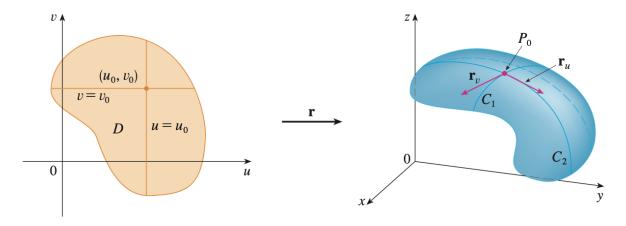
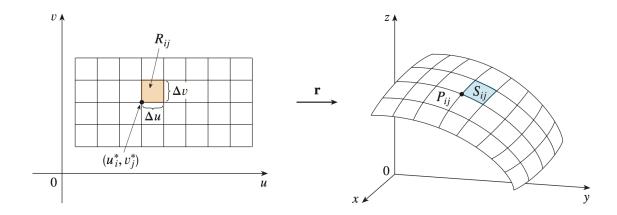
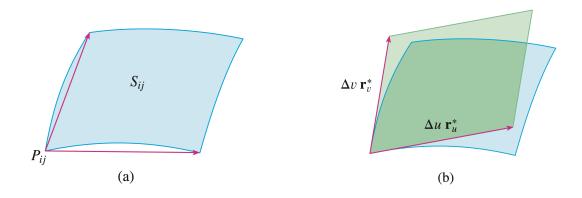
Lecture Notes	
Math 2400 - Calculus I	Π
Spring 2024	


Name:

12.6 Surface Area


Question. Recall that a parametric surface S is defined by a vector-valued function of two parameters

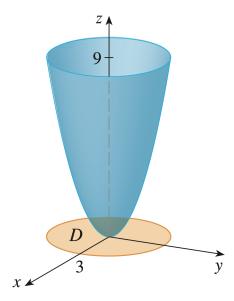
$$\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$$


How will we find the area of S?

Question. What is a patch?

Question. How can the two edges of the patch that meet at P_{ij} can be approximated by vectors? What is the approximate area of the patch?

Definition. If a smooth parametric surface S is given by the equation


$$\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$$

for $(u, v) \in D$, and S is covered just once as (u, v) ranges throughout the parameter domain D, what is the surface area of S?

Example. Find the surface area of a sphere of radius a.

Example. How can we find the surface area of a surface S with equation z = f(x, y), where (x, y) lies in D and f has continuous partial derivatives.

Example. Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

