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12.8 Triple Integrals in Cylindrical and Spherical Coordinates

Definition. Suppose that E is a type 1 region whose projection D onto the xy-plane is

conveniently described in polar coordinates. How can we think about
t

E f(x, y, z) dV using

cylindrical coordinates?
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Example. A solid E lies within the cylinder x2 + y2 = 1, below the plane z = 4, and above the

paraboloid z = 1� x2 � y2. The density at any point is proportional to its distance from the axis

of the cylinder. Find the mass of E.
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· In cylindrical coordinates,
the

cylinder is r= 1 and the

paraboloid is Z = 1-r2

So E is the set of (r, 8,) with
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The density function is f(x/Y ,z) = K .V = . rx
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whereK is the proportionality constant .
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Example. Evaluate
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The region E is all points
(x , y,) so that
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· The projection of E onto the xy-plane is +4
· In cylindrical coordinates, E is all (r

,
0,) so that

r z = 2 0 &2 00 2π

Hence P ty(xr+yz)dz dydx = [S(x2+y N
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Definition. We defined triple integrals by dividing solids into small boxes, but it can be shown

that dividing a solid into small spherical wedges always gives the same result. What is the volume

of a small spherical wedge Eijk?

Question. How can we think about
t

E f(x, y, z) dV using spherical coordinates?

Answer.

• If E = {(⇢, ✓,�) | a  ⇢  b, ↵  ✓  �, c  �  d} is a spherical wedge,

y

E

f(x, y, z) dV =

• If E is a more general spherical region, such as

E = {(⇢, ✓,�) | ↵  ✓  �, c  �  d, g1(✓,�)  ⇢  g2(✓,�)},

then
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· Let E = [a, b) x [ x[

*
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be a spherical wedge
· Divide E into sub-wedges Eijk

by subdividing the intervals above.

· If the number of subdivisions

is small enough, Eijk is approximately
a box

, with volume
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Example. Evaluate
t

B e(x
2+y2+z2)3/2 dV , where B is the unit ball

B = {(x, y, z) | x2 + y2 + z2  1}
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O
Using spherical coordinates,

O O
P

B = [0 , 1] x [0 , 2) x [0 , i]

Therefore
,

SSS g(x+y +z2)8y = g)spy orsin dpdodo
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Example. Use spherical coordinates to find the volume of the solid that lies above the cone

z =

p
x2 + y2 and below the sphere x2 + y2 + z2 = z.
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Sphere : p = prosa

P = Cos

Cone : pros---sin O+ sinSinO

Prosp = psing

cos = sing = p = =,
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