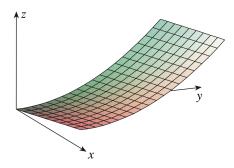

13.6 Surface Integrals

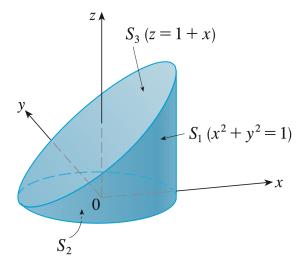
Definition. Let S be a parametric surface defined by a vector function

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

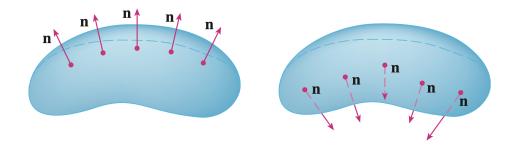
What is the surface integral of a function f(x, y, z) over the surface S?



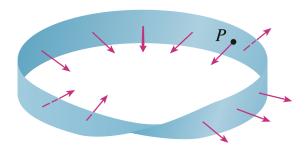
Example. Compute the surface integral $\iint_S x^2 dS$, where S is the unit sphere $x^2 + y^2 + z^2 = 1$.



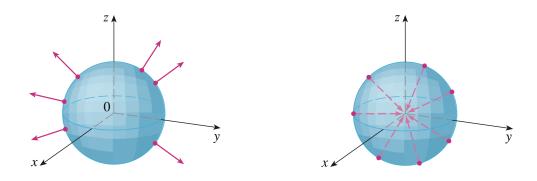
Example. Evaluate $\iint_S y \, dS$, where S is the surface $z = x + y^2, 0 \le x \le 1, 0 \le y \le 2$.



Question. How can we evaluate a surface integral over S if S is a finite union of smooth surfaces that intersect only along their boundaries?


Example. Evaluate $\iint_S z \, dS$, where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose bottom S_2 is the disk $x^2 + y^2 \le 1$ in the plane z = 0, and whose top S_3 is the part of the plane z = 1 + x that lies above S_2 .

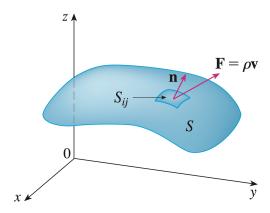
Definition. What is an orientable surface?



Example. Give an example of a surface that is not orientable.

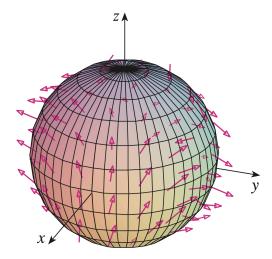
Definition. If S is the	he graph of a function	n $g(x,y)$, how can w	e give S a natural orien	ntation?
	.	5 (, 0) ,		
	smooth orientable su	urface given in paran	netric form, how can w	e give S a
Definition. If S is a natural orientation?	smooth orientable si	urface given in paran	netric form, how can w	e give S a
	smooth orientable st	urface given in paran	netric form, how can w	e give S a
	smooth orientable st	urface given in paran	netric form, how can w	e give S a
	smooth orientable st	urface given in paran	netric form, how can w	e give S a
	smooth orientable st	urface given in paran	netric form, how can w	e give S a
	smooth orientable st	urface given in paran	netric form, how can w	e give S a
	smooth orientable so	urface given in paran	netric form, how can w	e give S a
	smooth orientable so	urface given in paran	netric form, how can w	e give S a

Definition. For a closed surface, what is the positive orientation?

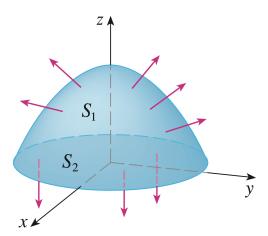


Example. A parametric representation for the sphere $x^2 + y^2 + z^2 = a^2$ is given by

$$\mathbf{r}(\phi, \theta) = \langle a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi \rangle$$


What is the orientation induced by $\mathbf{r}(\phi, \theta)$?

Definition. If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , what is the surface integral of \mathbf{F} over S?



Example. Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

Example. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = y \mathbf{i} + x \mathbf{j} + z \mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane z = 0.

