

Lecture Notes Math 2400 - Calculus III Spring 2024

13.5 Curl and Divergence - Rotation Flow intout

Definition. If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of *P*, *Q*, and *R* all exist, what is the curl of **F**?

Leture Notes
\nMath 2400 - Calemhs III

\nSpring 2024

\nSo, and

\nBoth-450

\nDefinition. If
$$
F = P\hat{i} + Q\hat{j} + Rk
$$
 is a vector field on \mathbb{R}^3 and the partial derivatives of P , Q , and R all exist, what is the curl of \mathbb{F}^7 .

\n**Corr** $\vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{i} + \left(\frac{\partial R}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\vec{k}$

\nFor $\vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{i} + \left(\frac{\partial R}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\vec{k}$

\nThe $\vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$

\n $\vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix} \vec{i} + \left(\frac{\partial R}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial R}{\partial x} - \frac{\partial R}{\partial y}\right)\vec{k}$

\n $= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{i} + \left(\frac{\partial R}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial R}{\partial x} - \frac{\partial R}{\partial y}\right)\vec{k}$

1 Rmk : For 2D vector fields, think about $F = < P, Q$ as F⁼ CP, Q, 07 .

Example. If $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} - y^2\mathbf{k}$, find curl **F**.

$$
curl \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{a}_{3x} & \mathbf{a}_{3y} & \mathbf{a}_{3z} \\ \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} \\ \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} \end{vmatrix}
$$

$$
= \left[\frac{3}{2}(y^{2}) - \frac{3}{2}(xy^{2})\right] \vec{t} - \left[\frac{3}{2}(y^{2}) - \frac{3}{2}(xy^{2})\right] \vec{t} + \left[\frac{3}{2}(xy^{2}) - \frac{3}{2}(xy^{2})\right] \vec{k}
$$

$$
= (-2y - xy) \vec{t} - (0 - x) \vec{t} + (y^{2} - 0) \vec{k}
$$

$$
= -y(2+x) \vec{t} + x \vec{t} + x \vec{t} + y \vec{k}
$$

Theorem.

- (a) Show that the curl of a gradient vector field is 0.
- (b) What can we conclude about conservative vector fields?

(a)
$$
curl(\nabla f) = \nabla \times (\nabla f) = \begin{vmatrix} i & j & k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}
$$

$$
(a) \quad \text{curl} \, (\Delta t) = \Delta x (\Delta t) = \begin{vmatrix} 3^{3}x & 3^{1}y & 3^{1}y^{5} \\ 3^{1}y & 3^{1}y^{3} & 3^{1}y^{5} \end{vmatrix}
$$
\n
$$
= \left(\frac{3^{3}y}{3_{t}t} - \frac{3^{1}y}{3_{t}t} \right) 1_{t} + \left(\frac{3^{1}y^{5}}{3_{t}t} - \frac{3^{1}y^{2}}{3_{t}t} \right) 1_{t} + \left(\frac{3^{1}y^{5}}{3_{t}t} - \frac{3^{1}y^{3}}{3_{t}t} \right) 1_{t} + \left(\frac{3^{1}y^{5}}{3_{t}t} - \frac{3^{1}y^{5}}{3_{t}t} \right) 1_{t} + \left(\frac{3^{1}y^{5}}{3_{t}t} - \frac{3^{1}y^{5
$$

(b) This means that any conservative vector fields
\n
$$
\vec{F}
$$
 has curl $\vec{F} = \vec{0}$.

Example. Show that the vector field $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} - y^2\mathbf{k}$ is not conservative.

Example. Show that the vector field
$$
F(x, y, z) = xz \mathbf{i} + xyz \mathbf{j} - y^2 \mathbf{k}
$$
 is not conservative.
\nWe showed that $Curl\ \vec{F} = -y(3+x) \vec{t} + x \vec{j} + y \vec{z} \vec{k}$.
\nThis is **NonZero**, so \vec{F} is **no** to **conservative**.

Theorem. If $\text{curl } \mathbf{F} = 0$, is *F* a conservative vector field?

This is true if
$$
\vec{F}
$$
 is a vector field defined
on a simply-connected domain.
(In particular, this is the if \vec{F} is defined on all of \mathbb{R}^3)

Example.

- (a) Show that $\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$ is a conservative vector field.
- (b) Find a function f such that $\mathbf{F} = \nabla f$.

(a)
$$
curl \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial^2}{\partial y} & \frac{\partial^2}{\partial z^2} \end{vmatrix}
$$

\n
$$
= (6 \times yz^2 - 6 \times yz^2) \vec{t} - (3y^2z^2 - 3y^2z^2) \vec{t} + (2yz^3 - 2yz^3) \vec{k}
$$

\n
$$
= \vec{0}
$$

Since curl $\vec{F} = 0$ and the domain of \vec{F} is \mathbb{R}^3 \vec{F} is conservative.

