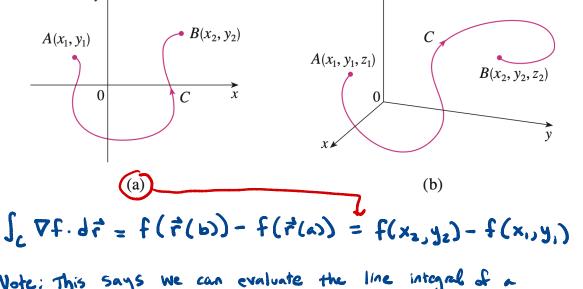
Lecture Notes Math 2400 - Calculus III Spring 2024 Name: Champ

Conservative: $\vec{F} = \nabla f$

13.3 The Fundamental Theorem for Line Integrals

Theorem (Fundamental Theorem for Line Integrals). Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. What is $\int_C \nabla f \cdot d\mathbf{r}$?

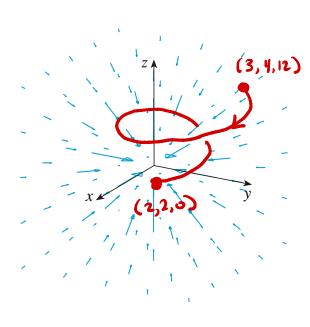


Note: This says we can evaluate the line integral of a conservative vector field just by knowing the value of f of the endpoints.

Chain
$$\int_{C} \nabla f \cdot d\vec{r} = \int_{p}^{q} \langle x(t) \rangle - f(\vec{r}(t)) \rangle \frac{\partial f}{\partial t} (x(t)) \rangle \frac{\partial f}{\partial t} (z(t)) \rangle \cdot \langle \frac{\partial f}{\partial t} \rangle \frac{\partial f}{\partial t} \rangle dt$$
F.T.C.
$$= \int_{p}^{q} \frac{df}{dt} f(\vec{r}(t)) dt$$

$$= \int_{p}^{q} \frac{df}{dt} f(\vec{r}(t)) dt$$

Example. Find the work done by gravity in moving a particle with mass m from the point (3,4,12) to the point (2,2,0) along a smooth curve C.



• The magnitude of the gravitational force between two objects with masses m and M is

$$|\mathbf{F}| = \frac{mMG}{r^2}$$

- Place the object with mass M at the origin of \mathbb{R}^3 and the object with mass m at $\mathbf{x} = \langle x, y, z \rangle$. The gravitational force acts toward the origin, in the direction of the unit vector $-\frac{\mathbf{x}}{|\mathbf{x}|}$.
- Hence, the gravitational force acting on the object at $\mathbf{x} = \langle x, y, z \rangle$ is

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3}\mathbf{x}$$

• Since $\mathbf{x} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $|\mathbf{x}| = \sqrt{x^2 + y^2 + z^2}$, we can write \mathbf{F} in terms of its component functions as

$$\mathbf{F}(x,y,z) = \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{k}$$

Note:
$$\vec{F}$$
 is a conservative vector field. Indeed, $\vec{F} = \nabla f$, where $f(x,y,z) = \frac{mMG}{\sqrt{x^2+y^2+z^2}}$.

f is called a potential function.

Therefore, the work done is

$$W = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \nabla f \cdot d\vec{r}$$

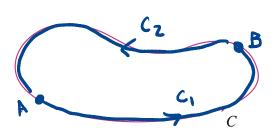
$$= f(2,2,0) - f(3,4,12)$$

$$= \frac{mMG}{\sqrt{2^{2}+2^{2}}} - \frac{mMG}{\sqrt{3^{2}+4^{2}+12^{2}}} = mMG\left(\frac{1}{2\sqrt{2}} - \frac{1}{13}\right)$$

Definition. If **F** is a continuous vector field with domain D, what does it mean for $\int_C \mathbf{F} \cdot d\mathbf{r}$ to be independent of path?

 $\int_C \vec{F} \cdot d\vec{r}$ is independent of path if $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two paths C_1 and C_2 in D that have the same endpoints. Line integrals of conservative vector fields are independent of path. In general $\int_{C_1} \vec{F} \cdot d\vec{r} \neq \int_{C_2} \vec{F} \cdot d\vec{r}$.

Theorem. Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.



De Means C is a closed porth.

(=>) If $\int_C \vec{F} \cdot d\vec{r}$ is independent of path, choose any two points A and B on C.

$$\oint_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{-C_{2}} \vec{F} \cdot d\vec{r} = 0$$

Since C, and -Cz have the same initial and terminal points.

(=) If $S_c \vec{F} \cdot d\vec{r} = 0$ when C is a closed path,

Choose any two points A and B and any two puths

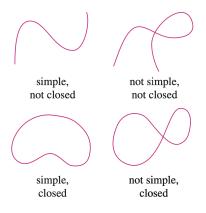
G, and Cz from A to B. Let C be the curve

Consisting of C, followed by -Cz.

$$0 = \oint_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{-C_{2}} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{C_{2}} \vec{F} \cdot d\vec{r}$$

RMK: The line integral of any conservative vector field along a closed path is O.

