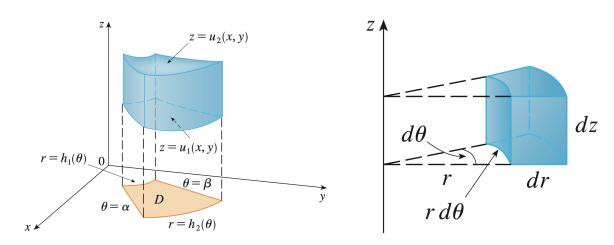
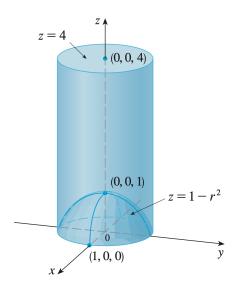
12.8 Triple Integrals in Cylindrical and Spherical Coordinates

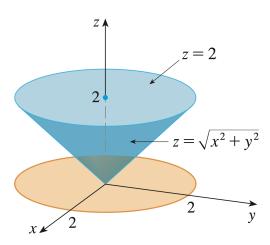
Definition. Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently described in polar coordinates. How can we think about $\iiint_E f(x,y,z) \, dV$ using cylindrical coordinates?



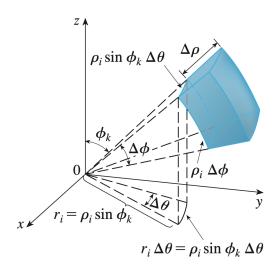
Example. A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E.



Example. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$.



Definition. We defined triple integrals by dividing solids into small boxes, but it can be shown that dividing a solid into small spherical wedges always gives the same result. What is the volume of a small spherical wedge E_{ijk} ?



Question. How can we think about $\iiint_E f(x, y, z) dV$ using spherical coordinates? **Answer.**

• If $E = \{(\rho, \theta, \phi) \mid a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d\}$ is a spherical wedge,

$$\iiint\limits_{E} f(x,y,z)\,dV =$$

• If E is a more general spherical region, such as

$$E = \{ (\rho, \theta, \phi) \mid \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi) \},$$

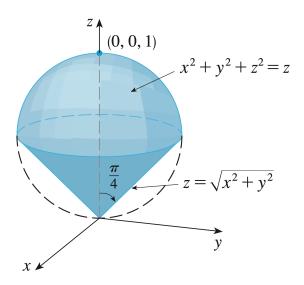
then

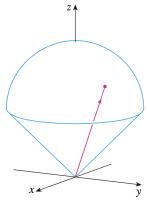
$$\iiint\limits_E f(x,y,z)\,dV =$$

Example. Evaluate $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$, where B is the unit ball

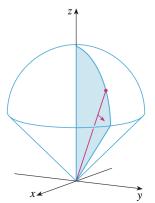
$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

Example. Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

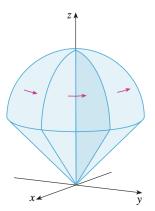




 ρ varies from 0 to $\cos \phi$ while ϕ and θ are constant.



 ϕ varies from 0 to $\pi/4$ while θ is constant.



 θ varies from 0 to 2π .