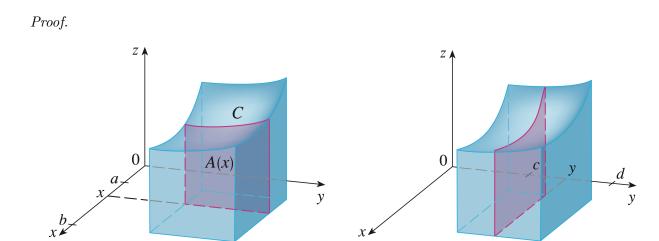
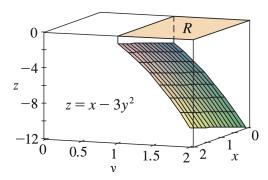
Lecture Notes	Name:
Math 2400 - Calculus III	
Spring 2024	

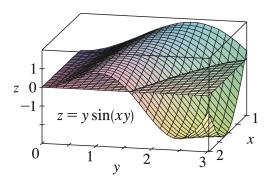
12.2 Iterated Integrals

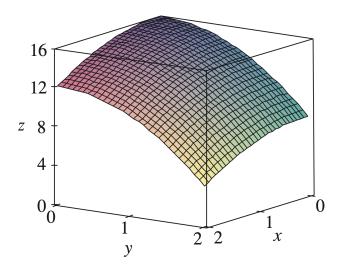

Question. How can we evaluate a double integral of a function f(x,y) over a rectangle $R = [a,b] \times [c,d]$ by using iterated integrals?

Example. Evaluate the iterated integrals.


(a)
$$\int_0^3 \int_1^2 x^2 y \, dy \, dx$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2}y \, dx \, dy$$


Theorem (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times [c, d]$, what does Fubini's Theorem say about $\iint_R f(x, y) dA$?


Example. Use Fubini's theorem to evaluate $\iint_R (x-3y^2) dA$, where $R = [0,2] \times [1,2]$.

Example. Use Fubini's theorem to evaluate $\iint_R y \sin(xy) dA$ where $R = [1,2] \times [0,\pi]$.

Example. Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

Theorem. If f(x,y) can be factored as the product of a function of x only and a function of y only, how can we rewrite the double integral of f over a rectangle $R = [a,b] \times [c,d]$?

Proof.

Example. Evaluate the integral $\iint_R \sin x \cos y \, dA$ if $R = [0, \pi/2] \times [0, \pi/2]$.