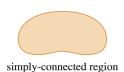
Thm: If $\int_{C} \vec{F} \cdot d\vec{r}$ is independent of path on D, then \vec{F} is a conservative vector field on D, i.e. $\nabla f = \vec{F}$ for some f. Definition. What is a simple curve?



A simple curve is a curve that doesn't intersect itself

Definition. What is a simply-connected region?

- . There are no holes
- · There is a path between any two points



regions that are not simply-connected

Theorem. How can we determine whether or not a vector field **F** is conservative?

$$(\Rightarrow)$$
 · If $\vec{F} = P\vec{t} + Q\vec{j}$ is conservative, then there is

Some function f such that
$$\vec{F} = \nabla f$$
.

This means
$$P = \frac{\partial f}{\partial x}$$
 and $Q = \frac{\partial f}{\partial y}$

By Clairant's Theorem'
$$\frac{\partial \lambda}{\partial b} = \frac{\partial^2 \lambda}{\partial x^2} = \frac{\partial^2 \lambda}{\partial x^2} = \frac{\partial^2 \lambda}{\partial x^2}$$

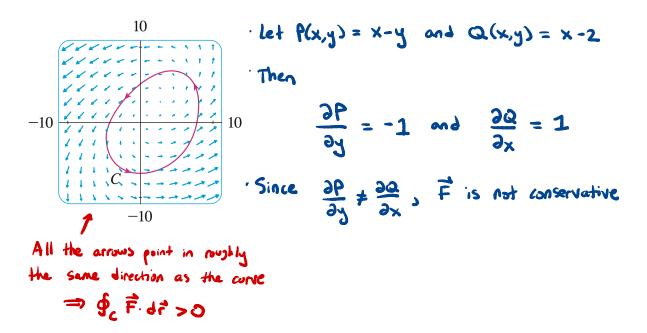
'Conclude: If
$$\vec{F}$$
 is conservative, we must have $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

(
$$\Leftarrow$$
) Thm: If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ and the region D is open and

Example. Determine whether or not the vector field

$$\mathbf{F}(x,y) = (x-y)\mathbf{i} + (x-2)\mathbf{j}$$

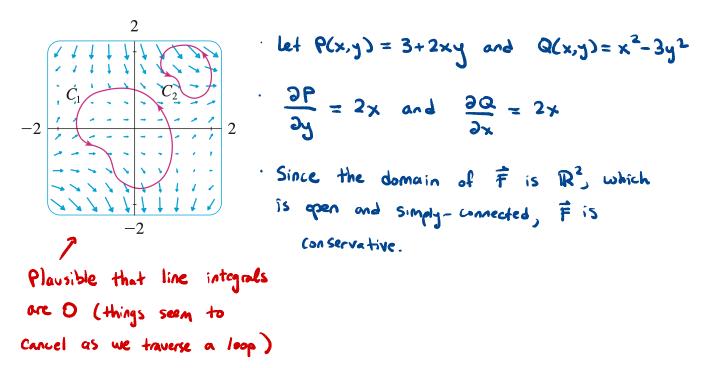
is conservative.



Example. Determine whether or not the vector field

$$\mathbf{F}(x,y) = (3 + 2xy)\,\mathbf{i} + (x^2 - 3y^2)\,\mathbf{j}$$

is conservative.



Example.

- (a) If $\mathbf{F}(x,y) = (3+2xy)\mathbf{i} + (x^2-3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by

$$\mathbf{r}(t) = e^t \sin t \mathbf{i} + e^t \cos t \mathbf{j}, \qquad 0 \le t \le \pi$$

(a) Since \vec{F} is conservative (see previous example), there is some f with $\nabla f = \vec{F}$. This means

$$f_x(x,y) = 3 + 2xy$$
 $f_y(x,y) = x^2 - 3y^2$
Eq.

Integrate Eq 1 with respect to x: $f(x,y) = 3x + x^2y + g(y)$ Eq 3

Differentiate EQ3 with respect to y: $f_y(x,y) = x^2 + g'(y)$

Conclude: $g'(y) = -3y^2 \Rightarrow g(y) = -y^3 + K$

Plugging this back into EQ3, $f(x,y) = 3x + x^2y - y^3 + K$

(b) • We just need to know the initial point and the terminal point since \vec{F} is conservative, and we know the potential function is $f(x,y) = 3x + x^2y - y^3$ (chase k=0).

• $\vec{\Gamma}(0) = (0,1)$ and $\vec{\Gamma}(\pi) = (0, -e^{\pi})$

$$\Rightarrow \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \nabla f \cdot d\vec{r} = f(0, -e^{\pi}) - f(0, 1) = e^{3\pi} - (-1) = e^{3\pi}$$