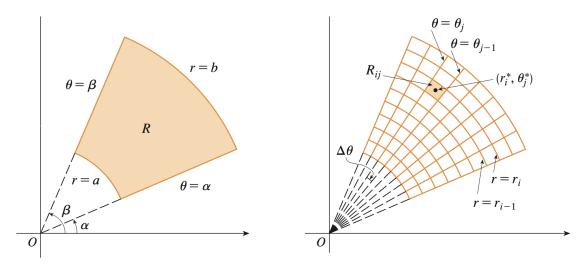

Double Integrals in Polar Coordinates

Question. What is the goal?



(a) $R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$ (b) $R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$

Theorem. If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, how can we compute $\iint_R f(x,y) dA$?

Question. Consider the following polar rectangle $R = [a, b] \times [\alpha, \beta]$.

To compute $\iint_R f(x,y)\,dA$ using polar coordinates:

- \bullet Divide the polar rectange R into polar subrectangles $R_{ij}.$
- Choose the center (r_i^*, θ_j^*) of R_{ij} as the sample point.

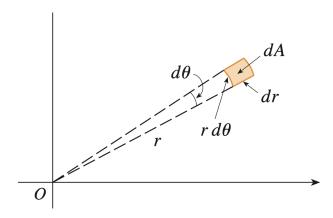
•
$$\iint_R f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) \Delta A_i.$$

What is the area ΔA_i of R_{ij} ?

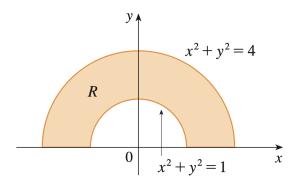
Question. Using the above, explain why $\iint_R f(x,y) dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos\theta, r\sin\theta) r dr d\theta$.

Answer. Let $g(r, \theta) = rf(r\cos\theta, r\sin\theta)$. We have

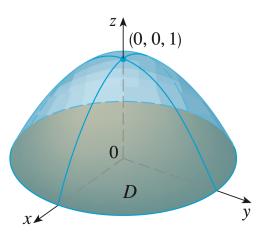
$$\iint\limits_R f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) \Delta A_i$$


=

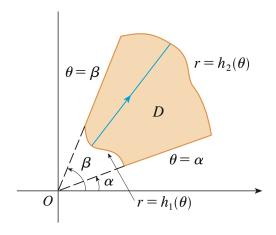
=

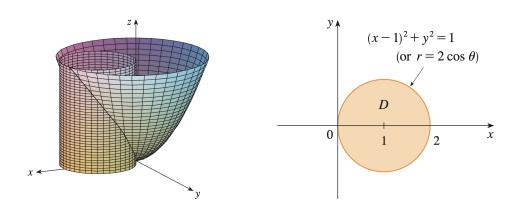

=

$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$


Question. Use the picture below to give an intuitive argument for why dA becomes $rdrd\theta$ when we convert to polar coordinates.

Example. Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.


Example. Find the volume of the solid bounded by the plane z=0 and the paraboloid $z=1-x^2-y^2$.


Theorem. If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha \le \theta \le \beta, \ h_1(\theta) \le r \le h_2(\theta)\},\$$

what is $\iint_D f(x,y) dA$?

Example. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $(x-1)^2 + y^2 = 1$.

