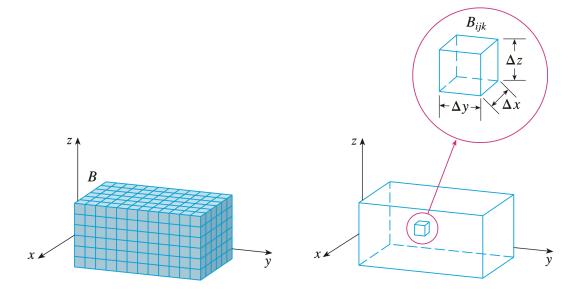
12.7 Triple Integrals

\f(x,y,\a)

Definition. What is the triple integral of f over the box B?



- · Divide B into Sub-boxes Bijk
- · Each Sub-box has volume DV = DxDy DZ
- The triple integral of f(x,y,z) over the box B is $\iint f(x,y,z) dV = \lim_{n \to \infty} \underbrace{\sum_{ijk}^{n} \sum_{jik}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*})} \Delta V$

Sample point in Bijk

if this limit exists.

Theorem (Fubini's Theorem for Triple Integrals). If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then how can we evaluate $\iiint_B f(x, y, z) dV$ using an iterated integral?

$$\iiint_{B} f(x^{1/5}) = \int_{C} \int_{Q} \int_{P} f(x^{1/5}) q^{3} q^{2} q^{5}$$

(All six possible orders of integration give the same value)

Example. Evaluate the triple integral $\iint_B xyz^2 dV$, where B is the rectangular box given by

$$B = \{(x, y, z) \mid 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$$

· We could choose any of the six possible orders of integration

$$\iiint_{B} xyz^{2} dV = \int_{0}^{3} \int_{-1}^{2} \left[\frac{x^{2}}{x^{2}} \cdot yz^{2} \right]_{x=0}^{x=1} dy dz$$

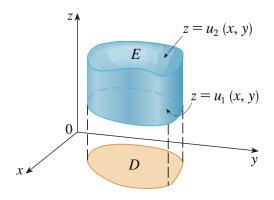
$$= \int_{0}^{3} \int_{-1}^{2} \left[\frac{x^{2}}{x^{2}} \cdot yz^{2} \right]_{x=0}^{x=1} dy dz$$

$$= \int_{0}^{3} \left[\frac{y^{2}z^{2}}{4} \right]_{y=-1}^{y=2} dz$$

$$= \int_{0}^{3} \frac{3z^{2}}{4} dz = \left[\frac{z^{3}}{4} \right]_{z=3}^{z=3} = \frac{27}{4}$$

dz first

Definition. What is a type 1 solid region? If E is type 1, what is $\iiint_E f(x, y, z) dV$?



E is a type I region if it $z = u_1(x, y)$ Two continuous functions of $x = u_1(x, y)$ $y = u_1(x, y)$

- · That is, E = { (x,y,z) | (x,y) & D, u,(x,y) & Z & u2(x,y) }
- If E is type 1, $\iiint f(xy,z) dy = \iiint \left[\int_{u_2(x,y)}^{u_2(x,y)} f(x,y,z) dz \right] dA$

where D is the projection of E to the xy-plane.

. If D is type I, we get

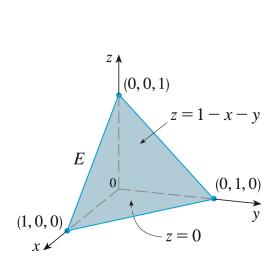
$$\iiint f(x,y,z) dv = \int_{\rho} \int_{\partial z(x)} \int_{u_{1}(x,y)} f(x,y,z) dz dy dx$$

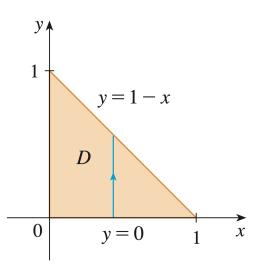
· If D is type II, we get

$$\iiint_{x} f(x^{1}A^{1}x) qA = \int_{x}^{x} \int_{y}^{y} f(x^{1}A^{1}x) \int_{y}^{y} f(x^{1}A^{1}x) dx dx dA$$

Solid

Example. Evaluate $\iiint_E z \, dV$, where E is the solit tetrahedron bounded by the four planes x = 0, y = 0, z = 0, and x + y + z = 1.

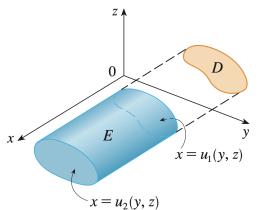




- · Lower boundary: ==0
- · Upper boundary: == 1-x-y
- Projection of E to the xy-plane is the triangular region D bounded by x=0, y=0, and y=1-x
- · Viewing D as a type I region, we get

dx first

Definition. What is a type 2 solid region? If E is type 2, what is $\iiint_E f(x, y, z) dV$?



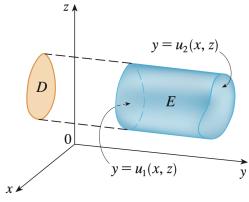
E is type 2 if it lies between functions $u_1(y,z)$ and $u_2(y,z)$

Here, $\iiint f(x,y,\xi) dV = \iint \left[\int_{u_1(y,\xi)}^{u_2(y,\xi)} f(x,y,\xi) dx \right] dA$

where D is the projection of E to the yz-plane.

Jy first

Definition. What is a type 3 solid region? If E is type 3, what is $\iiint_E f(x, y, z) dV$?

