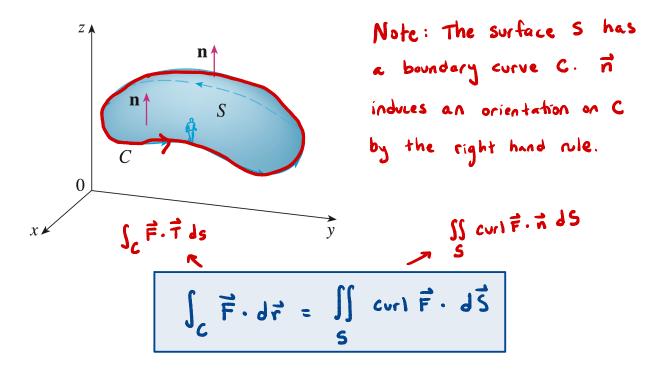
Name:	hamp
-------	------

13.7 Stokes' Theorem

Theorem (Stokes' Theorem). Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. How can we compute $\int_C \mathbf{F} \cdot d\mathbf{r}$?



- . In words, the line integral around the boundary curve of S of the tangential component of \vec{F} is equal to the surface integral of the normal component of the curl of \vec{F} .
- · Other notation: | Scurl F. ds = SF. dr S 35

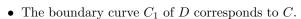
and the late

. If 5 is flat and lies in the xy-plane, stokes' Thm says

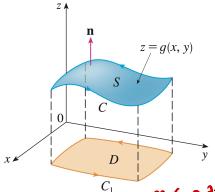
· S is a manifold

Proof. Special case of Stokes' Thm

• Suppose that the equation of S is z = g(x,y), for $(x,y) \in D$. Assume that g has continuous second-order partial derivatives



- Orienting S upward, the positive orientation of C corresponds to the positive orientation of C_1 .
- We have $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$, where the partial derivatives of P, Q, and R are continuous.



• Since S is a graph of a function, \rightarrow In §13.6 we showed $\iint \vec{F} \cdot d\vec{S} = \iint (-P \frac{\partial z}{\partial x} - Q \frac{\partial z}{\partial y} + R) dA$

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left[-\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \frac{\partial z}{\partial x} - \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \frac{\partial z}{\partial y} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \right] dA$$

• If a parametric representation of C_1 is given by

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

then a parametric representation of C is

$$x = x(t)$$
 $y = y(t)$ $z = g(x(t), y(t))$ $a \le t \le b$

• Hence,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt$$

Use the chain role to compute $\frac{dz}{dt} \rightarrow = \int_{z}^{b} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} + R \left(\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \right) \right] dt$

$$\textbf{Collect} \ \, \dfrac{\mathrm{d} x}{\mathrm{d} t} \ \, \text{and} \ \, \dfrac{\mathrm{d} y}{\mathrm{d} t} \ \, \text{terms} \ \, \Rightarrow \ \, = \int_a^b \left[\left(P + R \dfrac{\partial z}{\partial x} \right) \dfrac{dx}{dt} + \left(Q + R \dfrac{\partial z}{\partial y} \right) \dfrac{dy}{dt} \right] dt$$

definition of line integral w.r.t. x and y $\Rightarrow = \int_C \left(P + R \frac{\partial z}{\partial x}\right) dx + \left(Q + R \frac{\partial z}{\partial n}\right) dy$

Green's Than
$$\implies = \iint\limits_{D} \left[\frac{\partial}{\partial x} \left(Q + R \frac{\partial z}{\partial y} \right) - \frac{\partial}{\partial y} \left(P + R \frac{\partial z}{\partial x} \right) \right] \, dA$$

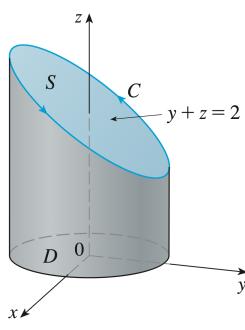
• By the chain rule, we obtain

$$= \iint\limits_{D} \left[\left(\frac{\partial Q}{\partial x} + \frac{\partial Q}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial x} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + R \frac{\partial^{2} / 2}{\partial x \partial y} \right) - \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial y} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial y} \frac{\partial z}{\partial x} + R \frac{\partial^{2} / 2}{\partial y \partial x} \right) \right] dA$$

