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12.6 Surface Area

Question. Recall that a parametric surface S is defined by a vector-valued function of two

parameters

~r(u, v) = hx(u, v), y(u, v), z(u, v)i

How will we find the area of S?
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We will divide s into patches, and we will

approximate each patch by the area of a piece
of a tangent plane.
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Question. What is a patch?

Question. How can the two edges of the patch that meet at Pij can be approximated by vectors?

What is the approximate area of the patch?

2

For simplicity , suppose the parameter

↓ domaini is a rectangle ·

Subdivide D into rectangles Rij. Let Juf,vi be the lower left corner of Pij .
· Rij corresponds to a patch Sij on the surface 5

.

If Pij = F (45,2) is the lower left corner of Sij , the tangent vectors

at Pij are *
= Fabu,vit) and F = Ev JUF, V;

F).

the tangent
Vectors at Pij

· Each patch Sij is roughly a parallelogram L ↳
· The sides of this parallelogram are approximately Aur and Av*

· Therefore
,
the area of the patch is approximately

/am Av = (* xF/AUDV



Definition. If a smooth parametric surface S is given by the equation

~r(u, v) = hx(u, v), y(u, v), z(u, v)i

for (u, v) 2 D, and S is covered just once as (u, v) ranges throughout the parameter domain D,

what is the surface area of S?

3

Each patch Sij on
S has approximate area /* xF* /AUDV

· So s has approximate area & If* xF* si
· As we increase the number of rectangles, we obtain

A(s) = $/xlda



Example. Find the surface area of a sphere of radius a.

4

① A parametric representation of the sphere is
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where the parameter domain is D = [0,π] x [0, 2π]
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Example. How can we find the surface area of a surface S with equation z = f(x, y), where
(x, y) lies in D and f has continuous partial derivatives.

5

① S has parametric representation

(x
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, y , f(x,y))
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Example. Find the area of the part of the paraboloid z = x2 + y2 that lies under the plane z = 9.

6

The plane z = 9 intersects

== x2+y2
.

in the circle

x +y 2= 9 , z= 9 .

So
, the

Surface lies above the disk

D with center the origin

and radius 3.

· Hence A = $2)+ (25)d

=1 + (2x) + (2y)2 dA
= $ X 4(x2+yz) da

·

Converting to polar,
3

A = 92 % 2 raudo = S
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= 2π . [ ! =(1+ 4nz)z3 =
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