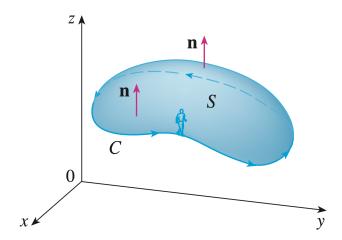
Lecture Notes	
Math 2400 - Calculus II]
Spring 2024	

Name:

13.7 Stokes' Theorem

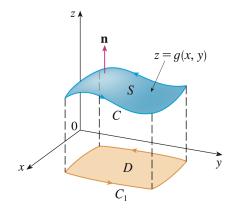
Theorem (Stokes' Theorem). Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. How can we compute $\int_C \mathbf{F} \cdot d\mathbf{r}$?



Proof.

• Suppose that the equation of S is z = g(x, y), for $(x, y) \in D$. Assume that g has continuous second-order partial derivatives

- Orienting S upward, the positive orientation of C corresponds to the positive orientation of C₁.
- We have $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$, where the partial derivatives of P, Q, and R are continuous.



• Since S is a graph of a function,

$$\iint\limits_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{\mathcal{D}} \left[-\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \frac{\partial z}{\partial x} - \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \frac{\partial z}{\partial y} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \right] \, dA$$

• If a parametric representation of C_1 is given by

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

then a parametric representation of C is

$$x = x(t)$$
 $y = y(t)$ $z = g(x(t), y(t))$ $a \le t \le b$

• Hence,

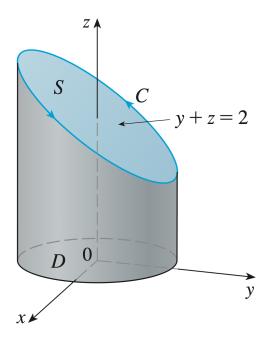
$$\begin{split} \int_{C} \mathbf{F} \cdot d\mathbf{r} &= \int_{a}^{b} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt \\ &= \int_{a}^{b} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} + R \left(\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \right) \right] dt \\ &= \int_{a}^{b} \left[\left(P + R \frac{\partial z}{\partial x} \right) \frac{dx}{dt} + \left(Q + R \frac{\partial z}{\partial y} \right) \frac{dy}{dt} \right] dt \\ &= \int_{C_{1}} \left(P + R \frac{\partial z}{\partial x} \right) dx + \left(Q + R \frac{\partial z}{\partial y} \right) dy \\ &= \iint_{D} \left[\frac{\partial}{\partial x} \left(Q + R \frac{\partial z}{\partial y} \right) - \frac{\partial}{\partial y} \left(P + R \frac{\partial z}{\partial x} \right) \right] dA \end{split}$$

• By the chain rule, we obtain

$$= \iint\limits_{D} \left[\left(\frac{\partial Q}{\partial x} + \frac{\partial Q}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial x} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + R \frac{\partial^2 z}{\partial x \partial y} \right) - \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial y} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial y} \frac{\partial z}{\partial x} + R \frac{\partial^2 z}{\partial y \partial x} \right) \right] dA$$

$$= \iint\limits_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S}$$

Example. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = -y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$ and C is the curve of intersection of the plane y+z=2 and the cylinder $x^2+y^2=1$. (Orient C to be counterclockwise when viewed from above.)



Example. Use Stokes' Theorem to compute $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = xz\,\mathbf{i} + yz\,\mathbf{j} + xy\,\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.

