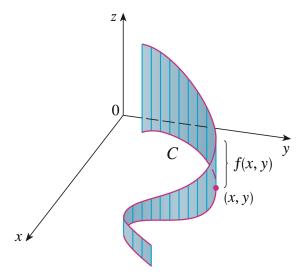
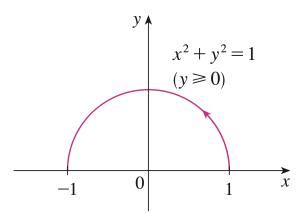

13.2 Line Integrals

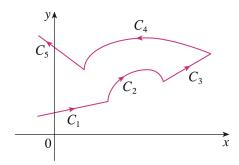
Definition. If f is defined on a smooth curve C given by

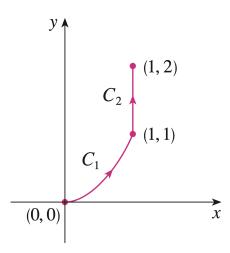
$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$


what is the line integral of f along C?

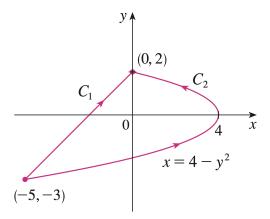

Definition. Suppose that a smooth curve C is defined parametrically by the equations

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$


If f is a continuous function, how can we evaluate the line integral of f along the curve C?


Example. Evaluate $\int_C (2 + x^2 y) ds$, where C is the upper half of the unit circle $x^2 + y^2 = 1$.

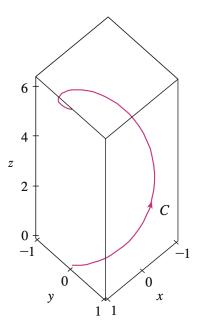
Question. How can we define the line integral of f along C if C is a piecewise-smooth curve?


Example. Evaluate $\int_C 2x \, ds$, where C consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the vertical line segment C_2 from (1,1) to (1,2).

Definition. What are the line integrals of f along C with respect to x and y?

Example. Evaluate $\int_C y^2 dx + x dy$, where

- (a) $C = C_1$ is the line segment from (-5, -3) to (0, 2).
- (b) $C = C_2$ is the arc of the parabola $x = 4 y^2$ from (-5, -3) to (0, 2).

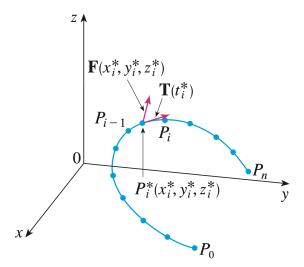

Definition.	Suppose	that Ci	a a amooth	annon ourte	giron b	ar tho	noromotrio	aquations
Dennida.	Duppose	mat C i	s a smooth	space curve	given c	y one	parametric	equanons

$$x = x(t)$$
 $y = y(t)$ $z = z(t)$ $a \le t \le b$

If f is a function of three variables that is continuous on some region containing C, what is the line integral of f along C?

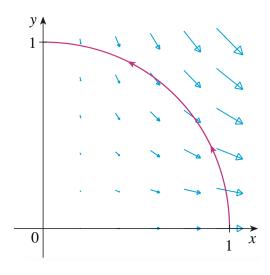

Remark. How can we rewrite $\int_C f(x,y) ds$ and $\int_C f(x,y,z) ds$ more compactly?

Example. Evaluate $\int_C y \sin z \, ds$, where C is the circular helix given by the equations $x = \cos t, y = \sin t, z = t$ for $0 \le t \le 2\pi$.

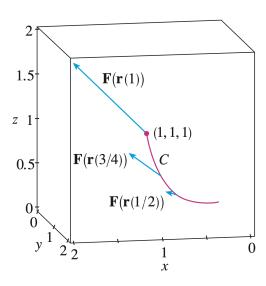


Question. If C is a space curve, line integrals along C with respect to x, y, and z can also be defined. For example, what is $\int_C f(x,y,z) dz$?

Example. Evaluate $\int_C y \, dx + z \, dy + x \, dz$, where C consists of the line segment C_1 from (2,0,0) to (3,4,5), followed by the vertical line segment C_2 from (3,4,5) to (3,4,0).



Question. Suppose that $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a continuous force field on \mathbb{R}^3 . How can we compute the work done by this force in moving a particle along a smooth curve C?


Definition. Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$ for $a \leq t \leq b$. What is the line integral of **F** along C?

Example. Find the work done by the force field $\mathbf{F}(x,y) = x^2 \mathbf{i} - xy \mathbf{j}$ in moving a particle along the quarter-circle $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$ for $0 \le t \le \pi/2$.

Example. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$ and C is the twisted cubic given by

 $x = t \qquad y = t^2 \qquad z = t^3 \qquad 0 \le t \le 1$

Question.	e relationship	between li	ne integrals o	of vector field	ls and line in	tegrals of