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Spring 2024

13.6 Surface Integrals

Definition. Let S be a parametric surface defined by a vector function

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k (u, v) 2 D

What is the surface integral of a function f(x, y, z) over the surface S?
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Example. Compute the surface integral
s

S x2 dS, where S is the unit sphere x2 + y2 + z2 = 1.
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Question. What is an application of surface integrals?

Definition. If S is the graph of a function g(x, y), how can we compute the surface integral of a

function f(x, y, z) over S?
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If a thin sheet of metal has the shape of a

surface S and the density is given by (x, y, ),

the total mass is m = Sp(xy,7) as

A parametrization of S is given by F(x,y) = < x, y , g(x,y))
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We then have

(fxy,)dS = S)f(x,,g(+
D



Example. Evaluate
s

S y dS, where S is the surface z = x+ y2, 0  x  1, 0  y  2.
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Question. How can we evaluate a surface integral over S if S is a finite union of smooth surfaces

that intersect only along their boundaries?

Example. Evaluate
s

S z dS, where S is the surface whose sides S1 are given by the cylinder

x2 + y2 = 1, whose bottom S2 is the disk x2 + y2  1 in the plane z = 0, and whose top S3 is the

part of the plane z = 1 + x that lies above S2.
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S2 : Since Sy lies in the plane = 0
,
we have
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Definition. What is an orientable surface?

Example. Give an example of a surface that is not orientable.
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Consider the tangent plane at a point (x, y ,z) on S.

There are two unit normal Vectors
,
and

,
= -5,

If we can choose a unit normal vectorat
every

point (x,y ,7) so thatn varies continuously over s,

then S is called orientable.

·

Giving a choice of n at every point provides S

with an orientation.

For the Mobius Strip,

you cannot chooseat

every point so that in

varies continuously .

&K : From now on
, we will only consider orientable (two-sided) surfaces .



Definition. If S is the graph of a function g(x, y), how can we give S a natural orientation?

Definition. If S is a smooth orientable surface given in parametric form, how can we give S a

natural orientation?
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The choice ofh is given by

n = 1 -gx - gy , 1

-gx) + (gy]2

endows S with the upward orientation

Crote : the E-component is positive)

The normal rector at a point is given by

-

n =
Fux !
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The opposite orientation is given by F
.



Definition. For a closed surface, what is the positive orientation?

Example. A parametric representation for the sphere x2 + y2 + z2 = a2 is given by

r(�, ✓) = ha sin� cos ✓, a sin� sin ✓, a cos�i

What is the orientation induced by r(�, ✓)?
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Definition. If F is a continuous vector field defined on an oriented surface S with unit normal

vector n, what is the surface integral of F over S?
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JF . d = 1) F . rds

·This integral is called the flox of across S.

· In words, the surface integral of a vector field over

S is equal to the surface integral of its normal

component over S.

e%g. imagine a fluid
with density p(x,y ,z) and velocity

field (x
,y,z) flowing through S (like a fishing net)

We can approximate the mass of fluid per unit

time crossing a small patch Sij in the direction of

the normal vectorIn by

(p . n) A(Sij)

The sum of all of these gives the surface integral Sp.nds

Note : F =P is a vector field on 13 and this

surface integral measures the amount of fluid flowing
through S .



Definition. If S is given by a vector function r(u, v), what does the surface integral of F over S
look like?

Definition. If S is the graph of a function g(x, y), what does the surface integral of F over S
look like?
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using the parametrization Flx,y) =<x, y , glx,yl) , we have

F . (ry x Fy) = (P, Q, B) · ( - gx) - gy , k

(F . d = (S ( -pa-Q + R) da

↓te : This assumes the upward orientation of 5. For

the downward orientation
, multiply by -1 .



Example. Find the flux of the vector field F(x, y, z) = z i+ y j+ xk across the unit sphere

x2 + y2 + z2 = 1.
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Example. Evaluate
s

S F · dS, where F(x, y, z) = y i+ x j+ z k and S is the boundary of the

solid region E enclosed by the paraboloid z = 1� x2 � y2 and the plane z = 0.
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We will use the

positive (outward)

orientation.

S ,: S , is the graph of g(x,y) = 1-x--y, so

(F . as = ( --QR

where P(x ,y /z) = y , Q(x, y ,z) = x , R(x, y ,z) = z = 1 -x y

= (( - y(-2x) - x( -2y) + 1- x yr] da
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= I



S : The disk Sz is oriented downward, so its

unit normal vector is = -t

S(F . d5 = S/ F . (- ) as

S2 S2

= SS (-z) da

= So da

Since 7= 0 on S2 .

Hence, J . 25 = SE . 25
+SE .d =E