(b)
$$
FQ_1
$$
 $f_x(x,y,z) = y^2z^3$
 FQ_2 $f_y(x,y,z) = 2xyz^3$

EQ3
$$
f_{z}(x,y,z) = 3xy^{2}z^{2}
$$

Integrating EQ1 w.r.t. x,

$$
f(x,y,z) = xy^{2}z^{3} + y(y,z)
$$

$$
f_{y}(x,y,z) = 2xyz^{3} + 3y(y,z)
$$

\n
$$
9y(y,z) = 0 \text{ by } E(2, \text{ which implies } g(y,z) = h(z)
$$

\n
$$
f_{z}(x,y,z) = 3xy^{2}z^{2} + h'(2)
$$

\n
$$
B_{y}(3,3) = h'(2) = 0
$$

\n
$$
B_{z}(x,y,z) = xy^{2}z^{3} + K
$$

Definition. If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 , and $\partial P/\partial x$, $\partial Q/\partial y$, and $\partial R/\partial z$ exist, what is the divergence of F?

$$
div \vec{F} = \frac{2\vec{r}}{ax} + \frac{2\vec{a}}{ay} + \frac{3\vec{e}}{ay}
$$

= $\langle \partial_{3x}, \partial_{3y}, \partial_{3z} \rangle \cdot \langle \vec{r}, a, \vec{r} \rangle$
= $\nabla \cdot \vec{F}$

 \triangle curl \overrightarrow{F} is a vector field, but div \overrightarrow{F} is a scalar field.

Think about air hockey.

Example. If $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} - y^2\mathbf{k}$, find div **F**.

$$
div \vec{F} = \nabla \cdot \vec{F} = \frac{\partial}{\partial x} (x \cdot \vec{r}) + \frac{\partial}{\partial y} (x y \cdot \vec{r}) + \frac{\partial}{\partial z} (-y^2)
$$

= $z + xz$

Theorem. If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q , and R have continuous second-order partial derivatives, show that div curl $\mathbf{F} = 0$.

m. If
$$
F = Pi + Qj + Rk
$$
 is a vector field on \mathbb{R}^3 and P, Q , and R have continuous
order partial derivatives, show that div curl $F = 0$.
\n
$$
\mathbf{div} \quad \mathbf{curl} \quad \mathbf{\vec{F}} = \nabla \cdot (\nabla \times \mathbf{\vec{F}})
$$
\n
$$
= \frac{\partial}{\partial x} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)
$$
\n
$$
= \frac{\partial^2 R}{\partial x \partial y} - \frac{\partial^2 Q}{\partial x \partial z} + \frac{\partial^2 P}{\partial y \partial z} - \frac{\partial^2 R}{\partial z \partial x} + \frac{\partial^2 Q}{\partial z \partial x} - \frac{\partial^2 P}{\partial z \partial y}
$$
\n
$$
= \mathbf{O}
$$
\nThe terms cancel in ρ *inf* **is** by *Clair* **is theorem**

\nthe. Show that the vector field $\mathbf{F}(x, y, z) = xzi + xyzj - y^2 k$ can't be written as the curl are vector field, that is, $\mathbf{F} \neq \text{curl } \mathbf{G}$.

Example. Show that the vector field $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} - y^2\mathbf{k}$ can't be written as the curl of another vector field, that is, $\mathbf{F} \neq \text{curl } \mathbf{G}$.

If $\vec{F} = \omega r l \vec{G}$ for some \vec{G} , then we would have $div \vec{F} = div curl \vec{G} = 0$

But we showed div $\vec{F} = 2+xz+0$

Theorem. Use the curl and divergence operators to give two ways to rewrite Green's Theorem in vector form:

Theorem. Use the curl and divergence operators to give two ways to rewrite Green's Theorem in
vector form:
\n(a)
$$
f_C F \cdot dr = \iint_C (curl F) \cdot k dA
$$

\n(b) $f_C F \cdot nds = \iint_C div F(x, y) dA$
\n(b) $f_C F \cdot nds = \iint_C div F(x, y) dA$
\n**2 enched of curl let vector let**
\n**2 enclosed by C**.
\n**3**
\n**4**
\n**5**
\n**6**
\n**7**
\n**8**
\n**9**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**19**
\n**10**
\n**11**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**1**

Conclude:
\n
$$
\oint_C \vec{F} \cdot d\vec{r} = \oint_C P dx + Q dy = \iint_{D} \frac{2Q}{dx} - \frac{2P}{dy} dA = \iint_{D} curl \vec{F} \cdot \vec{F} dA
$$

(b)
\n
$$
\vec{n}(4) = \frac{y'(4)}{1^{27}(4)} \vec{t} - \frac{x'(4)}{1^{27}(4)} \vec{J}
$$
\n
$$
\oint_{C} \vec{F} \cdot \vec{n} ds = \int_{a}^{b} (\vec{F} \cdot \vec{n})(4) |\vec{v}'(4)| dt
$$
\n
$$
= \int_{a}^{b} \left[\frac{P(x(4), y(4)) y'(4)}{1^{27}(4)} - \frac{Q(x(4), y(4)) x'(4)}{1^{27}(4)} \right] |\vec{r}'(4)| dt
$$
\n
$$
= \int_{a}^{b} P(x(4), y(4)) y'(4) - Q(x(4), y(4)) x'(4) dt
$$
\n
$$
= \int_{a}^{b} P(y(4)) - Q dx = \iint_{0} \frac{2P}{2x} + \frac{2Q}{2y} dA
$$
\n
$$
= \iint_{0} \frac{2P}{2x} + \frac{2Q}{2y} dA
$$
\n
$$
= \iint_{0}^{\infty} \vec{f}(x, y) dA
$$