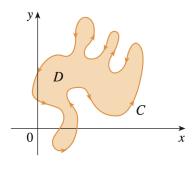
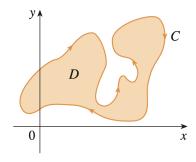
13.4 Green's Theorem

Question. What is the idea of Green's theorem? What is the positive orientation of a simple closed curve C?



(a) Positive orientation



(b) Negative orientation

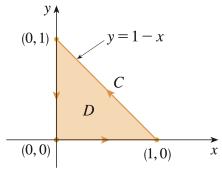
- · Green's Theorem relates a line integral around a simple closed C and a double integral over the region D bounded by C.
- · Positive orientation is a single counterclackwise traversal (think about the right hand rule)

Theorem (Green's Theorem). Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$, where P and Q have continuous partial derivatives on an open region that contains D, how can we evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$?

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} P dx + Q dy = \iint_{C} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

Note: sometimes written as J Pdx+Qdy

Example. Evaluate $\int_C x^4 dx + xy dy$, where C is the triangular curve consisting of the line segments from (0,0) to (1,0), from (1,0) to (0,1), and from (0,1) to (0,0).



Rmk: We could set this up as a Sum of three line integrals, but

Green's Thm is easier.

$$\int_{(1,0)}^{1} \int_{0}^{1} x^{4} dx + xy dy = \int_{0}^{1} \frac{\partial u}{\partial x} - \frac{\partial p}{\partial y} dA$$

$$= \int_{0}^{1} \int_{0}^{1-x} y - 0 dy dx = \int_{0}^{1} \left[\frac{1}{2} y^{2} \right]_{y=0}^{y=1-x} dx$$

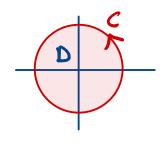
$$= \frac{1}{2} \int_{0}^{1} (1-x)^{2} dx = \left[-\frac{1}{6} (1-x)^{3} \right]_{x=0}^{x=1} = \frac{1}{6}$$

Example. Evaluate $\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where C is the circle $x^2 + y^2 = 9$.

The region D bounded by C is the disk x2+y2 = 9

$$\oint_{C} (3y - e^{\sin x}) dx + (7x + \sqrt{y^{4+1}}) dy$$

$$= \iint_{C} \frac{\partial}{\partial x} (7x + \sqrt{y^{4+1}}) - \frac{\partial}{\partial y} (3y - e^{\sin x}) dA$$



> Convert to Polar

$$= \int_{0}^{2\pi} \int_{0}^{3} 4 \, r \, dr \, d\theta$$

Rmk: Try to compute

$$= 4 \cdot \int_{0}^{2\pi} d\theta \cdot \int_{0}^{3} r \, dr$$

this without using Green's Thm.

Question. How can we use Green's Theorem to compute the area of a region D?

Tidea: find P and Q so that
$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$$
 so that $\int_{0}^{\infty} 1 \, dA = \int_{0}^{\infty} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA$ and apply Green's Theorem

· Several possibilities:

$$P(x,y)=0 \qquad P(x,y)=-y \qquad P(x,y)=-\frac{1}{2}y$$

$$Q(x,y)=x \qquad Q(x,y)=\frac{1}{2}x$$

$$A = \iint 1 dA = \oint_C x dy = -\oint_C y dx = \frac{1}{2}\oint_C x dy - y dx$$

Example. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

A parametrization for the ellipse is
$$\vec{r}(t) = \langle a\cos t, b\sin t \rangle$$

for $0 \le t \le 2\pi$

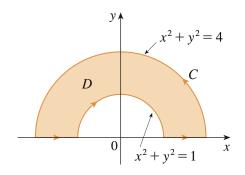
· By the above,

$$A = \frac{1}{2} \oint_C x \, dy - y \, dx$$

$$= \frac{1}{2} \int_0^{2\pi} (a\cos t)(b\cos t) \, dt - (b\sin t)(-a\sin t) \, dt$$

$$= \frac{ab}{2} \int_0^{2\pi} dt = \pi ab$$

Example. Evaluate $\oint_C y^2 dx + 3xy dy$, where C is the boundary of the semiannular region D in the upper half-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.



D is easily described in polar coordinates by
$$D = \{(r,0) \mid 1 \le r \le 2, \ 0 \le \theta \le \pi \}$$

$$\oint_{C} y^{2} dx + 3xy dy = \iint_{D} \frac{3}{3x} (3xy) - \frac{3}{3y} (y^{2}) dA$$

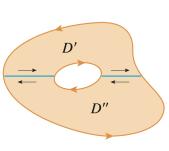
$$= \iint_{D} 3y - 2y dA = \iint_{D} y dA = \iint_{D}^{2} r \sin \theta \cdot r dr d\theta$$

$$= \int_{0}^{\pi} \sin \theta d\theta \cdot \int_{1}^{2} r^{2} dr = \frac{14}{3}$$

Question. How can we extend Green's Theorem to apply to regions that are not simply-connected?

The boundary C of the region D consists of two curves C, and C2

Note that C. D

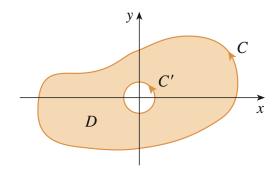


9D.

$$\iint_{D} \left(\frac{\partial \Omega}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_{D''} \left(\frac{\partial \Omega}{\partial x} - \frac{\partial P}{\partial y} \right) dA + \iint_{D''} \left(\frac{\partial \Omega}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$= \iint_{C} P dx + \Omega dy + \iint_{C_{2}} P dx + \Omega dy \qquad \text{the line integration of the commutation of the commutat$$

The line integrals along the common boundary are in opposite directions, so they cancel. **Example.** If $\mathbf{F}(x,y) = (-y\,\mathbf{i} + x\,\mathbf{j})/(x^2 + y^2)$, show that $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$ for every positively oriented simple closed path that encloses the origin.



Idea: given an arbitrary curve C,

We will use Green's Theorem to

Show $\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot d\vec{r}$,

where we have a parametrization for C'.

- · Consider a positively-priented circle C' that lies inside of C. C' is centered at the origin and has radius a.
- · Let D be the region bounded by C and C'. The boundary of D is C u (-c') & D needs to be on the left

$$\int_{C} P \, dx + 2 \, dy + \int_{-C}^{-C} P \, dx + 2 \, dy = \iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA$$

$$= \iint_{D} \left[\frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}} - \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}} \right] dA = 0$$

Hence ScPdx+Qdy = ScPdx+Qdy => SF.dr = Sc.F.dr

We can easily compute the last integral, since C'is
parametrized by r(t) = <acust, asint > for 0 < t < 2 \pi.

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C'} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{0}^{2\pi i} \frac{(-a \sin t)(-a \sin t) + (a \cos t)(a \cos t)}{a^{2} \cos^{2} t + a^{2} \sin^{2} t} dt = \int_{0}^{2\pi} dt = 2\pi$$