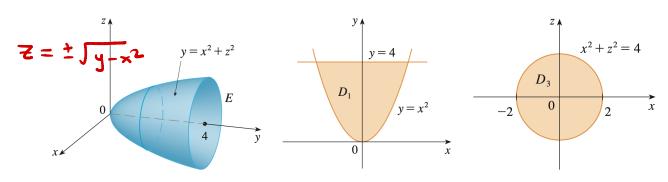


E is type 3 if it lies between functions $u_1(x,z)$ and $u_2(x,z)$

Here, $\iiint f(x,y,z) dv = \iiint \left[\int_{u_2(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA$

where D is the projection of E to the XZ-plane.

Example. Evaluate $\iiint_E \sqrt{x^2 + z^2} \, dV$, where E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.



(dz first)

Lower bound: Z = - Jy-x2 Upper bound: Z = Jy-x2

Projection to the xy-plane is D,

$$\iiint_{X_{5}+5_{5}} q_{\Lambda} = \iiint_{1} \left[\frac{-\lambda^{\lambda_{-}x_{5}}}{\lambda^{\lambda_{-}x_{5}}} \frac{\lambda_{5}+5_{5}}{\lambda^{\lambda_{-}x_{5}}} q_{5} \right] q_{V}$$

Left bounday: $y = x^2 + z^2$

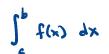
Right bounday:

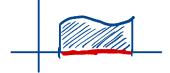
Projection to XZ-plane is D3

$$\iint_{E} \sqrt{x^{2}+z^{2}} dV = \iint_{D_{3}} \left[\int_{X^{2}+z^{2}}^{4} \sqrt{x^{2}+z^{2}} dy \right] dA$$

$$= \iint_{D_{3}} (4-x^{2}-z^{2}) \sqrt{x^{2}+z^{2}} dA$$

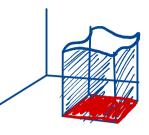
$$\frac{\text{polar in}}{\text{the } \times 2 - \text{plane}} = \int_{0}^{2\pi} \int_{0}^{2} \left(4 - r^{2}\right) r \cdot r dr d\theta = \frac{128\pi}{17}$$





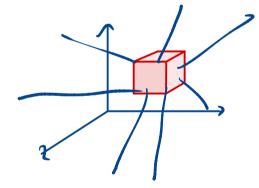
area under come

Sign f(x,y)dydx



volume under surface

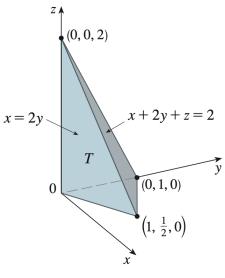
Salls flaga) dzdydx

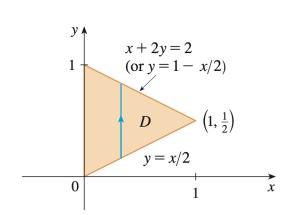


hypervolume under a 4-D graph

Note: if f(x,1,2) is a density function,
the triple intoful complex the mass
of the region

Example. Use a triple integral to find the volume of the tetrahedron T bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0.





Lower bounday: Z = 0

Upper bounday: Z = 2-x-24

The projection D is bounded by x=0, $y=\frac{x}{2}$, and $y=1-\frac{x}{2}$

 $V(T) = \iiint_{T} 1 \, dV = \int_{0}^{1} \int_{\frac{x}{2}}^{1-\frac{x}{2}} \int_{0}^{2-x-2y} dz \, dy \, dx$

$$= \int_{0}^{1} \int_{\frac{x}{2}}^{1-\frac{x}{2}} 2 - x - 2y \, dy \, dx$$

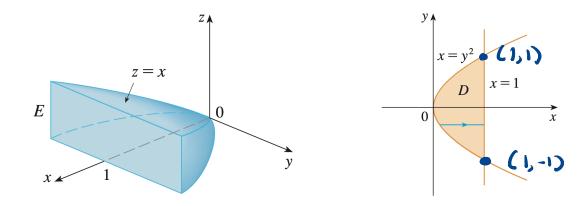
$$=\frac{1}{3}$$

(See the calculation in §12.3)

Definition. How can we compute the mass and the center of mass of a solid object that occupies the region E if its density, in units of mass per unit volume, at any given point (x, y, z) is given by $\rho(x, y, z)$?

Center of Mass:
$$\bar{X} = \frac{M_{yz}}{m}$$
 $\bar{y} = \frac{M_{xz}}{m}$ $\bar{z} = \frac{M_{xy}}{m}$

Example. Find the center of mass of a solid of constant density that is bounded by the parabolic cylinder $x = y^2$ and the planes x = z, z = 0, and x = 1.



View E as a type I region and choose order of integration of dxdxdy

$$m = \iiint_{E} \rho \, dV = \iiint_{D} \left[\int_{0}^{x} \rho \, dz \right] dA$$

$$= \int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} \rho \, dz \, dx \, dy$$

$$= \frac{4}{5} \rho$$

$$2) M_{xy} = \iiint_{E} z \cdot \rho \, dV = \iiint_{-1} \int_{y^{2}}^{x} \int_{0}^{x} z \cdot \rho \, dz \, dx \, dy$$

$$= \frac{2\rho}{z}$$

$$Myz = \iiint_{X} x \cdot \rho \, dV = \iiint_{1} \iint_{y^{2}} \int_{X}^{x} x \cdot \rho \, dz \, dx \, dy$$

$$= \frac{4\rho}{7}$$

Mxz = 0 (E is symmetric about the xz-plane)

$$\frac{3}{3} \left(\overline{x}, \overline{g}, \overline{z} \right) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m} \right) \\
= \left(\frac{4p/7}{4p/5}, \frac{0}{4p/5}, \frac{2p/7}{4p/5} \right) \\
= \left(\frac{5}{7}, 0, \frac{5}{14} \right)$$