See bullet point $\mathbf{5} \rightarrow = \iint_{\mathbf{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$

4

Example. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = -y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$ and C is the curve of intersection of the plane y+z=2 and the cylinder $x^2+y^2=1$. (Orient C to be counterclockwise when viewed from above.)



We could evalutate $\int_{c} \vec{F} \cdot d\vec{r}$ directly, but let's use Stokes' Thm

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} corl \vec{F} \cdot d\vec{S}$$

$$= \iint_{D} corl \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA$$

There are many surfaces with boundary C. The most convenient is the elliptical region in the plane y+z=2

A parametrization for S is $\vec{r}(x,y) = \langle x, y, 2-y \rangle$ Curl $\vec{F} = \nabla x \vec{F} = \begin{bmatrix} i & j & k \\ 2i & 2i & 2i \end{bmatrix}$

Curl
$$\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} i & j & k \\ a_{10} \times & a_{10} & a_{10} \\ -y^2 & x & z^2 \end{vmatrix} = (1+2y) \vec{k}$$

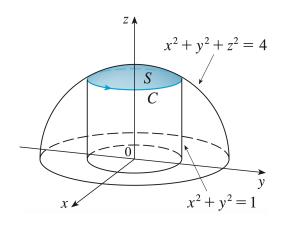
 $\vec{r}_{x} \times \vec{r}_{y} = \begin{bmatrix} i & j & k \\ i & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ Correct orientation \checkmark The C were oriented and clarkwise, we would multiply this by -1.

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} curl \vec{F} \cdot d\vec{S} = \iint_{D} 1+2y dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (1+2r\sin\theta) r dr d\theta = \int_{0}^{2\pi} \left[\frac{r^{2}}{2} + 2\frac{r^{3}}{3}\sin\theta \right]_{r=0}^{r=1} d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{2} + \frac{2}{3}\sin\theta d\theta = \pi$$
3

Example. Use Stokes' Theorem to compute $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = xz\,\mathbf{i} + yz\,\mathbf{j} + xy\,\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.



$$x^{2}+y^{2}+z^{2}=4$$
 What is C? We solve the system
$$x^{2}+y^{2}+z^{2}=4$$

$$x^{2}+y^{2}+z^{2}=4$$

$$x^{2}+y^{2}=1$$

$$5 = \sqrt{3}$$

Conclude: C is the circle with
$$x^2+y^2=1$$
 and $z=\sqrt{3}$

By Stokes' Thm,

$$\iint_{S} |cor| |\vec{F} \cdot d\vec{S}| = \iint_{C} |\vec{F} \cdot d\vec{r}| = \int_{0}^{2\pi} |\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t)| dt$$

$$\int_{0}^{2\pi} o dt = 0$$

Question. What can we say if S_1 and S_2 are oriented surfaces with the same oriented boundary curve C?

If two oriented surfaces have the same boundary
$$\iint |Cur| \vec{F} \cdot d\vec{S} = \iint |\vec{F} \cdot d\vec{r}| = \iint |Cur| \vec{F} \cdot d\vec{S}$$

$$S_1 \qquad C \qquad S_2$$

This is useful when it is difficult to integrate over one surface, but easy to integrate over another.

Theorem. Use Stokes' Theorem to prove that if $\operatorname{curl} \mathbf{F} = 0$ on all of \mathbb{R}^3 , then \mathbf{F} is conservative.

- · To show F is conservative, we will show that the line integral wound any closed loop is O.
- · Given a simple closed curve C, we can find an orientable surface S whose bounday is C

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} curl \vec{F} \cdot d\vec{s} = \iint_{S} 0 \cdot d\vec{s} = 0$$