honzontal S_3 , $\vec{k} \cdot \vec{n} = 0$ since \vec{k} is vertical and \vec{n} is honzontal S_3 , $\vec{k} \cdot \vec{n} = 0$ since \vec{k} is vertical and \vec{n} is honzontal S_3 , S_4 , S_5 , S_6 , S_7 , S_8 ,

7. What are $\iint_{S_1} R\mathbf{k} \cdot \mathbf{n} \, dS$ and $\iint_{S_2} R\mathbf{k} \cdot \mathbf{n} \, dS$?

8. Use the above to conclude that the Divergence Theorem holds.

E03

 $\iint_{S} R \vec{k} \cdot \vec{n} \, dS = \iint_{C} R(x,y) u_{2}(x,y) dA - \iint_{C} R(x,y) u_{3}(x,y) dA = \iiint_{C} \frac{\partial R}{\partial z} dV$

EQI and EQ2 are proved the same way, using the fact that E is type 2 and type 3.

Example. Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ over the unit sphere $x^2 + y^2 + z^2 = 1$.

$$div \vec{F} = \frac{3}{3x}(z) + \frac{3}{3y}(y) + \frac{3}{3z}(x) = 1$$

The unit sphere is the bandary of the unit ball B given by $x^2+y^2+z^2 \le 1$. By the divergence therem,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{S} div \vec{F} dV = \iiint_{S} |dV| = Vol(B)$$

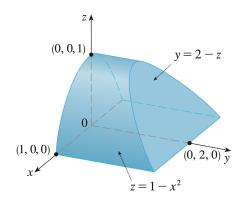
$$= \frac{4\pi}{3} \pi(1)^{3}$$

$$= \frac{4\pi}{3}$$

Example. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where

$$\mathbf{F}(x, y, z) = xy\,\mathbf{i} + (y^2 + e^{xz^2})\,\mathbf{j} + \sin(xy)\,\mathbf{k}$$

and S is the surface of the region E bounded by the parabolic cylinder $z = 1 - x^2$ and the planes z = 0, y = 0, and y + z = 2.



We will use the divergence

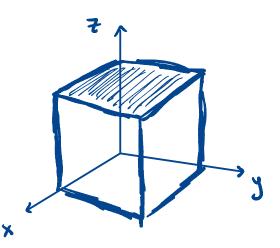
Theorem instead of computing

the four surface integrals directly.

$$\operatorname{div} \vec{F} = \frac{3}{3x} (xy) + \frac{3}{3y} (y^2 + e^{xz^2}) + \frac{3}{3z} (\sin xy) = y + 2y = 3y$$

By the divergence theorem (need to put this on the exam)

Example. Let S be the unit cube with an open top. Find the flux of the vector field $\mathbf{F} = \langle z, y, x \rangle$ over S.



$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot d\vec{S} + \iint_{S} \vec{F} \cdot d\vec{S}$$

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{E} div \vec{F} dV = \iint_{E} 1 dV = Vol(E) = 1$$

$$\iint_{\mathbb{R}^2} \vec{F} \cdot d\vec{S} = \iint_{\mathbb{R}^2} \langle \vec{F}, \vec{Y}, \times \rangle \cdot \langle \vec{O}, \vec{O}, \vec{I} \rangle dA = \iint_{\mathbb{R}^2} \times dA$$

$$\int_0^1 \int_0^1 \times dx \, dy = \int_0^1 \times dx \cdot \int_0^1 dy = \frac{1}{2}$$

$$\iint_{S} \vec{F} \cdot d\vec{s} = \iint_{S} \vec{F} \cdot d\vec{s} - \iint_{13} \vec{F} \cdot d\vec{s} = 1 - \frac{1}{2} = \frac{1}{2}$$

2. [-/3 Points]

DETAILS SCALCCC4 13.8.017.

Use the Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = z^2x\mathbf{i} + (y^3/3 + \tan(z))\mathbf{j} + (x^2z + y^2)\mathbf{k}$ and S is the top half of the sphere $x^2 + y^2 + z^2 = 1$. (Hint: Note that S is not a closed surface. First compute integrals over S_1 and S_2 , where S_1 is the disk $x^2 + y^2 \le 1$, oriented downward, and S_2 is $S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_4 \cup S_4 \cup S_4 \cup S_5 \cup S_4 \cup S_5 \cup S_$

$$\iint_{S} \vec{F} \cdot d\vec{S} + \iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot d\vec{S}$$

$$\vec{F}(\vec{r}(x,y)) = \langle 0, y^3 | s, y^2 \rangle$$

$$\vec{\Gamma}_{x} \times \vec{\Gamma}_{y} = \langle 1, 0, 0 \rangle \times \langle 0, 1, 0 \rangle = \langle 0, 0, 1 \rangle \qquad \qquad \vec{n} = -i$$

$$\iint_{S_1} \vec{F} \cdot d\vec{S} = \iint_{D} \langle 0, y^3 | 3, y^2 \rangle \cdot \langle 0, 0, -1 \rangle dA = \iint_{D} -y^2 dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1} -r^{2} \sin^{2}\theta \cdot r \, dr \, d\theta$$

$$= - \int_{0}^{2\pi} \sin^{2}\theta \, d\theta \cdot \int_{0}^{\pi} r^{3} dr = -\frac{\pi}{4}$$

$$\sin^2\theta = \frac{1-\cos 2\theta}{2}$$

$$\iint_{S_2} \vec{F} \cdot d\vec{S} = \iiint_{E} d^{1/2} \vec{F} dV = \iiint_{E} x^2 + y^2 + z^2 dV$$

$$= \int_{0}^{\pi/2} \sin \theta \, d\phi \cdot \int_{0}^{2\pi} J\theta \cdot \int_{0}^{1} \rho^{4} J\rho = 1 \cdot 2\pi \cdot \frac{1}{5} = \frac{2\pi}{5}$$

$$\iint_{S} \vec{F} \cdot d\vec{S} = \frac{2\pi}{5} - \left(-\frac{\pi}{4}\right) = \frac{8\pi}{20} + \frac{5\pi}{20} = \frac{13\pi}{20}$$