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13.7 Stokes’ Theorem

Theorem (Stokes’ Theorem). Let S be an oriented piecewise-smooth surface that is bounded by
a simple, closed, piecewise-smooth boundary curve C' with positive orientation. Let F be a vector
field whose components have continuous partial derivatives on an open region in R? that contains
S. How can we compute [, F - dr?
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Spesial cose ok Stokes’ Thm
Proof.

e Suppose that the equation of S is z = g(x,y),
for (z,y) € D. Assume that g has continuous
second-order partial derivatives

e The boundary curve C; of D corresponds to C.

e Orienting S upward, the positive orientation of
C corresponds to the positive orientation of Cf.

e We have F = Pi+ @ j+ Rk, where the partial
derivatives of P, @), and R are continuous.
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o If a parametric representation of C is given by
x = z(t) y=1y(t) a<t<b
then a parametric representation of C' is
v=alt)  y=y() z=gl),yl) a<t<b
e Hence,
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Example. Evaluate fo F - dr, where F(2,y,2) = —y?i+2j+ 22k and C is the curve of
intersection of the plane y + z = 2 and the cylinder 2% + y? = 1. (Orient C to be counterclockwise
when viewed from above.)
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Example. Use Stokes’ Theorem to compute [[gcurl F - dS, where F(z,y, 2) = zzi+yzj+zyk
and S is the part of the sphere z? + y? 4 22 = 4 that lies inside the cylinder 22 + y? = 1 and above
the zy-plane.
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Question. What can we say if S; and S are oriented surfaces with the same oriented boundary

curve C?
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Theorem. Use Stokes’ Theorem to prove that if curl F = 0 on all of R3, then F is conservative.
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